Fifth International Electronic Conference on Synthetic Organic Chemistry (ECSOC-5), http://www.mdpi.org/ecsoc-5.htm, 1-30 September 2001

[E0013]

MINUTES SYNTHESIS OF AMIDES FROM ESTERS AND AMINES UNDER MICROWAVE IRRADIATION

Fatima-Zohra Zradni a, Françoise Texier-Boullet b, Jack Hamelin b

a Faculté des sciences, Laboratoire de synthèse organique, BP 1524 Es-sénia, Oran, Algerie.
bUniversité de Rennes I, Institut de Chimie, Synthèse & Electrosynthèse Organiques 3, UMR 6510, Campus de Beaulieu, Avenue du Général Leclerc, CS 74205, 35042 RENNES Cedex (France).
http://www.mdpi.net/ecsoc-5/e0013/[email protected]

Received: 15 August 2001 / Uploaded 22 August 2001


Abstract: Formamide, primary and secondary amines react with esters in the presence of potassium tert-butoxide under microwave irradiation. Substituted amides are formed in yields (generally more than 70%) much higher than under conventional heating.

The amide bond is an important building unit naturally or synthetically occurring1,2. It is present as a key in many important natural products and man-made compounds2. For example, N-acylalkylenediamines3 react with 4-amino-2-chloro-6,7-dimethoxyquinazolines to give a variety of antihypertensive agents4.

The synthesis of amides from carboxylic esters is a transformation of general synthetic interest which in many cases needs harsh conditions (temperature, reaction periods) or the use of strong catalysts5,6.

However, the enormous growth in the use of microwave irradiation this last decade in synthetic organic chemistry7 inspired us to study this reaction. A recently described synthesis of N-acylalkylenediamines from the corresponding carboxylic esters and alkylene diamines, which requires prolonged reaction times (3-16 h)8 and also synthesis of N-arylamines9, prompts us to report our results on preparations under solvent-free conditions which proceed in a much shorter time (2-3 min).

For the synthesis of primary amides, the reactions were carried out using an ester (1 eq), formamide (3 eq) and solid potassium tert-butoxide (t-BuOK) (1 eq) and the reaction mixture was submitted to microwave irradiation (MWI) in a focused microwave oven (Synthewave 402®)10.
 


R1= Me, C6H5CH2, NCCH2, C6H5CH=CH, H3CCO2CH2 ; R2= Me,Et
 
 

Table 1. Solvent-free synthesis of amides from esters and formamide
using potassium tert-butoxide

Entry Starting Materials Products Time (min) Yield (%)a
1

2

3

4

5

CH3CO2C2H5

C6H5CH2CO2CH3

NCCH2CO2CH3

C6H5CH=CHCO2CH3

CH2(CO2CH3)2

CH3CONH2

C6H5CH2CONH2

NCCH2CONH2

C6H5CH=CHCONH2

CH3CO2CH2CONH2

2

3

2

2

3

80

79

72

85

43

a The yield refers to isolated products which exhibit physical and spectral properties (NMR spectra) in agreement with the assigned structures.
 

While the syntheses of secondary amides are realized from esters (1 eq) and butylamine (1 eq), tertiary amides result from esters (1 eq) and secondary amines (1 eq) with adjusted amounts of (t-BuOK) as shown in table 2 for the following reactions.
 


Table 2 : Solvent-free synthesis of secondary and tertiary amides from esters and amines during 3 minutes under irradiation.

Entry
Starting Materials

Esters Amines

Quantity of

t-BuOK(eq)

Irradiation 

Temp(°C)a

Yield under 

MW (%)b

Yield 

under D(%)c

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

CH3CO2C2H5 BuNH2(2a)

C6H5CH2CO2CH32a

NCCH2CO2CH3 2a

C6H5CH=CHCO2CH3 2a

CH2(CO2CH3)22a

CH3CO2C2H5 NH-(CH2)4- (3a)

C6H5CH2CO2CH33a

NCCH2CO2CH3 3a

C6H5CH=CHCO2CH3 3a

CH2(CO2CH3)23a

CH3CO2C2H5 NH-(CH2)5-(4a)

C6H5CH2CO2CH34a

NCCH2CO2CH3 4a

C6H5CH=CHCO2CH3 4a

CH2(CO2CH3)24a

1

0.5

1

1

0.5

0.25

1

0.5

0.25

0.25

0.5

0.5

0.25

0.5

0.5

95

105

83

96

71

157

219

190

198

95

129

204

140

176

74

70

97

60

61

17

69

63

78

69

52

74

70

75

75

41

25(2d)

36(1d)

17(1d)

42(1d)

5(2d)

21(1d)

15(3h)

39(8h)

9(5h)

5(8h)

30(1d)

25(6h)

12(2h)

7(5h)

3(6h)

a The irradiation power is monitored for the desired temperature. b The yield refers to isolated products which exhibit physical and spectral properties (NMR spectra) in agreement with the assigned structures. c Reaction in an oil bath (D) previously set at the temperature of the microwave experiments. (d: days; h: hours).
 
