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Abstract: A simple derivation of the bound on entropy is given and the holographic

principle is discussed. We estimate the number of quantum states inside space region

on the base of uncertainty relation. The result is compared with the Bekenstein for-

mula for entropy bound, which was initially derived from the generalized second law

of thermodynamics for black holes. The holographic principle states that the entropy

inside a region is bounded by the area of the boundary of that region. This principle

can be called the kinematical holographic principle. We argue that it can be derived

from the dynamical holographic principle which states that the dynamics of a system

in a region should be described by a system which lives on the boundary of the region.

This last principle can be valid in general relativity because the ADM hamiltonian

reduces to the surface term.
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1 Introduction

There has been a great deal of interest recently in the Bekenstein bound on entropy and the

holographic principle as new and perhaps fundamental principles in physics (see [1-20] and Refs.

therein). According to Bekenstein [1] there exists a universal bound on the entropy S of any object

of maximal radius R and total energy E:

S � 2�

�hc
RE: (1)

The bound was derived from the requirement that the generalized second law of thermodynam-

ics for black holes be respected when a box containing entropy is placed without radial motion

near the horizon of Schwarzschild black hole and dropped into it [1]. Despite the derivation from

gravitation gedanken experiment the bound (1) does not involve the gravitational constant.

The holographic principle [7, 8] states that one has the following bound on the total entropy S

contained in a region of space bounded by the spatial surface of the area A,

S � A

4l2
p

; (2)

where l
p
is the Planck length l

p
=
q
�hG=c3. The bound (2) includes the gravitational constant G.

There are already many discussions of bounds (1) and (2). However these important principles

deserve a further study. In this note the number of quantum states inside space region is estimated

on the base of uncertainty relation. The result is compared with the Bekenstein formula for entropy

bound, which was initially derived from the generalized second law of thermodynamics for black

holes. Then we discuss the holographic principle. The holographic principle states that the entropy

in a region is bounded by the area of the boundary of the region. This principle can be called the

kinematical (or thermodynamical) holographic principle. We argue that it can be derived from

the dynamical holographic principle which states that the dynamics of a system in a region should

be described by a system which lives on the boundary of the region. Actually it is well known

that the Hamiltonian in general relativity may be reduced to the surface term.

The preliminary version of the present paper is in [18].

Another approach to holography based on chaos is considered in [14, 17].

2 The bound on entropy

In this section we shall give a simple derivation of the bound on entropy. Let us consider a region

in 3-dimensional space of characteristic size R, which contains energy E. We use \natural" system

of units:

c = G = �h = 1:
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Due to the uncertainty relation the minimum energy "(R) of particle localized inside the region

is of the order 1=R,

"(R) � 1=R; (3)

(since "(R) �
q
m2

min
+ p2

min
� p

min
� 1=R). The energy "(R) can be considered as (minimum)

quantum of energy for region with radius R.

The maximum number of particles inside the region for �xed E could be estimated as maximum

number of energy quanta, so

N (E;R) � E

"(R)
� ER: (4)

Let us estimate the maximal entropy of the system.

We have to count the number of quantum states corresponding to given values of E and R. If

there is no degeneration of energy levels then our problem is reduced to the counting of number

of sets of positive integers (n1; : : : ; nk) such that

kX
i=1

n
i
� N (E;R): (5)

Here n
i
is the number of energy quanta of the i-th particle. One can easily see that the number

of such sets is 2N (E;R). Therefore we obtain for the entropy of a system the bound S � bN (E;R),

or, because N (E;R) � ER,

S � bER; (6)

where b is a constant. So we have derived the Bekenstein type bound (6) by using basically only

the uncertainty relation.

The presence of �nite number of internal degrees of freedom and �nite number of particle

species, as well as the degeneration of energy levels due to the 3-dimensionality of space, does not

change the bound (6) (it can change only the constant b, see Appendix).

An analytic argument which supports the bound (6) is given in [19]. The bound (1) for free

quantum �elds is derived in [20].

