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Abstract: Grain growth in metals is driven by random thermal fluctuations and increases 
the orderliness of the system. This random process is usually simulated by the Monte Carlo 
(MC) method and Cellular Automata (CA). The increasing orderliness results in an 
entropy decrease, thus leading to a paradoxical apparent violation of the second law of 
thermodynamics. In this paper, it is shown that treating the system as a multiscale system 
resolves this paradox. MC/CA simulations usually take into consideration only the 
mesoscale entropy. Therefore, the information entropy of the system decreases, leading to 
an apparent paradox. However, in the physical system, the entropy is produced at the 
nanoscale while it is consumed at the mesoscale, so that the net entropy is growing. 
 
Keywords: grain growth, Monte Carlo simulation, Cellular Automata, multiscale 
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The entropy as a measure of irreversibility and dissipation in a thermodynamic system was 
introduced by R. Clausius in the 1850s. According to the second law of thermodynamics, the entropy 
of a closed system cannot decrease. In 1877, L. Boltzmann suggested a definition of the entropy using 
the statistical thermodynamics approach and the concept of microstates Ω corresponding to a given 
macrostate, 

Ω= lnBkS             (1) 

where kB is Boltzmann’s constant and Ω is the number of microstates. 
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About 70 years later, the concept of information entropy was introduced by C. Channon, who 
defined it as 

 ( )pKH /1ln=          (2) 

where K is a constant and p is the probability associated with the information. The relationship 
between the two types of the entropy remains a matter of debate [1]. The extensive study of self-
organizing systems since 1960 attracted attention to situations when the entropy decreases. However, 
these self-organizing systems are not closed and operate far from the equilibrium, with the entropy 
being driven away from the system. 

Figure 1. MC simulation of grain growth (a) experimental observation of grains in 
aluminum at different time intervals (b) simulation lattice (c) simulation results for grain 
growth [2]. 
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An interesting example of a self-organizing process is the thermally activated grain growth in 

metals (Fig. 1, [2]). It is well known that metal crystals form grains, characterized by different 
orientations of the lattice [3]. The typical grain size is in the range between microns and millimeters. 
There is an additional energy associated with the grain boundaries due to the misorientation of the 
neighboring grains. Therefore, it is energetically profitable for larger grains to grow and to absorb 
smaller grains, thus reducing the total number of grains and the total boundary area. The ideal state of 
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a perfect crystal with only one grain corresponds to the minimum energy. The grain growth is a 
thermally activated diffusion-like process with the Arrhenius type of kinetics. For normal isotropic 
grain growth, theoretical considerations predict a parabolic dependence of the average grain radius r 
on time 
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where Q is the activation enthalpy, R is the universal gas constant, K0 is a proportionality constant and 
r0 is the initial grain size [4]. 

Modeling the grain growth is a challenging task. Since it is a random process, deterministic 
modeling is difficult. Monte Carlo (MC) simulations and Cellular Automata (CA) approaches are often 
used [5-6]. CA algorithms describe the spatial and temporal evolution of a complex system by 
applying deterministic or probabilistic local rules to the cells of a regular lattice. They are based on 
finite difference formulations of local interaction laws. The MC method uses randomly generated 
orientation numbers associated with a regular lattice. The latter is initialized by randomly assigning to 
each lattice point an integer number representing its orientation. Reorientations are randomly and 
sequentially attempted for all lattice sites. If a new orientation is characterized by lower energy, then it 
is accepted [5-11]. 

The grains of a metal represent a typical example of a partially ordered system that occupies an 
intermediate position between the complete disorder (a random collection of atoms) and complete 
order (a perfect single crystal, which is close to the state of complete order, although it may have 
thermal equilibrium defects introducing disorder). The grain growth is also a self-organizing process 
system, which naturally evolves from a disordered to an ordered state, while being driven by random 
thermal fluctuations. Consider an array of N cells, representing lattice cells in the simulation method, 
with each cell being in one of M microstates. The total number of microstates of this system would 
then be: 

NM=Ω            (4) 

When the system reaches its final state with all cells having the same orientation, the total number of 
microstates becomes: 

M=Ω            (5) 

Using the statistical mechanics definition of the entropy, one can find the initial entropy S0 and the 
final entropy Sf of the system as: 

( ) f0 NSMlnNMNlnS ===         (6) 
MlnS f =            (7) 

Based on Eqs. 6 and 7, the entropy decreases between the initial and the final states by an amount of 

( ) Mln1NS −=Δ           (8) 
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This result constitutes an apparent paradox, because it seems to contradict the second law of 
thermodynamics, which states that the entropy of a closed system does not decrease. Another 
formulation of the paradox is that the randomness of thermal fluctuations leads to an increased 
orderliness of the system. 

