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Abstract: Different equations have been proposed for estimating the glass transition 
temperature of amorphous mixtures. All such expressions lack a term to account for the 
effect of the entropy of mixing on the glass transition. An entropy based analysis for the 
glass transition of amorphous mixtures is presented. The treatment yields an explicit 
mixing term in the expression for the glass transition temperature of a mixture. The 
obtained expression reduces to the Couchman-Karasz equation in the limiting case where 
the contribution of the entropy of mixing approaches zero. Equivalent expressions are 
obtained for the glass transition temperature of a mixture of two glass formers as for the 
effect of a plasticizing liquid diluent on the glass transition temperature of an amorphous 
material. 
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Introduction 

A number of expressions have been proposed for estimating the glass transition temperature (Tg) of 
amorphous mixtures [1-5]. However, the different equations can all be represented as minor variations 
of the same mathematical form, namely  
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where eq

gmT  represent the glass transition temperature of the mixture predicted by the equation of 
interest, the subscripts 1 and 2 denote components 1 and 2, respectively, ϕ  represents the 
concentration, expressed as either mole (x) or weight (w) fraction, and k is a parameter whose physical 
interpretation depends on the underlying physical model of the particular equation used.  

One notable feature of the general expression shown above is the conspicuous absence of a mixing 
term. Specifically, an entropy of mixing term. This is particularly noteworthy considering that entropy 
plays a defining role in glass formation [6, 7]. It also follows that the same shortcoming extends to any 
expression of the form of Equation 1, proposed for the prediction of the glass transition temperature of 
amorphous mixtures. The question of the entropy of mixing and the glass transition of mixtures has 
been discussed in the literature [4, 8, 9]. Nevertheless, an explicit relationship between the entropy of 
mixing and the glass transition of amorphous mixtures is still lacking.  
 
Background 
 

A number of approaches have been proposed for estimating the glass transition temperature of 
mixtures from knowledge of the properties of the pure components. Although different in detail, the 
proposed relationships are based on the additivity of basic properties.  

Gordon and Taylor [1] based their theory on two basic assumptions: volume additivity, i.e., ideal 
volume of mixing, and a linear change in volume with temperature. Their proposed expression is 
arguably the most widely used equation for predicting the glass transition temperature of amorphous 
mixtures: 
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where the subscripts 1, 2 and m denote component 1 component 2, and the mixture, respectively and w 
is the weight fraction concentration in the mixture. The term k in Equation 2 is a parameter whose 
value depends on the change in thermal expansion coefficient (α) of the components as they change 
from the glassy (amorphous) to the liquid (rubbery) form, during the glass transition. Accordingly, 

2 1 2 1( / )( / )k V V α α= Δ Δ , where V denotes the specific volume at the corresponding Tg. In most 

practical applications however, the Gordon-Taylor equation is simplified in one of two ways in order 
to remove the α terms from the expression. By invoking the Simha-Boyer rule [10] (Δα ·Tg = constant) 
we get 2 1 1 2( / )g gk V T V T≈ . Another common simplification is to let k as a curve fitting parameter [11].  

Couchman and Karasz [4] proposed a thermodynamic approach for predicting the glass transition 
temperature of mixtures. Their treatment is based on considering that even though it is not a second 
order transition, the Tg has the façade of such, in the sense that the entropy of mixing is continuous 
during the glass transition to give: 
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where x is the mole fraction concentration, ΔCpi is the difference in the heat capacity of the liquid 
( L

piC ) and the heat capacity of the glass ( g
piC ) forms of component i, and the subscripts 1, 2 and m are 

the same as above. By defining 2 1( / )p pk C C= Δ Δ  in the above expression, the Couchman-Karasz 

equation can be expressed in the general form of Equation 1: 
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Another expression for predicting the Tg of mixtures is the Fox equation [3]:  
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which can be obtained directly from the general Equation 1 if in addition to the Simha-Boyer rule used 
in the Gordon-Taylor treatment, we assume similar specific volume for the two components, such that 

1 2/g gk T T≈  in the Gordon-Taylor expression.  

