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Abstract: Ecosystems and quantum gases share a number of superficial similarities including
enormous numbers of interacting elements and the fundamental role of energy in such interac-
tions. A theory for the synthesis of data and prediction of new phenomena is well established
in quantum statistical mechanics. The premise of this paper is that the reason a comparable
unifying theory has not emerged in ecology is that a proper role for entropy has yet to be
assigned. To this end, a phase space entropy model of ecosystems is developed. Specification
of an ecosystem phase space cell size based on microbial mass, length, and time scales gives
an ecosystem uncertainty parameter only about three orders of magnitude larger than Planck’s
constant. Ecosystem equilibria is specified by conservation of biomass and total metabolic
energy, along with the principle of maximum entropy at equilibria. Both Bose - Einstein and
Fermi - Dirac equilibrium conditions arise in ecosystems applications. The paper concludes
with a discussion of some broader aspects of an ecosystem phase space.
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1. Introduction

Ecosystems and quantum gases share a number of elementary characteristics. Both have an enormous
number of elements. A mole of gas at standard conditions contains more than 1023 fundamental particles.
Estimates of the number of species range as high as 108 with some estimates of the number of individual
cockroaches as high as 1015. I suspect there are more than 1024 individual planktons in the world-ocean.
Each particle of a gas has an intrinsic amount of energy that it exchanges with other particles through
elastic or inelastic interactions and with the container walls. Similarly, each organism of an ecosystem
has an energy budget with income from photosynthesis or ingestion and expense associated with growth
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and procreation. Finally, it is recognized that macro-characteristics of gases are unaffected by the details
of the interactions of individual particles. Ecosystems also are remarkably stable. The viability of a rain
forest is unaffected by the behavior of individual soldier ants.

No doubt these similarities are a basis for the many applications of statistical mechanical ideas to
ecosystems. Kerner (1957, 1959) provided one of the earliest applications. Starting with a general sys-
tem of Volterra equations, he developed an ecological theory that paralleled the Hamiltonian formulation
of statistical mechanics. Later Elsasser (1983) formalized statistical mechanics concepts for application
to the genetic code. Recent studies have focused on statistical measures of entropy to account for diver-
sity, complexity, and evolution of biological systems. See Brooks and Wiley (1988) and Ricotta (2000)
for excellent summaries of progress. However, the symmetry between quantum mechanics and ecosys-
tems is not yet complete as fundamental principles used with great effectiveness to quantify quantum
statistical properties have yet to be exploited for ecosystems. This paper is a step in that direction. The
specific interest is formulation of quantum like rules for entropy functions to account for some ecosystem
macroproperties.

Quantum statistical mechanics is based on the concept of a six-dimensional phase space composed
of a very large number of discrete cells. Apparently theorists have yet to develop an analogous structure
for ecosystems. Thus several fundamental issues must be addressed if these ideas are to have any utility
to ecosystem descriptions. What are appropriate coordinates of ecosystem phase space, what criteria are
appropriate for zoning this space, what is an appropriate entropy for an ecosystem, and how are all of
these quantities related to ecosystem equilibria? Answers to these questions are offered below.

The paper is organized as follows. The next section reviews ideas from quantum statistical mechanics
deemed to be crucial for applications to macroecology. Then a candidate ecosystem phase space is
proposed along with a suggestion for zoning the phase space and a specification of macroecological
entropy. Section 3 applies the conservation of mass and energy principles along with the maximization
of macroecology entropy at equilibrium. One application results in equations for the distribution of
biomass of ecosystems that are identical to particle distributions of a Bose-Einstein (BE) gas. The
second application incorporates Gause’s law that no two species occupy the same ecological niche. The
consequent species distribution equations are identical to particle distributions for a Fermi-Dirac (FD)
gas. The last section summarizes the findings and discusses some consequences.

2. Ecosystem phase space

The state of any complex system can be expressed in a multitude of ways. At the coarsest resolution,
this might be specification of macro-properties such as temperature and pressure for gases. A more
detailed description would give the trajectories of representative particles in a small region. The exact
description would give the location and momentum of every particle. Of course the last description is
precluded by the Heisenberg uncertainty principle.