3 Kinematical holographic principle

If we assume that the size of the system R with the energy (mass) E is greater than the

Schwarzschild radius 2E, i.e. 2E < R, then from the bound (6) one gets the bound

S � b

2
R2; (7)

which can be interpreted as the holographic principle [7, 8]. This principle says that the number

of quantum degrees of freedom in a region is bounded by the area of the boundary surface. In the

such form it can be called the kinematical holographic principle.
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4 The Bekenstein bound

The bound (6) is similar to the Bekenstein bound (1). However, this simple derivation does not

�x the constant b in (6), which depends on the particle spectrum.

The factor ER does not depend on dimensionality of space-time. Exact calculation in the case

of thermal radiation gives the factor (ER)
D�1

D .

The maximum energy inside the region is of order R (RD�3 in D-dimensional case)

E
max

(R) � R: (8)

For energies above E
max

the considered region is hidden under horizon, and the consideration of

the region from the point of view of distant observer is senseless,

S
max

(R) = max
E

S
max

(E;R) = S
max

(E
max

(R); R) � b0R2: (9)

Let us consider the spherical region of radius R, then E
max

= R=2, S
max

(R) = b

2
R2. If we

assume that entropy of black hole of radius R (S
b:h:

= �R2) is the maximum entropy of the region

of radius R, then it is natural to set b = 2�, and one gets

S
max

(E;R) � 2�ER: (10)

Formula (10) coincides with (1), nevertheless the problem to calculate the proportionality

coe�cient b requires a special discussion.

We have to distinguish between derivation of entropy bound by black hole and �eld theory

arguments. The bound derived using black hole arguments represent the maximum entropy of

system which can be absorbed by black hole.

For example, let us consider absorbtion of energy E and entropy S by Schwarzschild black hole

of mass M . The change of black hole entropy is

�S
b:h:

= 4�(E2 + 2ME) � S: (11)

Relation �S
b:h:

� S does not mean that entropy of any system of energy E has to be less than

�S
b:h:

, actually �S
b:h:

is the maximal entropy of the system of energy E, which can be absorbed

by black hole of mass M . If M is small enough S can be greater than �S
b:h:

, but in this case

absorbtion is impossible.

The bound (1) is independent on mass of black hole, which is supposed to be large in comparison

with E, but even this independence does not allow us to conclude that the bound could not be

interpreted in similar way. We could imagine that to force system to be absorbed by black hole

we have to increase its energy and/or decrease its entropy, or that any box contained the system
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would be destroyed by pressure of the system. The other possible way is to consider the bound as

necessary condition, which has to be valid for any theory compatible with gravity. So, to postulate

the bound (1) we have to appeal to some extra arguments besides the gedanken experiments with

black holes.

5 Interpretations of the Bekenstein bound

There is the very common implicit assumption: any system can be absorbed by black hole, if black

hole is large enough. Actually this assumption is not obvious. One can consider for example the

gas uniformly distributed in the space such that for its collapse or for the absorbtion by the black

hole one needs in�nite time.

Let us summarize possible interpretation of bound (1):

(i) 2�RE is the maximum possible entropy for any selfconsistent theory;

(ii) 2�RE is the maximum possible entropy for any theory with gravity;

(iii) 2�RE is the maximum possible entropy for any theory which admits black hole solutions;

(iv) 2�RE is the maximum possible entropy of system, which can be absorbed by some black hole.

Interpretations (i) and (ii) were mentioned by Bekenstein in [3].

There is no direct observation of black hole, so the interpretation (iii) also can not be skipped

without discussion.

Interpretation (iv) was not formulated explicitly, but spirit of this interpretation is present in

another Bekenstein paper [2]. It was proved that 2�RE becomes maximal entropy of the system

of large number of particle species only if we take into account energy of the box restricted the

system, i.e. system with entropy larger then 2�RE could be absorbed by black hole only inside

the box, which energy is large enough to satisfy Bekenstein bound for whole system. This example

demonstrates the fashion of trick, which could be used by nature in the case of interpretation (iv)

to protect second law of thermodynamics. In special relativity there is no sense a notion of perfect

solid body as well as a notion of a massless box in quantum �eld theory. We do not know which

abstractions will be obsolete in quantum gravity. Perhaps we have to take into account an energy

exchange between the system in the box and space-time. It maybe also that a very high potential

barrier around the internal space of the box is an unacceptable approximation.