In the limiting case where k = 1, Equation 1 reduces to the expression for the linear combination: 
 

1 1 2 2gm g gT wT w T= +     (6) 

 
which has been used as the simplest estimate used for the glass transition of mixtures [12]. 

Equations 2 through 6 can all be directly obtained from the general Equation 1. Being 
mathematically equivalent, these expressions give similar predictions. There are however, 
experimentally observed Tg–composition profiles that differ from the type of predictions obtainable 
from the general expression set [13]. Jenkel and Heusch [2] proposed an expression that accounts for 
monotonic (all positive or all negative) deviations from the linear combination (Equation 6): 
 

1 1 2 2 1 2gm g gT wT w T kw w= + +     (7) 

 
where k takes the role of an empirical fitting parameter. 

Kwei investigated polymer mixtures including systems where the Tg showed S-shaped profiles, i.e., 
showing both negative and positive deviations from the linear combination profile. Kwei proposed the 
following expression [5]:  
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where k and q are both fitted parameters. The origins of the Kwei expression are empirical, the 
physical meaning of the parameters k and q has been the subject of subsequent interpretations based on 
the intermolecular interactions between the components in the mixture [13, 14]. 
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The Tg values of amorphous mixtures are generally interpreted in terms of intermolecular 
interactions [5, 12, 14-17]. Strongly interacting compounds tend to give mixtures whose glass 
transition is higher than would be expected from predictions from the different variants of (the general) 
Equation 1 [12]. It is interesting to note that mixing effects on the glass transition are typically studied 
from an enthalpy perspective, even though it is entropy the quantity that plays a central role in glass 
formation [6]. An entropy-based analysis on the effect of mixing on the glass transition temperature is 
presented here. 

The role of entropy on glass formation and the glass transition 

From a thermodynamic point of view, entropy is the defining parameter for glass formation. More 
specifically, vanishing of the accessible configurational entropy (Sc) is the thermodynamic criterion for 
a liquid turning into a glass [7, 18]. The glass transition is thus a manifestation of the smallness of 
configurational entropy, i.e., of a “dearth of configurations” [19]. We should clarify from the onset that 
the glass transition is a kinetically controlled phenomenon, such that any thermodynamic definition is 
in effect constrained by the timescale of the experiment. We will look into the thermodynamic 
argument before discussing the constraints imposed by kinetic considerations. 

Consider a system of two glass forming components, 1 and 2, with glass transition temperatures Tg1 
and Tg2, respectively, such that Tg2 > Tg1. The two components form a nearly athermal mixture, such 
that their mixing is entropically controlled. In addition, the system is such that the heat capacities of 
mixtures of the two components are given by: 
 

, 1 1 2 2
L L L
p m p pC x C x C= +      (9a) 
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g g g
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where Cp is the isobaric heat capacity and the superscripts g and L denote the glass and liquid forms, 
respectively, x is the (mole fraction) concentration in the mixture, and the subscripts 1, 2 and m denote 
component 1, component 2 and the mixture, respectively. We will make use of a thermodynamic cycle 
in order to establish the effect that the entropy of mixing ought to have on the glass transition 
temperature. 

The cycle, shown in Figure 1 involves the formation of mixture of glass former components 1 and 2, 
at concentrations x1 and x2, respectively. The cycle starts at an arbitrarily low temperature T, such that 
each individual component is in the glassy state (i.e., 1gT T≤ ). The temperature is raised such that each 
individual component turns to the liquid state (i.e., 2gT T≥ ). The two liquids are mixed and the 

resulting liquid mixture is subsequently cooled back to the initial temperature, where the mixture exists 
as a glass. Namely, 

 

Step a The separate components are heated from the initial temperature T to Tg2, the 
higher pure-component Tg, where the two materials exist as liquids. In the 
process, the temperature of the system passes through Tg1, where the pure 
component 1 turns into a liquid 
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Step b The two components, are mixed in the liquid state at Tg2  

Step c The liquid mixture is cooled from Tg2 to the initial temperature T. In the 
process, the mixture undergoes the transition to the glass at Tgm 

 
Figure 1. Schematic representation of the thermodynamic cycle used to obtain the entropy 
of mixing of the glassy mixture ( Δ r

mixS ). L and g denote liquid and glass, respectively, and 

the subscripts 1, 2 and m denote component 1, component 2 and the mixture, respectively. 
 