The intermediate resolution description has proved to be extraordinarily useful in applications of
quantum mechanics. Briefly, this is how the approach works. The uncertainty principle provides the
theoretical basis for defining regions where particle properties can be assessed. These regions are simply
discrete cells in a phase space. The size of the cells is determined by Heisenberg’s principle. This gives
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the cell size as a fraction of a six-dimensional phase space whose elements are the three components of
position and three components of momentum. The fundamental cell size is given by h3 or h3/2 for BE

and FD models, respectively, where h is Planck’s constant. Typically the number of cells in phase space
greatly exceeds the number of particles in the gas.

The phase space concept, as just outlined, leads naturally to the concept of micro and macro states.
The microstate description specifies the number of particles in each cell. Now the cells can be grouped
by zones of approximately the same energy or some other appropriate macro-property. The distribution
of particles in each zone is the macrostate description. Considering the large number of particles and
cells or zones, it is clear that a given macrostate can be achieved by a large number of microstates.
The macrostate(s) determined by the largest numbers of microstates is (are) the one(s) most likely to be
observed at equilibrium.

The notion of phase space with associated micro and macrostates is quite general and has been applied
with great effect in many disciplines other than quantum mechanics. Here I attempt to apply these
ideas to ecosystems. The first step in constructing an ecosystems phase space is to specify the cell
characteristics. But what to do since there is no biological uncertainty principle?

In order to address this question it is useful to begin with a review of Heisenberg’s uncertainty princi-
ple. An elementary form is

∆p ∆x ≥ h (1)

where ∆p and ∆x are momentum and position increments or observational uncertainties along the x axis.
Equation (1) is purposefully written as an inequality to emphasize the point that in a given experiment
or set of observations, the product of increments often is larger than the Heisenberg fundamental limit h.
From the biological perspective (1) is just an allometric equation relating position and momentum with
a scaling exponent of −1.

Can a biological counterpart of h be constructed? To answer this, recall that h was first introduced as
the coefficient in Planck’s equation relating the energy ε of photons to their frequencies ν. Incidentally,
that equation (ε = hν) is also an allometric equation with a scaling exponent of 1. The universal
gravitation constant G, the speed of light c, and h define fundamental mass (Mp), length (Lp), and time
(Tp) scales. See Gross (1989)and Wilczak (2001) for concise histories and insightful discussions about
these scales.

Apparently analogous universal constants have yet to be identified for biological processes. Conse-
quently, I attempt here to construct an hE from appropriate mass, length, and time scales. Of all the
allometric relations in biology, what are the ones most appropriate for ecosystems? Ginzburg and Goly-
van (2004) state that the essential allometric equations for describing ecosystems are: Kleiber’s equation
for metabolic rate R, generation time τ , and Damuth’s equation for the population density D. The
appropriate allometric equations are

R = γRM3/4

τ = γτM
1/4

D = γDM−3/4. (2)

Here M is mass, and the γ’s are normalization factors, or the ordinate intercepts on a log log plot. I
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specify their dimensions as
[
M1/4L2/T 3

]
,
[
TM−1/4

]
, and

[
M3/4/L2

]
, respectively.

Equation (2) is consistent with the quarter-power scaling proposed by West et al. (1997). This specific
scaling, along with the general issue of appropriateness of allometric equations in biology, are topics
of lively discussion in the literature. Two recent papers illustrate some of the relevant issues. In an
exhaustive re-analysis of earlier data, Dodds et al. (2001) rejected a quarter-power scaling of metabolic
rate for animals in favor of a geometric scaling. They also disputed the theoretical justification for
quarter-power scaling developed by West et al. (1997). On the other hand, Kaitaniems (2004) argued
that much of the variability in estimates of scaling exponents are procedural artifacts. West and Brown
(2005) have responded to Dodds et al. (2001) criticism of the theoretical basis of quarter-power scaling,
but this is not likely to be the final word. In view of this, the use of quarter-power scaling here is not
an endorsement; it is merely a convenient example scaling. The basic idea of an ecosystem uncertainty
parameter or minimum phase space cell does not depend on a specific scaling, only on the presumption
that a consistent scaling exists.

The dimensions of h are [ML2/T ]. For the scaling argument used below Planck’s reduced constant,
h̄ = h/2π ≈ 10−34 Joule seconds is appropriate. Surely an ecosystem phase space cell should have the
same dimensions. After all, life is based on fundamental physical and chemical processes taking place
down to the quantum level.