In order to solve this paradox, one has to take into account that the system under consideration can 
be studied at different scale levels, and also that it is not a closed system. At the macroscale, the 
continuum system is characterized by certain bulk mechanical properties (e.g., yield strength, elastic 
modulus) that depend upon the average grain size. At the macroscale, no change of entropy is 
expected, i.e. δSmacro = 0. The mesoscale (or microscale) is governed by grains that tend to grow. 
Therefore, the mesoscale entropy is essentially the configuration entropy, and with increasing grain 
size it decreases due to the increased orderliness of the system, i.e. δSmeso < 0. At the molecular scale 
(or nanoscale), energy barriers for grain growth and random thermal fluctuations exist. Every time 
when a lattice site is reoriented, a certain amount of energy is dissipated because the energy barrier 
must be overcome. However, if the system’s temperature is maintained constant, then the heat is 
removed from the system due to its contact with the surroundings, and thus the system is not closed. 
This results in an increase in the system’s temperature and entropy, i.e. δSnano > 0. In other words, the 
random fluctuations at the nanoscale lead to the orderliness increase at the mesoscale, which is 
compensated by the entropy increase at the nanoscale. The net entropy of the system can therefore be 
written as 

 nanomesomacronet SSSS ++=         (9) 

Since |δSnano| > |δSmeso|, the net entropy decreases and the second law of thermodynamics is satisfied 
(Table 1). 

Table 1. Hierarchy levels in the physical system and simulation. 

 Physical system Simulation 

Objects Driving 
force 

Entropy Objects Driving force Entropy 

Macroscale 
Continuum 

material 
– δSmacro = 0 – – – 

Mesoscale Grains 
Decreasing
boundary 

energy 
δSmeso < 0 Cells 

Decreasing 
energy 

functional 
δS<0 

Nanoscale Atoms 
Thermal 

fluctuations 
δSnano > 0 – – – 

 
Therefore, we deal with the two different systems: the physical system that is characterized by the 

thermodynamic entropy and the simulation system that models the physical system and is 
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characterized by the information entropy. Concerning the information entropy of the system, several 
interesting observations can be made with regard to the self-organizing properties of this system. The 
numerical CA/MC models consider only the mesoscale structure of the system, and thus only the 
mesoscale (configurational) entropy Smeso can be determined from the CA/MC models. This is the 
reason for the apparent entropy decrease. The physical system is not insulated. The heat and entropy 
are removed from the system, and thus, it is not a closed system. However, the numerical CA/MC 
models do not take into account that aspect, because they are concentrated on the mesoscale 
description of the physical system. As a result, the second law of thermodynamics is apparently 
violated in the simulation system in a paradoxical manner. The second law is valid for closed physical 
systems. However, there is no reason why it cannot be violated for CA/MC models during computer 
simulation. One should keep in mind that computers require energy dissipation (i.e. computer 
processors require permanent cooling), and therefore, the decrease of entropy in the information 
system is compensated by an increase of the thermodynamic entropy. 

The conclusion is that there is a correspondence between the physical system (a metal crystal) and 
the information system, used for the simulation (e.g. CA). However, the physical system is a 
multiscale system, with the entropy produced at the nanoscale and consumed at the mesoscale, so that 
the net sum of the entropy grows. The information system simulates only the mesoscale level, thus 
leading to the apparent reduction of the entropy. Consequently, the second law of thermodynamics is 
not observed within the computer simulation network. It is noted that such a common dissipative 
process as dry friction also has a hierarchical (multiscale) organization [12-13], and therefore the 
hierarchical approach to the entropy is important for a broad class of physical systems. 
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