 
 
 

The entropy of mixing of such process, Δ r
mixS , is necessarily the same as that from the 

thermodynamic cycle involving steps a through c. The entropy change contributions for the cycle are 
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The entropy change for the entire cycle (Figure 1) can be expressed as follows: 
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Step Step Step 
r
mix a b cS S S SΔ = Δ + Δ + Δ    (11) 

 
In order to establish the effect of the entropy of mixing on the glass transition temperature, it is 

necessary to establish the link between the entropy of mixing in the liquid ( mixSΔ ) and the entropy of 
mixing in the glass ( r

mixSΔ ). The key question resides on what portion of the entropy of mixing i) is 

configurational in nature and ii) is accessible to the liquid within the timescale of the experiment. To 
address this question, it is necessary to take into consideration the kinetic character of the glass 
transition.  

Any thermodynamically obtained quantity is independent of time. Therefore, the entropy change in 
the above expression represents the value obtained at infinitely slow cooling rate, i.e., 
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where the superscript ∞ indicates an infinitely slow (thermodynamic) measurement. We start by 
considering the similarity between the entropy of mixing of liquids and the entropy of melting of a 
crystal, in the sense that the two quantities are predominantly configurational [20]. Cooling the melt of 
a pure crystalline material has the effect of “consuming” the entropy of melting ( fSΔ ) [7]: 
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where Tm and KT  are the melting and Kauzmann temperatures, respectively, and pC×Δ  is the heat 

capacity difference between the liquid and the crystalline forms of the material. This depletion, which 
occurs because the heat capacity of the liquid is greater than that of the crystal, is graphically depicted 
in Figure 2. The Kauzmann temperature is the temperature where the configurational entropy 
accessible to the liquid vanishes; the liquid and crystal lines (II and I, respectively) cross, so that both 
crystal and liquid have the same entropy at the same temperature, or crystallization takes place without 
an entropy change. Besides the potential entropy crisis in the former case, such a state is unattainable 
since it requires an infinitely slow cooling rate. Hence, a common thermodynamic view of the glass 
transition is that KT is the temperature of an underlying but experimentally unattainable second order 

transition. The transition is kinetically masked by finite cooling rates such that the glass transition is 
observed at some higher temperature, Tg. Because of the kinetic nature of the glass transition, there is 
no single Tg value; the observed value varies with the kinetics of the experiment [21]. In other words, 
the observed Tg for a given glass forming liquid will vary, depending on how fast or slow the liquid is 
cooled. This is an important point; different cooling rates will “consume” different amounts of 
configurational entropy up to the point where a Tg is observed. In each case, a different amount of 
residual entropy will remain trapped in the glass as part of its thermal history. This trapped 
configurational component includes the entropy that is subsequently lost upon aging of the glass, as it 
undergoes structural relaxation. 
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Figure 2. Schematic representation of the glass transition. Cooling of the liquid melt (line 
II) below the melting temperature (Tm) consumes the entropy of melting, fSΔ . In an 

infinitely slow experiment, the entire quantity would vanish at the Kauzmann temperature 
(TK), where curves for the crystal (line I) and the liquid (line II) cross, but the glass 
transition (observed at Tg) intervenes when the configurational entropy is no longer 
accessible to the liquid within the experimental timescale. 