An alternative bound was also suggested by Unruh and Wald [5, 6],

S � V s(E=V ): (12)

According to the Bekenstein paper [2] the Unruh and Wald bound (12) introduced in [5, 6] is

neither necessary, nor su�cient. Nevertheless it is natural to assume, that thermal radiation is

maximally entropic in the classical case (low energy, intermediate volume without gravity e�ects).
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It is the well known fact (see [4]), that for V < V
cr
,

V
cr
= constE5; (13)

thermal radiation becomes unstable and it partially collapses into black hole. For a given volume

and energy, if V > V
cr
then we can expect that the system with only thermal radiation will have

the maximum entropy. In this case the Unruh and Wald bound (12) is valid. However in the case

V < V
cr
, the system should have the maximum entropy if it contains the combination of thermal

radiation and black hole. Bekenstein bound probably covers both ranges of V .

6 Dynamical holographic principle

One may formulate also the principle that the dynamics of a physical system in a region which

includes gravity should be described by a system which lives on the boundary of the region. Such

principle can be called the dynamical holographic principle. It is discussed in the context of the

AdS/CFT correspondence [10, 11, 12, 13, 15, 16].

We would like to point out that the dynamical holographic principle in a certain sense is valid

in classical general relativity. This is due to the well known fact that the density of the ADM

Hamiltonian H(x) in general relativity is the total divergence. One has (see e.g. [24])

H(x) = T0(x)� @
i
@
k
qik; (14)

where

T0(x) = qijqkl (�
ik
�
jl
� �

lj
�
kl
) + g3R3 (15)

with

qik = hi0hk0 � h00hik; h�� =
p�gg��: (16)

By the constraint

T0 = 0 (17)

the Hamiltonian reduces to the surface term

H =
1

2

Z
H(x)d3x = �1

2

Z
@
i
@
k
qikd3x = �1

2

Z
@
k
qikd�

i
: (18)

This means that all dynamical information is encoded in the data on the boundary surface. Of

course the system is highly nonlinear because we have to solve constraints but in principle one

has the dynamical holography in classical general relativity.
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One gets the similar conclusion if one uses the pseudo-tensor [25] which leads to the expression

for the energy-momentum as the integral over the boundary surface

P � =

Z
h���d�

��
; (19)

where

h��� =
1

2
@
�

�
(�g)(g��g�� � g��g��)

�
: (20)

Now by having the classical dynamical holographic principle we can argue for the quantum

kinematical principle. In fact, if the energy and other dynamical quantities of the system are

expressed as the integrals over the boundary surface then the number of quantum states of the

system should be estimated by the area of the surface. We have to assume a cuto� on the surface

to remove divergences.

7 Conclusion

In this note the bounds on entropy and the holographic principle have been discussed. By using

the simple counting arguments and uncertainty relation we have demonstrated that a general

Bekenstein type bound (6) is valid. It is pointed out also that one has to distinguish between

the kinematical and dynamical holographic principle and that the last one is actually valid in

classical general relativity. We have argued that the quantum kinematical holographic principle

can be derived from the classical holography. However, it is an open question whether this classical

holography can be used for the rigorous justi�cation of the quantum holographic principle because

of the problem of divergences.

Appendix

It is convenient to use the notion of entropy as de�cit of information we need to describe the

system state.

Let us assume that we have to take into account only �nite number of particle species, each

sort of particle has �nite number of internal states. This assumtion seems to be natural for large

R (i.e. for small "). So we need only �nite number of bits of information to describe internal

degrees of freedom of one particle. The maximal number of particles is about N (E;R), so we

need about N (E;R) bits of information.

Due to uncertainty principle we can determine momentum with accuracy of "(R), so x projection

of momentum of the i-th particle can be described by natural nx
i
and sign \+" or \�". We can

describe these signs using N (E;R) bits of information. One has

px
i

= �nx
i
"(R); (21)
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E
i
� jpx

i
j; (22)

E = N (E;R)"(R) =
X
i

E
i
�X

i

nx
i
"(R) (23)

so

N (E;R) �X
i

nx
i
: (24)

To count the number of possible sets of nx
i
, which satisfy relation (24) we consider the following

string

(1w1w1w : : : w1w1w0) � 0; (25)

which contain N (E;R) symbols \1" and N (E;R) symbols \w". To describe any possible sum of

the form (24) we have to replace all \w" by the following strings: \+" or \)+ (". We can use just

3 � 2 � N (E;R) bits to describe momenta.