 

We observe that the reaction yields are lower for dimethyl malonate either with alicyclic or cyclic amines when compared to other esters (entries 13-15).

The structures of the amides were assigned on the basis of their 1H NMR spectra and comparison with literature data.

We compared the results of the present synthesis using microwave with classical heating during the same time. It is noteworthy that after 3 minutes in the same conditions, the yields under classical heating are in the range of traces. In table 2 we report in the last column the yields after a longer heating period to allow a comparison.

In conclusion, microwave irradiation accelerates considerably the process of condensation as compared with classical heating.
 

EXPERIMENTAL SECTION :

NMR spectra were measured on a Bruker FT AM 200 spectrometer using CDCl3 as solvent and TMS as internal standard.

General Procedure for the preparation of amides

Method A (MWI)

The typical procedure for the substituted amides synthesis is as follows: potassium tert-butoxide (1eq, 5.10-3 mol or 0.5 or 0.25 eq) was added to a premixed mixture of amines (1eq) and esters (1eq) in the (Ø:2.5 cm) reactor of a focused microwave oven (Synthewave 402)10 and irradiated for the specified temperature and time (see Tables 1-2). On completion of the reaction, the mixture was extracted with CH2Cl2.

After evaporation of the solvent, the resulting mixture was analyzed by 1H NMR.

Method B (Conventional)

Reactions are performed in the same conditions using an oil bath previously set at the temperature measured in the microwave oven. As this study was done only for the comparison, the products were not isolated and the ratio were determinated by 1H NMR.

Acetamide 11:

Yield : 80%; Solid, mp: 78°-80°C,1H NMR (200 MHz, CDCl3): d: 1.6 (s,2H, NH2); 2.0 (s, 3H,CH3).

Phenylacetamide 12:

Yield : 79%; Solid, mp: 154-157°C,1H NMR (200 MHz, CDCl3): d: 1.95 (s,2H,CH2); 4.69 (s,2H,NH2); 7.10 à 7.25 (m, 5H, phenyl).

Cyanoacetamide 13:

Yield : 71%; Solid, mp: 120-122°C,1H NMR (200 MHz, CDCl3): d: 3.08 (s,2H,NH2); 3.40 (s, 2H, CH2).

Cinnamamide 14:

Yield : 84 %; Solid, mp: 140-148°C,1H NMR (200 MHz, CDCl3): d: 3.49 (s, 2H,NH2); 6.45 à 7.65 (dd, CH=CH); 7.35 ( m, 5H, phenyl).

Methylmalonamide 15:

Yield : 43%; Solid, mp: 216°-217°C,1H NMR (200 MHz, CDCl3): d: 3.76 (s, 2H,NH2); 3.50 (s, 3H, CH3); 1.67 ( s, 2H, CH2).

N-Butyl acetamide 16:

Yield : 70%; Brown paste, bp: 229°C (lit),1H NMR (200 MHz, CDCl3): d: 3.40 (t,1H,NH); 0.87 (t, 3H, CH3); 1.40 ( m, 4H, CH2-CH2); 1.95 ( s, 3H, CH3-CO).

N-Butyl 2-phenylacetamide 17:

Yield : 97%; Solid, mp: 105°C (114°C lit.) 1H NMR (200 MHz, CDCl3): d: 7.3 ( m, 5H, phenyl); 4.55 ( s, 2H, -CH2-CO); 1.40 ( m, 4H, CH2-CH2); 0.9 (t, 3H, CH3)

N-Butyl 2-cyanoacetamide 18:

Yield : 60%; Solid, mp: 148°-150C,1H NMR (200 MHz, CDCl3): d: 3.90 (t,1H,NH-CH2); 3.45 ( s, 2H, -CH2-CO); 1.65 ( q, 4H, CH2-CH2); 0.9 (t, 3H, CH3).