An ecosystem uncertainty parameter hE with dimensions [ML2/T ] can be constructed from the γ’s
in (2). That is, select α, β, and δ such that

hE = γα
Rγβ

τ γδ
D (3)

has the dimensions of h in (1). Straightforward algebra yields

α = 6

β = 17

δ = 5. (4)

At this point there is nothing to constrain the number of normalization parameters, or γ’s. A phase
space can be built on any consistent choice. Indeed this situation parallels the history of statistical me-
chanics. The father of this discipline, Ludwig Boltzmann, did not even know of the uncertainty principle,
he merely stipulated the existence of cells. It wasn’t until after the rise of quantum mechanics, decades
after Boltzmann’s untimely death, that the precise specification of a phase space cell in a quantum gas
was established.

As noted earlier, h is the minimum of all possible scaling coefficients for (1). Similarly, we seek the
minimum hE . If this is to be a universal quantity characteristic of life, then it should be based on scales of
the most fundamental of life forms, microbes. Of course time, space, and mass scales of microbes range
over orders of magnitude. Moreover, microbial space scales are highly anisotropic, which is in distinct
contrast to a quantum gas in the absence of an external field, and precise values are not yet available.
Nevertheless estimates based on values reported in the literature for selected species are of interest.
To avoid issues arising from spatial anisotropy, the spherical microbe Staphylococus is a convenient
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choice. Typical scales appropriate for this organism, as reported by Doetsch and Cook (1973), are mass
Mm ≈ 10−16kg, space Lm ≈ 10−6m, and Tm ≈ 2 · 103s respectively. Then

hE = Mm · L2
m · T−1

m ≈ 5 · 10−31 Joule seconds. (5)

Estimates of hE based on other microbe scales reported by Doetsch and Cook (1973 varied from 10−29

to 10−32.
These values are surprisingly close to h̄ = 10−34 Joule seconds, and thus merit comment. To this end,

note that h̄ can also be expressed in terms of the product of the momentum and size of a Planck photon,
the smallest possible photon. See Kirwan (2004) for a discussion of this point. As is well known photon
momentum is simply Mp · c where c = Lp · T−1

p is the speed of light. Thus

h̄ = Mp · c · Lp ≈ 10−34 Joule seconds,

Mp ≈ 2.2 · 10−8kg,

Lp ≈ 1.6 · 10−35m,

Tp ≈ 5.4 · 10−44s. (6)

Comparison of the values in (6), with the microbal scales used in constructing (5), shows that Mm is
8 orders of magnitude smaller than Mp, Lm is over 29 orders of magnitude larger than Lp, and Tm is 47
orders of magnitude larger than Tp. Essentially h̄ is small because the Planck length scale Lp is small.
In contrast hE is small because Tm is large. Indeed it is large time scales that distinguish biological
processes from typical quantum physical and chemical processes.

It was noted earlier that there are generally many more cells than particles in quantum phase space.
Put another way, in a quantum gas at any given time there may be cells with no particles. The small value
of hE suggests this could be true for ecological phase space. An enlightening calculation is to estimate
the number of cells for ecosystem earth. A conservative estimate of the size of this phase space is the
biomass of earth times the surface area of the earth divided by an appropriate planetary time scale. Using
one day as the time scale, this gives a phase space volume of

V =

(
7.5 · 1013kg × 5 · 1014m2

8.6 · 104s

)

= 4.4 · 1023 Joule seconds. (7)

The number of cells is simply (7) divided by (5) or about 1054 cells in ecosystem earth.
This calculation assumes ecosystem earth exists on a surface. Of course this is not strictly true.

Vertical movement is essential to many life forms, although these excursions are usually small relative
to horizontal excursions. Thus 1054 is a very conservative lower bound of the number of cells.

The second step in the construction of an ecosystem phase space is to develop rules for assigning
ecosystem biomass to cells. Quantum statistics uses statistical entropies or thermodynamic probabilities
to quantify the number of microstates required to produce a given microstate. Application of these ideas
requires specification of appropriate ecosystem entropies and rules for assigning biomass to phase space
cells.
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The two classic quantum statistics problems are BE and FD gases. The statistical entropies of both
are expressed in the form

W = k
N∏

i=1

(ai + Ni)!

Ni! ai!
, (8)

where N =
∑G

i=0 Ni is the total number of particles. Also Ni is the number of indistinguishable particles
in zone i, G is the total number of zones, ai is an application specific measure of the number of cells in
this zone, and k is Boltzmann’s constant. The zoning criteria is the approximate energy level of particles
in the cells. The fact that both of the BE and FD distributions arise from the same general form
simplifies much of the subsequent analysis since specific results obtained for one apply automatically to
the other as well.