 

 
 
A similar argument can be made for the entropy resulting from the mixing of two liquids. This case 

is illustrated in Figure 3, where lines Ia and IIb depict the glass transition of a mixture where the 
entropy of mixing plays no role at all ( eq

gmT  as per Equation 1). The entropy of mixing adds to the 
entropy of the liquid mixture, shifting the liquid line Ia, by the amount mixSΔ , to line IIa. The shift is 

upward for positive entropy of mixing, as in the case for athermal solutions. Cooling the liquid mixture 
consumes the configurational entropy (of which the entropy of mixing has an important component) in 
the same way as cooling consumes the entropy of melting discussed above. However, the analysis 
presented here is based on the notion that the entropy of mixing in a glass forming mixture is not all 
accessible for “thermal consumption” to the liquid. The reason being, without getting into molecular 
interpretations, that any real glass mixture will have some entropy of mixing in it. The entropy of 
mixing consists of two parts, a configurational portion ( c

mixSΔ ), and a residual part ( r
mixSΔ ). The former 

is the entropy of mixing accessible to the liquid, the latter is the mixing entropy in the vitrified mixture. 
r
mixSΔ is expected to be vibrational to a large extent, but not entirely so. The simplest view is that the 

difference in entropy between a liquid and its glass is all configurational. However, real liquids exhibit 
important vibrational differences in relation to their glasses. Such differences are in turn the result of 
different configurational states between liquid and glass [22, 23]. It is therefore important to point out 
that the main characteristic of the quantity r

mixSΔ  discussed here is not that it is (largely) of vibrational 
nature; the important attribute of r

mixSΔ is that it is inaccessible to the liquid when the mixture vitrifies. 

This unavoidable residual entropy of mixing in the glass removes the physically problematic situation 
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of having a glassy mixture with the exact same entropy as the sum of the entropies of its pure 
components. At an infinitely slow cooling rate, the Kauzmann temperature is the point where the 
configurational entropy accessible to the liquid, including the contribution from mixing ( c

mixS
∞

Δ ), is 

depleted. The balance toward the whole quantity is the residual entropy of mixing remaining in the 
glass, r

mixS
∞

Δ . The latter is arguably the minimum amount of entropy necessary to create stable glassy 

mixture. Accordingly, the partitioning of the entropy of mixing is represented as 
 

c r
mix mix mixS S S

∞ ∞
Δ = Δ + Δ     (13) 

 
A partition marker for the entropy of mixing is shown on the top right of Figure 3. The marker (T-

marker) is labeled by an encircled T, to indicate that it corresponds to the thermodynamic (infinitely 
slow) partitioning of the entropy of mixing. The dashed line traces r

mixS
∞

Δ  above the zero-entropy of 

mixing line (segments Ia and Ib). The Kauzmann temperature of the mixture ( KmT ) is the point where 

line IIa meets the dashed line; this is the point where the amount of thermally consumed entropy 
equals c

mixS
∞

Δ . This decrease in entropy is “gauged” by the T-marker on the lower left of the figure. 

The point marked 1T  in Figure 3 corresponds to the Kauzmann temperature for a system where the 

separate glass components have the same entropy as the glass mixture; an unrealistic situation, and one 
impossible for an athermal mixture.  

Let us now consider the kinetic effect, i.e., the effect of the timescale of the experiment. Cooling a 
glass forming liquid at a finite rate will eventually lead to a situation where the drop in configurational 
entropy cannot keep up with the pace of change in temperature. At this point, the system falls out of 
structural equilibrium and the glass transition is observed. The Tgm is the point (above KmT ) where line 

IIa changes to IIb in Figure 3. At finite cooling rates, the configurational entropy of mixing accessible 
to the liquid within the timescale of the experiment ( c

mixSΔ ) is different from the value of an infinitely 

slow experiment, the same is necessarily true for the residual entropy of mixing trapped in the glass 
( r

mixSΔ ).  

A partition marker for the entropy of mixing under finite cooling rates is shown on the bottom left 
corner of Figure 3. The marker is labeled by an encircled K, indicating that it reflects the kinetics of 
the experiment. The K-marker serves as gauge for the drop in entropy at finite cooling rates. Kinetics 
has the effect of changing the partition of the entropy of mixing between the (configurational) portion 
that is accessible to the liquid during cooling, and the portion that remains in the glass. The residual 
entropy of mixing in the glass comprises r

mixS
∞

Δ plus any kinetically trapped configurational entropy 

that became inaccessible to the liquid as a result of the experimental timescale. However, the entropy 
of mixing has a thermodynamic origin so that its magnitude as a whole remains invariant, regardless 
its kinetic breakup: 
 