N-Butyl cinnamamide 19:

Yield : 61%; Solid, mp: 58°-60°C,1H NMR (200 MHz, CDCl3): d: 1.01 à 1.95 (d Butyl); 3.80 ( t, 1H, NH-); 6.5 à 7.7 (dd, CH=CH); 7.35 ( m, 5H, phenyl).

N,N-dibutyl malonamide20:

Yield : 17%; Liquid, bp: 46°-48°C/mmHg (lit.) 1H NMR (200 MHz, CDCl3): d: 0.77 à 1.85 (d Butyl); 3.75 ( t, 1H, NH-); 3.95 (s,2H, CH2); 4.02 (s, 3H, -CH3).

1-Acetylpiperidine21:

Yield : 74%; Solid, mp: 85°-87°C,1H NMR (200 MHz, CDCl3): d : 1.55 (m,6H,H2H3H4); 3.05 (t, 4H, H1H5); 3.45 (s, 3H, -CH3).

1-(Phenylacetyl)piperidine22:

Yield : 70%; Solid, mp: 52°-54°C/16mmHg (lit.) 1H NMR (200 MHz, CDCl3): d: 1.60 (m,6H,H2H3H4); 3.20 (t, 4H, H1H5); 3.9 (s, 2H, -CH2); 7.25 ( m, 5H, phenyl).

1-(Cyanoacetyl)piperidine23:

Yield : 75%; Solid, mp: 88°-90°C,1H NMR (200 MHz, CDCl3): d: 1.60 (m,6H,H2H3H4); 3.20 (t, 4H, H1H5); 3.50 (s, 2H, -CH2).

3-Phenyl-1-(piperidin-1-yl)propenone24:

Yield : 75%; Solid, mp: 45°-47°C,1H NMR (200 MHz, CDCl3): d: 1.55 (m,6H,H2H3H4); 3.05 ( t, 4H, H1H5); 6.45 à 7.6 (dd, CH=CH); 7.35 (m, 5H, phenyl).

Methyl 3-oxo-3-(piperidin-1-yl)propanonate25:

Yield : 41%; Liquid, bp: 75°-76°C (lit.) 1H NMR (200 MHz,CDCl3):

d:1.55 (m,6H,H2H3H4); 3.05 (t, 4H, H1H5); 3.7 (s, 2H, -CH2); 3.9 (s, 3H, -CH3).

N-Acetylpyrrolidine26:

Yield : 69%; Liquid, bp: 53°-54°C (lit.) 1H NMR (200 MHz, CDCl3): d: 1.9

(m,4H,H2H3); 3.5 (t, 4H, H1H4); 3.75 (s, 3H, -CH3).

1-(Phenylacetyl)pyrrolidine27:

Yield : 63%; Liquid, bp: 47°-50°C (lit.) 1H NMR (200 MHz, CDCl3): d: 1.85

(m,4H,H2H3); 3.45 (t, 4H, H1H4); 3.99 (s, 2H, -CH2); 7.4 (m, 5H, phenyl).

1-(Cyanoacetyl)pyrrolidine28:

Yield : 78%; Solid, mp: 35°-37°C,1H NMR (200 MHz, CDCl3): d: 1.95 (m,4H,H2H3); 3.45 (t, 4H, H1H4); 3.80 (s, 2H, -CH2).

1-Cinnamoylpyrrolidine29:

Yield : 68%; Solid, mp: 47°-49°C,1H NMR (200 MHz, CDCl3): d: 1.85 (m,4H,H2H3); 3.3 (t, 4H, H1H4); 6.5 à 7.7 (dd, -CH=CH-); 7.5 (m, 5H, phenyl).

Methyl 3-oxo-3-(pyrrolidin-1-yl)propanoate30:

Yield : 51%; Liquid, bp: 65°-67°C (lit.) 1H NMR (200 MHz, CDCl3): d: 1.85 (m,4H,H2H3); 3.25 (t, 4H, H1H4); 3.75 (s, 2H, -CH2); 3.95 (s, 3H, -CH3).
 

References

1. North, M.Contemp.Org.Synth. 1994, I, 475.

2. Beckwith, A.L.J.in The chemistry of amides: Synthesis of amides; Zabicky, J., Ed. Interscience: New York, 1970; p 96.

3. (a) Koo, J.; Avakian, S.; Martin, G.J.J. Am. Chem. Soc. 1995,77, 5373. (b) Dessai, M.; Watthey, J.W.H.; Zuckerman, M.Org. Prep. Proced. Int. 1976, 8, 85. (c) Butora, C.; Blaha, L.; Rajsner, M.; Helfert, I.Collect. Czech. Chem. Commun. 1992, 57, 1967. (d) Boschi, D.; Stilo, A.D.; Fruttero, R.; Medana, C.; Sorba, G.; Gasco, A.Arch. Pharm.(Weinheim Ger) 1994, 327, 661. (e) Novelli, F.; Sparatore, F. Farmaco.1996, 51, 551.