When ai = gi − 1, gi being the number of cells in zone i, (8) is identified as the BE distribution
function. That is

WBE = k
G∏

i=1

(gi + Ni − 1)!

Ni! (gi − 1)!
. (9)

The generic term in this product, (gi +Ni− 1)!/Ni!(gi− 1)!, is the number of ways Ni indistinguishable
particles can be distributed among gi cells.

The ecosystem ansatz is to distribute Ni organisms, or units of biomass, in zone i, which contains gi

cells. The mass equivalent of the Ni organisms in zone i is mi. The Ni could come from Volterra type
models as studied by Kerner (1957, 1959), allometric equations as reported by Brown et al. (2002), or,
best of all, observations.

The final step in the construction of an ecosystem phase space is to specify a criterion for zoning
the phase space. Quantum statistics uses particle energy as the zoning criterion. What is an ecosystem
counterpart of particle energy? I propose metabolic energy, which here is defined as the product of
metabolic rate and life span or regeneration time. Specifically this is

εi = Riτi (10)

where Ri and τi are defined by (2) and the subscripts refer to the ith zone.
The FD problem in quantum statistics arises when only one particle can occupy a cell. This results

from the Pauli exclusion principle that no two Ferminons, for example electrons, can be in the same
state. This distribution function is recovered from (8) by setting ai = gi −Ni:

W FD = k
N∏

i=1

gi!

Ni! (gi −Ni)!
. (11)

Is species exclusion an ecosystem counterpart to (11)? Species exclusion has a long and contentious
history in ecology. See Bastolla et al. (2005) for a succinct review. In essence, the underlying idea is
that there is only one surviving species when two or more attempt to occupy the same ecological niche.
In this case Ni is the number of species and gi is the number of ecological niches in zone i.

A major problem with any species exclusion theory is that there is no absolute specification of eco-
logical niche. Perhaps the specification of phase space down to the microbial level will circumvent this



Entropy 2008, 10 64

Table 1. Comparison of characteristics of quantum and ecosystems.

Quantity Quantum Ecosystem

NBE
i Number of Bosons in zone i Number of organisms or amount

of biomass in metabolic energy
band i

gBE
i Number of cells in zone i. Number of cells occupied by

biomass in metabolic energy band
i

NFD
i Number of Fermions in zone i Number of species in metabolic

energy band i

gFD
i Number of cells in zone i Number of ecological niches in

metabolic energy band i

objection, and so the FD model may apply. This requires ecological niches to be defined in terms of
microbial scales. Of course, this also requires an hE for niches; a situation not unlike the different cell
sizes for the quantum BE and FD problems.

A synopsis of the applications of the BE and FD models is given in Table 1.
In the BE and FD quantum statistics problems the cell sizes are h3 and h3/2 respectively, i.e. both

are simply proportional to the same uncertainty parameter. The ecosystem problem requires a more
general approach since it not clear that the same hE applies to both problems. This issue is not addressed
here, however.

The gi are useful for comparing similar ecosystems, or assessing the impact of habitat change in
existing ecosystems. Specifically, a change of habitat changes the number of cells that can support a
metabolic energy level. Then the gi will change and consequently WBE . Similarly a change in habitat
will alter the number of niches available for species with similar metabolic energy levels. This change is
quantified by a change in W FD.

Note that both the BE and FD models arise in quantum statistics because of the requirement that
quanta are indistinguishable; i.e., there is no characteristic that can distinguish one quantum from an-
other. This contrasts with the Boltzmann entropy function, widely used in ecology, in which individual
organisms are distinguished. However, since the phase space proposed here is microbial based, it is
appropriate to drop the requirement for distinguishability. Presumably there is no way to distinguish one
specimen of Staphylococus from another.
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3. Ecosystem equilibria

The entropy principles formalized in the previous section are completely general as they are applicable
to any ecosystem at any time. Moreover, they can serve as a basis for a precise statement of equilibria
for ecosystems. To arrive at this it is necessary to consider the total amount of biomass P and metabolic
energy E of any ecosystem as

P =
G∑

i

miNi

E =
G∑

i

εiNi. (12)

The mi in the first of (12) are mass equivalents of the organisms in each metabolic energy zone. They
convert the number of organisms Ni in that zone to the biomass in that zone. Their use here means that
with the BE model the summation of the first of (12) gives the total biomass in the ecosystem. The FD

model deals with the number of species in zones so the mi are representative of an individual’s mass
for the appropriate species. The same comments apply to the total metabolic energy E of an ecosystem.
Note that the weighting εi is by the metabolic energy in zone i as specified by (10).