c r
mix mix mixS S SΔ = Δ + Δ      (14) 
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Figure 3. Effect of the entropy of mixing on the glass transition temperature of a mixture. 
eq

gmT  is the glass transition temperature of the mixture where the entropy of mixing plays no 

role, as per Equation 1. 1) Thermodynamic scenario: Mixing changes the entropy of the 
liquid mixture by mixSΔ , shifting the liquid line from Ia to IIa. Cooling of the liquid 

mixture “consumes” the configurational entropy up to the amount c
mixS

∞
Δ , which 

corresponds to infinitely slow cooling. The dashed line traces r
mixS

∞
Δ , the portion of the 

entropy of mixing that remains in the glass when produced with infinitely slow cooling. 
The thermodynamic marker, labeled with and encircled T, depicts the split of the entropy 
of mixing between the liquid and glass at an infinitely slow cooling rate. The Kauzmann 
temperature is the point where line IIa and the dashed line meet. 2) Kinetic scenario: At 
finite cooling rates, the glass transition takes place at Tgm (above TKm) leaving some 
configurational entropy kinetically trapped in the glass. The kinetic split of mixSΔ  is 

depicted with the marker labeled with an encircled K. The T and K markers on the bottom 
left serve as gauges for the consumption of configurational entropy of mixing at finite 
(kinetic) and infinitely slow (thermodynamic) cooling rates.  

 

 
 

 
Equations 13 and 14, represented by the T and K marker bars in Figure 3, are the thermodynamic 

and kinetic scenarios, respectively, for partitioning the same quantity: the total entropy of mixing, 
mixSΔ , between the liquid and the glass. The equality between Equations 13 and 14 frames the 

thermodynamic constraint of a kinetically controlled process such as the glass transition. A signature 
property of glasses is that the configurational entropy kinetically trapped in the glass is lost over time 
via structural relaxation following glass formation. From the above considerations, the entropy of 
mixing contributes toward the entropy available for loss upon structural relaxation of the glass by an 
amount equal to the difference between the kinetic and thermodynamic values: 
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r r
mix mix mixrelax

S S S
∞

Δ = Δ − Δ     (15) 

 
Substituting Equations 10 and 14 into Equation 11 we obtain 
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It follows that for an infinitely slow experiment, as r r
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where KmT is the Kauzmann temperature of the mixture. Equation 16 in turn leads to the following 

result 
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The first term on the right hand side of equation 18 corresponds, exactly, to the Couchman-Karasz 

equation [4]. Therefore, the result can be expressed in the following form: 
 

,

exp
c
mix

gm CK
p m

ST T
C

⎛ ⎞Δ
= −⎜ ⎟⎜ ⎟Δ⎝ ⎠

      (18a) 

 
where CKT is the glass transition temperature of the mixture predicted by the Couchman-Karasz model 

(Equation 4). Equation 18 describes deviations in the glass transition from the TCK value as a result of 
the liquid-accessible configurational entropy of mixing, and reduces to Equation 4 when the value 
approaches zero. In the case of polymer mixtures, the entropy of mixing is small [17], so that the 
exponential term in equation 18 may not represent a large correction. However, even if small, 
spontaneous mixing is almost invariably (and always so if the mixture is athermal) accompanied by a 
non zero entropy of mixing. In the case of mixtures of low molecular weight compounds, the 
contribution of the entropy of mixing toward the observed Tg can be expected to be of greater 
significance. The original derivation of the Couchman-Karasz equation in effect equates the entropy of 
mixing in the liquid and glass [4]. Such an assumption has generated significant debate [9, 15], as has 
the meaning of the entropy of mixing in the glassy state. The analysis presented here is based on the 
partitioning of the entropy of mixing into two parts: one portion that i) is configurational and ii) is 
accessible to the liquid within the timescale of the experiment, and a residual portion, which i) can 
have both vibrational and configurational components, but most importantly, ii) remains in the glass 
upon vitrification.  