4. (a) Althuis, T.H.;Hess, H.J. J.,Med.,Chem., 1977, 20, 146. (b) Manoury, P.M.; Binet, J.L.;Dumas, A.P.; Lefevre-Borg, F.Cavero, Hardstone, J.D.; Lewis, B.N.; Plamer, M.J. J. Med. Chem.1987, 30, 49.

5. Marsh, J. Advanced Organic Chemistry, 3rd Ed.; J. Wiley & Sons : New York,1985, 375.

6. Basha, A.; Lipton, M.; Weinreb, S.M.Tetrahedron Lett.1977, 4171.

7. For recent review on Microwave assisted reactions, see : (a) Abramovitch, R.A. Org. Prep. Proced. Int. 1991, 23, 683. (b) Caddick S.Tetrahedron. 1995, 51, 10403. (c) Galema S.A. Chem. Soc. Rev. 1997, 26, 233. (d) Loupy A.; Petit A.; Hamelin, J.; Texier-Boullet, F.; Jacquault, P.; Mathé, D. Synthesis. 1998, 1213. (e) Varma, R.S. Green Chemistry. 1999, 43.

8. Chou,W.C.; Tan,C.W.; Chen,S.F.; Ku,H. J. Org. Chem.1998, 63,10015.

9. Varma,R.S; Naicker.K.P. Tetrahedron Lett.1999, 40, 6177.

10. We used a focused microwave oven : Synthewave 402® . This oven is fitted with an open reactor vessel and a stirring device. R. Commarmot, R. Diderot, J.F. Gardais, Rhone-Poulenc/Prolabo, Patent Number 84/03496. Octobre 27th 1986.The temperature is measured by an IR captor, Prolabo, Patent Number 62241D. 14669 FR. Decembre 23rd 1991.

11. Charles,L.P; Nunez,O. J. Am. Chem. Soc. 1987, 109 , 522.

12. Arndt,F.; Eistert,B. Chem. Ber. 1935, 68, 200.

13. Mahajan, J.R.; Ferreira, G.A.L.; Araujo, H.C.; Nunes, B.J. Synthesis1976, 112.

14. Levin, J.I.; Turos, Ed.; Weinreb, S.M. Synth. Commun 1982, 989.

15. Paraskewas, S. Synthesis 1974, 574

16. Heyns, K.; Von Bebenburg, W. Chem. Ber., 1953, 86, 278.

17. Glasoe, P.K.; Scott, L.D.; Audrieth, L.F. J. Am. Chem. Soc. 1941, 63, 2965.

18. Shukla, J.S.; Bhatia, P. J. Indian. Chem. Soc. 1978, 55, 281.

19.Parfenov, E.A.; Smirnov, L.D. Chem. Heterocycl. Compd. 1991, 27, 799.

20. Kisenyi, J.M.; Willey, G.R.; Drew, G.B. J. Chem. Soc. Dalton. Trans.1985, 1073.

21. Marvel, C.S.; De Radzitzky, P.; Brader, J.J. J. Am. Chem. Soc. 1955, 77, 5997.

22. Chou,W.C.; Chou, M.C.; Lu, Y.L.; Chen, S.F. Tetrahedron Lett .1999,40, 3419.

23. Werner, A.; Guareschi, A. Chem. Ber.1892, 326.

24. Pollard, A.; Mattson, D. J. Am. Chem. Soc. 1956, 78, 4089.

25. Palasz, P.D.; Utley, J.H.P. J. Chem. Soc. Perkin. Trans. 2 1984, 4, 807.

26. Dendrinos, K.; Jeong, J.; Huang, W.; Kalivretenos, A.G. Chem. Commun. 1998, 4, 499.

27. Cossy, J.; Pale-Grosdemange, C., Tetrahedron.Lett. 1989, 30, 2771.

28. Gazit, A.; Osherov, N.; Posner, I.; Yaish, P. J. Med. Chem. 1991, 34, 1896.

29. Gasanov, R.G.; Videnska, S.O.; Ilinskaya, L.V. Russ. Chem. Bull. 1994, 43, 1688.

30. Box, V.G.S.; Marinovic, N.; Yiannikouros, G.P. Heterocycles. 1991, 32 , 245.