Entropy 2004, 6[1], 158-179
Entropy
ISSN 1099-4300
http://www.mdpi.org/entropy/

A New Thermodynamics from Nuclei to Stars

Dieter H.E. Gross

Hahn-Meitner Institute and Freie Universität Berlin, Fachbereich Physik. Glienickerstr. 100, 14109 Berlin, Germany. E-mail: [email protected]

Received: 30 June 2003 / Accepted: 26 December 2003 / Published: 16 March 2004

Abstract: Equilibrium statistics of Hamiltonian systems is correctly described by the microcanonical ensemble. Classically this is the manifold of all points in the N-body phase space with the given total energy. Due to Boltzmann's principle, eS=tr(δ(E-H)), its geometrical size is related to the entropy S(E,N,...). This definition does not invoke any information theory, no thermodynamic limit, no extensivity, and no homogeneity assumption, as are needed in conventional (canonical) thermo-statistics. Therefore, it describes the equilibrium statistics of extensive as well of non-extensive systems. Due to this fact it is the fundamental definition of any classical equilibrium statistics. It can address nuclei and astrophysical objects as well. All kind of phase transitions can be distinguished sharply and uniquely for even small systems. It is further shown that the second law is a natural consequence of the statistical nature of thermodynamics which describes all systems with the same -- redundant -- set of few control parameters simultaneously. It has nothing to do with the thermodynamic limit. It even works in systems which are by far than any thermodynamic "limit".

Keywords: classical thermo-statistics; non-extensive systems.


Full text in PDF form, 423 K
© 2004 by MDPI (http://www.mdpi.org). Reproduction for noncommercial purposes permitted.