It is reasonable to assume that an ecosystem in equilibrium has reached the maximum diversity that
the environment can sustain. A phase space entropy as defined by (9) or (11) seems appropriate for a
measure of diversity. However, in studying equilibria it is more convenient to use the logarithm of these
two equations, i. e.

H = log (W/k) . (13)

Ecosystem equilibria requires that (12) be constant and (13) a maximum. Since all three are functions
of Ni, these conditions are satisfied if their variations with respect to Ni are zero. Formally this is

δH − λδP − βδE = 0. (14)

Here λ and β are Lagrangian multipliers that arise in the variational problem from the requirement that
(12) must be constant if equilibrium is to be achieved. They are determined by system macroproperties.
λ can be related to the total amount of biomass in the ecosystem, while β can be determined from
metabolic energy constraints. Below it is related to an environmental temperature through the first law
of thermodynamics. Finally, δ =

∑
i (∂/∂Ni) δNi is the variational operator.

Equation (14) is satisfied by

NBE
i =

gi − 1

eλmi+βεi − 1

NFD
i =

gi

eλmi+βεi + 1
. (15)

When multiplied by mi, the distributions given by (15) give the distribution of mass or species in the ith

metabolic energy zone when an ecosystem is in equilibrium with its environment. Multiplication by εi
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gives the metobolic energy of that zone. Finally, if ecosystems are considered as a classic thermodynamic
systems, then application of the first law of thermodynamics gives

β = (kΘ)−1 (16)

where Θ is absolute temperature.
This result is quite similar to the allometric equations for species distributions that included metabolic

rates e−εi/kΘ reported by Brown et al. (2004). It agrees exactly with their results when λ ¿ 1. It also
reinforces the notion that a thermodynamic interpretation such as (16) applies to ecosystems. Equation
(15) shows that in terms of biomass, low metabolic energy organisms or species dominate ecosystems.
This is the ecosystem counterpart of the quantum statistics result that there are many more low energy
than high energy particles in a quantum gas.

In quantum statistics, λ is determined by the conservation of mass. It is worth noting that for photons,
mass is not conserved. In that case λ = 0. For λ ¿ 1 both distributions in (15) collapse to the Maxwell
distribution Ni = gie

−βεi , an approximation that holds for many quantum physics applications. This
may turn out to be true in many ecological applications. However, further investigation is required
before applying this simplification to ecosystems.

In contrast to their exponental dependence on inverse temperature, the BE and FD distributions are
linearly proportional to the number of cells occupied by a particular metabolic energy band. These distri-
butions are also of the form of allometric equations for species density such as those developed by Brown
et al. (2004). The number of cells in a zone is a direct reflection of macro-ecosystem characteristics. A
change of habitat will alter the number of cells available for certain individuals or species within certain
metabolic energy bands.

4. Discussion

This paper gives a paradigm for a statistical description of ecosystems based on a discrete phase
space. Phase space cell characteristics are determined by microbial scales. This is in analogy with
quantum statistical mechanics where the fundamental phase space cell is determined by Heisenberg’s
constant. Estimates of the ecosystem cell parameter hE are only about three orders magnitude larger
than h̄. However, it is likely that the hE’s for the two ecosystem models will not be as simply related
as they are for the BE and FD quantum models. The similarity in magnitude of the quantum and
ecosystem uncertainty parameters is due to the long time scales for biological systems relative to those
of quantum systems. The significance of an hE based on microbial scales is that it provides a formal
link between the largest and smallest life forms in ecosystems. Moreover, this paradigm would apply to
extraterrestrial ecosystems.

Several aspects of this approach should be noted. First, precise conditions for equilibrium are pre-
scribed. These are obtained from the principles of conservation of biomass and energy, along with the
principle that at equilibrium the entropy is a maximum for the prescribed biomass and energy. This
gives formula for the distribution of biomass based on metabolic energy. Moreover, the entropies used
here can be estimated from existing data using standard allometric equations, whether or not equilibria
is established.
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A second aspect is entropy as a measure of diversity. See Brooks and Wiley (1988) for a perspective
and Bastolla et al. (2001, 2005) along with Kobayashi et al. (2005) for recent applications. Brooks and
Wiley (1998) and coworkers in particular have made considerable progress on this topic using informa-
tion theory concepts. Their analysis is based on a Boltzmann or Shannon entropy and relies on a theorem
that a system whose entropy is greater than the sum of its constituent subsystems and is not concave can
be in equilibrium even if the system entropy is not a maximum. See Landsberg and Tranah (1980) and
Landsberg (1984a,b) for the theoretical development of this idea. They introduced the important concept
of “capacity” to characterize the upper bound of ecosystem development. This is the maximum entropy
that the system can achieve. Both Brooks and Wiley (1998) and Landsberg (1984b) suggest that in reality
observed systems will always have entropies less than their capacities.

