Alessandra Becci,a Marco Ciclosi,a Roberta Galeazzi,a Mario Orena a* José Sepulveda-Arques b
INTRODUCTION
The Baylis–Hillman reaction [1] allows carbon-carbon bond formation leading to compounds 1 starting from activated vinyls and carbonyl compounds.Whereas aldehydes are generally used, N-tosylimines and activated ketones can be also used as the electrophilic acceptors. [2][3] Thus, the aza version of the reaction, i.e., exchanging the aldehyde reactant for an aldimine and thus forming 2-methylene-3-aminocarbonyl compounds, 2, was also reported and found wide applicability in the synthesis of lactams, quinolines, and taxol derivatives. [4]
![]()
Scheme 1
As part of a programme directed to prepare new, non- proteinogenic amino acids able to induce conformational restrictions in oligopeptides, [5][6][7] we already reported a convenient procedure for the preparation of both unsaturated b-amino acid derivatives, 3 and 4,5 proceeding with high regioselection. [8]
![]()
Scheme 2
RESULTS AND DISCUSSION
Owing to the difficulty connected with removal of the tosyl group, we devised to obtain both 7 and 8 starting from the corresponding trichloroacetimidates 6 , easily prepared in moderate yield by reaction of the Baylis–Hillman adducts 1 and trichloroacetonitrile in the presence of a catalytic amount (10%) of DBU in DCM. [9]
![]()
Scheme 3
Then, by thermal rearrangement of 1 in refluxing toluene, [10] the (E)-trichloroacetylamino esters 7 were exclusively obtained in good yield, whose configuration was assigned by 1H NMR data (Scheme 4).
![]()
Scheme 4
On the contrary, treatment of imidates 6 with a catalytic amount of DABCO in DCM at r.t. afforded the trichloroacetylamino esters 8 via a tandem SN2'-SN2' reaction.
![]()
Scheme 5
It is worth mentioning, however, that the corresponding DABCO salts 9, prepared by reaction of the acetates of Baylis–Hillman products 1 and DABCO in aqueous THF, failed to give 8 when treated with trichloroacetamide. [11]
![]()
Scheme 6
This result, together with the apparent behaviour of the trichloroacetylamino moiety as a nucleophile at nitrogen, prompted us to hypothise a concerted pathway, and investigations are currently underway in order to ascertain the reaction mechanism.
Then, we turned our attention towards the synthesis of conformationally restricted dipeptides and in a preliminary investigation we studied the preparation of the non-natural conformationally restricted dipeptide t-Boc-Gly- b-Ala-Ot-Bu, 15. First, we prepared both the t-butyl acrylate 10 [12] and the acyl isocyanate 11[13] following the literature methods. By reaction in DCM at r.t., the corresponding N-acyl carbamate 12 was obtained in good yield (Scheme 7).
![]()
Scheme 7
Subsequent treatment of compound 12 with a catalytic (10%) amount of DABCO in DCM at r.t. afforded the corresponding chloroacetamide 13 in high yield.
![]()
Scheme 8
The nucleophilic displacement carried out with azide ion in DMF starting from 13 gave 14 which, by conversion into the corresponding amino derivative, followed by reaction with (t-Boc)2O, led to the conformationally restricted dipeptide 15 in good yield.
![]()
Scheme 9
CONCLUSIONS
In conclusion, we disclosed a divergent approach to either b -amino acid derivatives 7 and 8 simply on changing the reaction conditions. After conversion into the corresponding amino acids, these compounds will be incorporated in oligopeptides, with the aim to induce conformational restrictions. In addition, a simple approach to the non-natural conformationally restricted dipeptide t-Boc-Gly- b-Ala-Ot-Bu, 15 was carried out, and analogue compounds are currently synthesized.Acknowledgement
We gratefully acknowledge financial support from M.I.U.R. (Rome, Italy - PRIN 2000).
REFERENCES
1. (a) Drewes, S. E.; Roos, G. H. P. Tetrahedron 1988, 44, 4653-4670. (b) Basavaiah, D.; Rao, P. D.; Hyma, R. S. Tetrahedron 1996, 52, 8001-8062. (c) Ciganek, E. Org. React., 1997, 51, 201-350.