Finally, for large R we get

S
max

(E;R) � bER: (26)

where the constant b does not depend on E and R.

Acknowledgements

We are grateful to I.Ya.Aref'eva and B.Dragovich for useful discussions. I.V.V. is supported in

part by INTAS grant 99-0590 and RFFI-99-01-00105.



Entropy 2001, 3 74

References

[1] J. D. Bekenstein, Universal upper bound on the entropy-to-energy ratio for bounded systems,

Phys.Rev. D23 (1981), 287-298

[2] J. D. Bekenstein, Entropy bounds and black hole remnants, gr-qc/9307035; Phys.Rev. D49

(1994), 1912-1921

[3] J. D. Bekenstein, Non-Archimedean character of quantum buoyancy and the generalized

second law of thermodynamics, gr-qc/9906058

[4] V. P. Frolov and I. D. Novikov, Physics of black holes, Klumer Academic Publishers, 1989,

pp 270-273

[5] W. G. Unruh and R. M. Wald, Acceleration radiation and the generalized second law of

thermodynamics, Phys.Rev. D25 (1982), 942-958

[6] W. G. Unruh and R. M. Wald, Entropy bounds, acceleration radiation, and the generalized

second law, Phys.Rev. D27 (1983), 2271-2276

[7] G. 't Hooft, Dimensional reduction in quantum gravity, gr-qc/9310026

[8] L. Susskind, The world as a hologram, hep-th/9409089; J.Math.Phys. 36 (1995), 6377-6396

[9] T. Banks, W. Fishler, S.H. Shenker and L. Susskind, M theory as a matrix model: a conjec-

ture, hep-th/9610043; Phys. Rev. D55 (1997), 5112-5128

[10] J. M. Maldacena, The large N limit of superconformal �eld theory and supergravity, hep-

th/9711200; Adv.Theor.Math.Phys. 2 (1998), 231-252

[11] M. Ba~nados, M. Henneaux, C. Teitelboim, and J. Zanelly, Geometry of the 2+1 black hole,

Phys.Rev. D48 (1993), 1506-1525

[12] A. Strominger and J. Maldacena, Statistical entropy of de Sitter space, gr-qc/9801096; JHEP

9802 (1998) 014

[13] L. Susskind and E. Witten, The holographic bound in anti-de Sitter space, hep-th/9805114

[14] I. Ya. Aref'eva, P. B. Medvedev, O. A. Rytchkov and I. V. Volovich, Chaos in M(atrix)

theory, hep-th/9710032; Chaos, Solitons & Fractals, 10 (1999), 213-223

[15] I. Ya. Aref'eva, On the holographic S-matrix, hep-th/9902106



Entropy 2001, 3 75

[16] S. B. Giddings, The boundary S-matrix and the AdS to CFT dictionary, hep-th/9903048;

Phys.Rev.Lett. 83 (1999), 2707-2710

[17] G. 't Hooft, Quantum gravity as a dissipative deterministic system, gr-qc/9903084;

Class.Quant.Grav. 16 (1999), 3263-3279

[18] M. G. Ivanov and I. V. Volovich, Entropy Bounds, Holographic Principle and Uncertainty

Relation, gr-qc/9908047

[19] I. Kahn and A. Qadir, Lett. Nouvo Cimento 41, 493 (1984)

[20] M. Schi�er and J. D. Bekenstein, Proof of the quantum bound on speci�c entropy for free

�elds, Phys. Rev. D 39, 1109-1115 (1989)

[21] R. Bousso, Holography in general space-times, hep-th/9906022; JHEP 9906 (1999) 028

[22] T. Jacobson, On the nature of the black hole entropy, gr-qc/9908031

[23] E.E. Flanagan, D. Marolf and R.M. Wald, Proof of classical version of the Bousso entropy

bound and of the generalized second law, hep-th/9908070

[24] S. W. Hawking and G. T. Horowitz, The gravitational hamiltonian, action, entropy, and

surface terms, gr-qc/9501014; Class.Quant.Grav. 13 (1996), 1487-1498

[25] L. D. Landau and E. M. Lifschitz, The classical theory of �elds, Pergamon Press, 1971; pp

304-311