In view of this it is appropriate to ponder the capacity of BE and FD systems. To this end first
consider the ultimate capacity of a Boltzmann system, N !. This occurs when there is at most just one
element in any cell. However, at equilibrum, as defined in section 3, many cells will be empty. The
entropy then is a maximum for the prescribed biomass and total metabolic energy. This is less than the
maximum entropy that could be achieved for a uniform distribution of mass over phase space. Thus, to
achieve the maximum capacity requires disturbing the equilibrium by adding or redistributing biomass
so that it is equally distributed among the cells in phase space. Essentially this is what happens when a
pond stagnates. The pyramid distribution of metabolic organisms, typical of a healthy pond, is replaced
by microbes and/or lilies and phase space is completely uniform.

The use of entropy in this context has consequences that are independent of the mathematical form
of entropy used. The quantification of diversity in the guise of entropy should be based on both the
environment and population or biomass. As habitat changes (thus altering the gi’s) then the entropy must
change. Thus an equilibrium distribution of species or ecological niches with one set of gi’s must change
as the latter change. In this sense diversity is more than just a measure of the number of species in an
ecosystem. It is a measure of the number of ways an environment can support organisms in prescribed
metabolic energy ranges. Present concern about the loss of diversity acknowledges that the phase space
of the global ecosystem is changing to the disadvantage of many high metabolic energy organisms. A
phase space based approach, such as used here, quantifies this idea.

The theoretical construction presented here seems well suited to analysis of “what if?” scenarios that
arise with global change. Habitat changes can be quantified by changes in the gi’s. Similarly the impact
of loss of species is quantified by changes in the Ni’s.

On the other hand, a phase based statistical approach in ecology has even greater limitations than
quantum statistics does in physics. It cannot provide details of organism interactions, or replace Volterra
or inertia models of ecosystems as used by Ginzburg (1998). Its principal role is to provide useful
conceptual tools for synthesizing and characterizing macro properties.

Skeptics may ponder: “In quantum mechanics any particle can fit into any cell in phase space. So
can an elephant fit into one hE determined by microbial scales?” Actually quantum mechanics cannot
determine whether a particular particle is in a particular cell since the particles are indistinguishable.
Instead quantum mechanics says how many particles are in particular zones. The essential point is that
the biomass of all elephants fits into a zone composed of a small portion of the cells in phase space.
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This is the power of zoning by metabolic energy levels. The issue is to determine how many cells are
occupied by organisms within specified metabolic energy bands.

As just noted quantum statistics says that the question of which particle is in what cell is unanswer-
able and thus irrelevant. In analogous fashion high resolution observations of ecosystems add little
information about the macrostate of an ecosystem even though they provide important details on organ-
ism interactions. This is the gist of Brown’s (1995) meaning for macroecology. The same distinction is
made between thermodynamics and statistical mechanics by physicists.

The phase space prescription based on microbial scales is just one of an infinite number of possibili-
ties. It may be appropriate to base phase space cell characteristics on other scales, or even abandon the
constraint that it have the same dimensions as h̄. Nevertheless entropies based on a phase space approach
can be the launching pad for studying fluctuations and non-equilibrium dynamics of ecosystems just as
it is in quantum statistics. It would be interesting to apply these ideas to see if observed variability in
populations reflect natural fluctuations around a robust equilibrium or whether they reflect evolution to-
ward a new equilibrium. In addition it might be useful to examine ecosystems in extreme environments
using a phase space paradigm.

The gist of this paper is that a phase space ansatz, generally patterned after the quantum statistics,
has a role in ecology. As eloquently stated by Ginzburg and Colyvan (2004), quantum statistics is just
a metaphor. Metaphors have played an important part in the long history of cross fertilization between
scientific disciplines. This history also suggests that applications of these ideas for ecosystems will result
in interesting and challenging deviations from the purely quantum statistics ansatz.
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