Different experimental timescales (heating/cooling rates and thermal histories) affect the amount of 
configurational entropy trapped in pure glasses. With that, the position of the observed glass transition 
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shifts accordingly [24]. The same is true for mixtures, where part of the trapped configurational 
entropy necessarily originates from the mixing process. Therefore, the kinetic character of the glass 
transition should result in observed Tgm and Δ c

mixS  values that vary with the timescale of the 

experiment. A graphical synopsis of the effect of the entropy of mixing (Equation 18) on the Tg of a 
mixture is shown in Figure 4, where the observed and expected glass transition data for mixtures of 
glucose-maltohexaose reported by Orford et al. [25] are shown. The experimental profile shows a clear 
linear relationship between Tgm and the composition of the mixture. The linear relationship makes this 
a deceptively simple system; even though it is a straight line of the form of Equation 6, the profile 
corresponds to negative deviations from the profile predicted by the Couchman-Karasz equation. The 
corresponding c

mixSΔ  values, obtained from Equation 18 for this system are also shown in Figure 4. 
The configurational entropy of mixing accessible to the liquid during cooling ( c

mixSΔ ) has the effect of 
“shifting” the Tg from the “expected” ( eq

gmT ) values. The c
mixSΔ  values are obtained from the deviation 

from the predictions of Equation 1: 
 

exp 1
c

eqmix
mix gm gm

pm

SS T T
C

⎡ ⎤⎛ ⎞Δ
Δ ⇒ Δ = − −⎢ ⎥⎜ ⎟⎜ ⎟Δ⎢ ⎥⎝ ⎠⎣ ⎦

  (19) 

 
Figure 4. Graphic representation of the effect of the entropy of mixing on the glass 
transition temperature of a mixture. The combinatorial entropy of mixing has the effect of 
shifting the glass transition temperature from the expected value, eq

gmT  (Eq. 1), shown by the 

solid line in the left inset. The magnitude of the shift is given by an exponential term that 
depends on the timescale of the experiment (see text). Filled squares (bottom right inset) 
are the values of c

mixSΔ  obtained from Eq. 18. The data plotted correspond to the glass 

transition temperature of glucose (1) – maltohexaose (2) mixtures published by Orford et al. 
[25]. Dashed lines are visual guides. 

 

 
 

The magnitude of the observed shift on Tg is kinetically controlled and is maximum for an infinitely 
slow experiment, when c c

mix mixS S
∞

Δ = Δ . An example of a mixture with strong intermolecular 

interactions reported by Painter et al. [15] is shown in Figure 5. This mixture involves a strong 
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hydrogen bond donor and a strong hydrogen bond acceptor (polyvinylphenol and polyvinylpyridine, 
respectively). The strong interaction between components results in strong positive deviations from the 
predicted TCK values. Strongly interacting mixtures give place to structured mixtures [12, 26] and a 
negative entropy of mixing can be expected. The contribution of the entropy of mixing obtained from 
Equation 18 reflects such a character for this mixture. 

 
Figure 5. Positive deviations in a strongly interacting mixture. Glass transition temperature 
of mixtures of polyvinylphenol (1) and polyvinylpyridine (2). Top: symbols correspond to 
data adapted from Painter et al. [15]. The solid line is the profile predicted by the 
Couchman-Karasz equation. Bottom: filled squares represent the entropy of mixing 
contribution obtained from Eq. 18. 

 

 
 