2. (a) Morita, K.; Suzuki, Z.; Hirose, H. Bull. Chem. Soc. Jpn. 1968, 41, 2815. (b) Baylis, A. B.; Hillman, M. E. D. German Patent 2155113, 1972 (Chem. Abstr. 1972, 77, 34174q).
3. (a) Brzezinski, L.J.; Rafel, S.; Lehahy, J.W. J. Am. Chem. Soc. 1997, 119, 4317-4318. (b) Aggarwal, V. K.; Mereu, A.; Tarver, G. J.; McCague, R. J. Org. Chem. 1998, 63, 7183-7189. (c) Kataoka, T.; Iwama, T.; Tsujiyama, S.; Iwamura, T.; Watanabe, S. Tetrahedron 1998, 54, 11813-11824. (d) Shi, M.; Jiang, J.-K.; Feng, Y.-S. Org. Lett. 2000, 2, 2397-2399. (e) Yang, K.-S.; Chen, K. Org. Lett. 2000, 2, 729-731.
4. (a) Perlmutter, P.; Teo, C. C. Tetrahedron Lett. 1984, 25, 5951-5952. (b) Bertenshaw, S.; Kahn, M. Tetrahedron Lett. 1989, 30, 2731-2732. (c) Cyrener, J.; Burger, K. Monatsh. Chem. 1994, 125, 1279-1285. (d) Kundig, E.P.; Xu, L.H.; Schnell, B. Synlett 1994, 413-414. (e) Campi, E. M.; Holmes, A.; Perlmutter, P.; Teo, C. C. Aust. J. Chem. 1995, 48, 1535-1540. (f) Richter, H.; Jung, G. Tetrahedron Lett. 1998, 39, 2729-2730.
5. (a) Galeazzi, R.; Mobbili, G.; Orena, M. Tetrahedron, 1996, 52, 1069-1084. (b) Galeazzi, R.; Geremia, S.; Mobbili, G.; Orena, M. Tetrahedron: Asymmetry, 1996, 7, 79-88. (c) Galeazzi, R.; Mobbili, G.; Orena, M. Tetrahedron: Asymmetry, 1997, 8, 133-137. (d) Galeazzi, R.; Geremia, S.; Mobbili, G.; Orena, M. Tetrahedron: Asymmetry, 1996, 7, 3573-3584.
6. (a) Galeazzi, R.; Mobbili, G.; Orena, M. Tetrahedron 1999, 55, 261-270. (b) Galeazzi, R.; Mobbili, G.; Orena, M. Tetrahedron 1999, 55, 4029-4042. (c) Fava, C.; Galeazzi, R.; Gonzalez-Rosende, M.E.; Orena, M. Tetrahedron Lett., 2000, 41, 8577-8580. (d) Fava, C.; Galeazzi, R.; Mobbili, G.; Orena, M. Tetrahedron: Asymmetry 2001, 12, 2731-2741.
7. (a) Jordá-Gregori, J.M.; González-Rosende, M.E.; Sepùlveda-Arques, J.; Galeazzi, R.; Orena, M. Tetrahedron: Asymmetry, 1999, 10, 1135-1143. (b) Jordà-Gregori, J.M.; Gonzalez-Rosende, M.E.; Cava-Montesinos, P.; Sepùlveda-Arques, J.; Galeazzi, R.; Orena, M. Tetrahedron: Asymmetry, 2000, 11, 3769-3777.
8. Ciclosi, M.; Fava, C.; Galeazzi, R.; Orena, M. Tetrahedron. Lett. 2002, 43, 2199-2202.
9. (a) Mehmandoust, M.; Petit, Y.; Larcheveque, M. Tetrahedron Lett., 1992, 33, 4313-4316. (b) Martin, C.; Bortolussi, M.; Bloch, R. Tetrahedron Lett., 1999, 40, 3735-3736.
10. Overman, L.A. J. Am. Chem. Soc., 1976, 98, 2901-2911.
11. Kim, J.N.; Lee, H.J.; Lee, K.Y.; J.H. Gong Synlett, 2002, 173-175.
12. Nakagawa, K.; Makino, M.; Kita, Y., Eur. Pat. Appl. EP 669,312 (30 August 1995); (CA 1995, 285, 123218v)
13. (a) Speziale, A.J.; Smith, L.R. J. Org. Chem. 1962, 27, 3742-3743. (b) Speziale, A.J.; Smith, L.R. J. Org. Chem. 1963, 28, 1805-1811.