An approximation for the plasticizer effect 

The plasticizer effect is an interesting mixing condition because it encompasses two limiting cases: 
1) it comprises extremes in composition where one component is present in trace quantities while the 
main component is present in nearly pure form; 2) it also comprises systems where components have 
vastly different glass transition temperatures; plasticizers are liquid diluents, used not only well above 
their Tg, but well above their melting temperature. It is common practice to apply predictive equations 
of the type of Equation 1 for estimating the effect of plasticizers on the glass transition of amorphous 
materials. The process involves plugging in the Tg values of the pure components and the 
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corresponding weighing parameters (toward the value of k in the expression) into the chosen rendition 
of Equation 1. This straightforward practice bears nonetheless rather bold assumptions regarding items 
1) and 2) above, thus raising an intriguing question: how does a plasticizer “know” its Tg? The glass 
transition is a supramolecular process; it involves cooperative rearranging regions acting through the 
concerted participation of increasingly large groups of molecules as the Tg is approached [27]. If the 
plasticizer is present at very small concentrations and we plug in its Tg and corresponding k-related 
parameters into Equation 1, it is hard to say that we are not implicitly assuming that a highly dilute 
solvent operates through cooperative regions of the same size and character as when pure. Moreover, 
consider the common situation where the plasticizer used is well above its melting temperature. By 
plugging in pure-component parameters into Equation 1, we are implicitly assuming that 
supramolecular information pertaining to the vitrification of the pure liquid diluent, somehow 
extrapolates intact, across wide temperature ranges, including the melting transition, and high dilution 
factors. The same type of question can be posed in practical terms by comparing the predicted effect of 
two plasticizers, one that is a glass former and one that is not. From predictive schemes based on 
Equation 1, it is not possible to tell what would be the plasticizing effect of a liquid diluent if it is not a 
glass former.  

The analysis presented in the previous section can be applied to the effect of liquid diluent on the 
glass transition of an amorphous material. Consider a system where small concentrations of a liquid 
diluent are mixed with an amorphous material. We will assume that i) the liquid of interest and the 
plasticizer give place to an athermal mixture and ii) that the amount of plasticizer is small enough not 
to produce any appreciable change in the heat capacity of the major component. This situation is 
depicted in Fig. 6, where addition of a small amount plasticizer increases the configurational entropy 
the accessible to the liquid by c

mixSΔ . It should be pointed out that the drawing in Figure 6 has been 
simplified, showing only c

mixSΔ , which determines the magnitude of the change in Tg. However, the 

exact same arguments regarding the partitioning of the entropy of mixing presented in Figure 3, apply 
without change to the case illustrated in Figure 6. The effect of c

mixSΔ  is illustrated with the shift of the 

liquid line from the original dashed line (line I) to line II in Figure 6. The liquid lines are drawn 
parallel to each other, depicting no appreciable change in heat capacity. The glass transition 
temperature of the plasticized material is the point where the liquid and glass lines (II and III) meet. 
When a plasticizer is present, the configurational entropy of mixing has the effect of shifting the Tg to 
a new value denoted as "

gT , such that the configurational entropy accessible to the plasticized liquid 

mixture is 
 

"
g

g

T pc c
M mixT

C
S dT S

T
Δ

Δ = + Δ∫     (20) 

 
where the subscript M denotes mixture (as opposed to mixing). The configurational entropy accessible 
to the liquid mixture has two sources. One is the thermal component represented by the first term on 
the right hand side of Equation 20. The other is ( c

mixSΔ ), which originates from the mixing process. It is 
readily seen that the effect of shifting the liquid line upwards by the quantity c

mixSΔ , has the effect of 

lowering the position of the glass transition. The glass transition of the plasticized material will occur 
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when the kinetically accessible configurational entropy is consumed by cooling it to a temperature "

gT  , 

i.e., when 
 

"

0g

g

T p c
mixT

C
dT S

T
Δ

+ Δ =∫     (21) 

 
the above expression relates the glass transition temperatures of the plasticized ( "

gT ) and unplasticized 

(Tg ) material. Form Equation 21, the following relationship is obtained 
 

" exp
c
mix

g g
p

ST T
C

⎛ ⎞Δ
= −⎜ ⎟⎜ ⎟Δ⎝ ⎠

     (22) 

 
Figure 6. The plasticizer effect. Addition of a plasticizer increases the configurational 
entropy accessible to the liquid by the amount c

mixSΔ . Line I represents the pure liquid, line 

II the liquid-plasticizer mixture, line III represents the glass. Upon cooling, the glass 
transition is shifted to the temperature "

gT , the point where lines II and III meet. 

 
 

 
 

Equations 18 and 22 are mathematically equivalent. The difference is that the former reflects the 
glass transition temperature expected as two glass formers contribute on equal basis toward the glass 
forming properties of the mixture. In contrast, Equation 22 corresponds to the limiting case where the 
observed glass transition reflects the Tg of the major component in the mixture while the minor 
component simply acts as a modifier. According to Equation 22, a plasticizing liquid present at very 
low concentrations acts as a modifier of the major component, whether the plasticizing liquid is itself a 
glass former or not.  
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Concluding Remarks 

The fact that the thermodynamic view of the glass transition has important limitations 
notwithstanding, thermodynamics, through the entropy paradox [6], dictates the “need” for the glass 
transition phenomenon. It follows that the entropy of mixing is necessarily a factor that affects the 
glass transition behavior of glass forming mixtures. The analysis presented here shows the type of 
effect that the entropy of mixing can be expected to have on the glass transition temperature of 
amorphous mixtures. With regard to the split of the entropy of mixing between the liquid and the glass 
used in this analysis, it is important not to lose track of the fact that r

mixSΔ is not a hypothetical quantity 

but an experimentally obtainable one, as per the cycle in Figure 1. The fact that Step b in the cycle 
requires vapor pressure measurements on liquid mixtures can pose, in some instances, a practical 
limitation, but not a theoretical one. 

The configurational entropy of mixing can be thermally “exchanged” for a temperature interval that 
expands or contracts the temperature domain of the glassy state. Some of the entropy gained through 
mixing is thermally consumed by cooling the liquid, thus shifting the glass transition temperature. 
Positive entropy of mixing has the effect of shifting the Tg of a mixture to a lower value than what 
would be expected from the commonly used predictive schemes. When the entropy of mixing has a 
negative contribution, as in the case of strongly interacting mixtures, the domain of the glassy state 
expands, increasing Tgm. Positive or negative deviations in the glass transition of mixtures are more 
meaningful if referred to the Couchman-Karasz values, rather than to the linear Tg–composition profile, 
even if the latter is intuitively appealing. The proposed model is based on an idealized system; the 
simplest case of an athermal mixture. An idealized system is useful because it allows tracking of the 
quantity of interest throughout the treatment. This makes it possible to establish the type of 
functionality, hence the natural consequences, of the entropy of mixing in relation to the glass 
transition temperature of the pure materials. Accordingly, deviations from the idealized behavior are 
the result of entropy effects beyond combinatorial mixing. For an irreversible process like the mixing 
of liquids, where the change in entropy is greater than the heat/temperature quotient, we have 

/mix mixS H TΔ > Δ , or /mix mix mixS H T SδΔ = Δ + . The entropy of mixing is the sum of the thermal and 

athermal (combinatorial) contributions, represented by the first and second terms, respectively, on the 
right hand side of the preceding equality. In the idealized case where 0mixHΔ = , the exponential term 

in Equation 18 is all athermal. Strongly interacting mixtures like that of Fig. 5 however, exhibit large 
enthalpic effects, which strongly influence the observed Tg. This means that the large values of 

c
mixSΔ obtained in Fig. 5 are large and negative because the first term on the right hand side of the 

above equality is significant enough, even dominant, and applying Equation 18 yields c
mixSΔ  values 

that bear a considerable contribution from intermolecular interactions. The Tg of a liquid mixture 
where intermolecular interactions are significant can be approximated by an expression of the 
following form 

 

,

/exp
c

mix CK mix
gm CK

p m

H T ST T
C

δ⎛ ⎞Δ +
= −⎜ ⎟⎜ ⎟Δ⎝ ⎠

    (23) 
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In some systems, intermolecular interactions dominate the glass forming behavior of the mixture. 
Accordingly, S-shaped Tg–composition profiles reflect strong intermolecular interactions, such that a) 

/mixH TΔ is large in relation to the combinatorial component, and b) mixing goes from exothermic to 

endothermic (or vice versa) as the composition changes. Other source of deviation from the idealized 
behavior resides on the pCΔ terms in the proposed model. Specifically, their composition and 

temperature dependence, as well as the breakdown of their configurational and vibrational 
contributions. The exponential factor in Equation 18 or 23 is a mixing term in the sense that it only 
includes parameters pertaining to mixing or to the mixture. The factor vanishes only when the entropy 
of mixing is zero.  
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