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Abstract: It is shown that the classical laws of thermodynamics require that me-

chanical systems must exhibit energy that becomes unavailable to do useful work. In

thermodynamics, this type of energy is called entropy. It is further shown that these

laws require two metrical manifolds, equations of motion, field equations, and Weyl’s

quantum principles. Weyl’s quantum principle requires quantization of the electro-

static potential of a particle and that this potential be non-singular. The interactions

of particles through these non-singular electrostatic potentials are analyzed in the low

velocity limit and in the relativistic limit. It is shown that writing the two particle

interactions for unlike particles allows an examination in two limiting cases: large and

small separations. These limits are shown to have the limiting motions of: all motions

are ABOUT the center of mass or all motion is OF the center of mass. The first limit

leads to the standard Dirac equation. The second limit is shown to have equations of

which the electroweak theory is a subset.

An extension of the gauge principle into a five-dimensional manifold, then restrict-

ing the generality of the five-dimensional manifold by using the conservation principle,

shows that the four-dimensional hypersurface that is embedded within the 5-D man-

ifold is required to obey Einstein’s field equations. The 5-D gravitational quantum

equations of the solar system are presented.

Keywords: Mechanical entropy; Entropy manifold; Geometry; quantum mechanics;

Quantum gravity; SU(2); SU(3).
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The thermodynamic basis for the constancy of the speed of light[47] provides the starting

point for a thermodynamic basis for Einstein’s Special Theory of Relativity[9] with its space-time

metric[23] and quantum mechanics[2]. The starting point in this chain of logic is the adoption of

generalizations of the classical thermodynamic laws and their use to define the mechanical entropy,

(mentropy), and arrive at the maximum mentropy principal for isolated mechanical systems.

The ability of these laws to require the constancy of the speed of light displays their connection

to relativistic theories. However, this article will display the logic through the development of

mechanics. There will be numerous points in this logic where one could branch off on interesting

and useful topics. See the Logic Flow chart in Figure 1. This article will stay strictly on the

track of presenting the logic from the adopted laws through relativistic mechanics to quantum

mechanics.

The basic laws may be restated here for clarity.

1 First Law (Conservation of Energy)

The concept of conservation of energy is fundamental to all branches of physics and is the beginning

of the basis of thermodynamics and mechanics. In terms of generalized coordinates or independent

variables, the notion of work, or mechanical energy, is considered linear forms of the type

d̄W = Fi(q
1, . . . , qn, U1, . . . , un)dqi (i = 1, 2, . . . , n),

where the forces Fi may be functions of the velocities (dqi/dt = ui) as well as the coordinates qi

and the summation convention is used. The line integral
∫
c Fidq

i then represents the work done

along the path C by the generalized forces.

A system may acquire energy by other means in addition to the work terms; such energy

acquisition is denoted d̄E. The system energy, which represents the energy possessed by the

system, is considered to be

U(q1, . . . , qn, u1, . . . , un).

With these concepts, then the First Law, which is the generalized Law of Conservation of

Energy, has the form
d̄E = dU − d̄W

= dU − Fidq
i (i = 1, . . . , n).

(1)

Positive d̄E is taken as energy added to the system by means other than through the work terms

and Fi is taken as the component of the generalized force acting on the system which caused

displacement dqi.
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Figure 1: Logic Flow chart.
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2 Second Law

There are processes, or motions, that satisfy the First Law but are not observed in nature. The

purpose of the Second Law is to incorporate such experimental facts into the model of dynamics.

The statement of the Second Law is made using the axiomatic statement provided by the Greek

mathematician Carathéodory[2], who presented an axiomatic development of the Second Law of

thermodynamics that may be applied to a system of any number of variables. The Second Law

may then be stated as follows:

In the neighborhood (however close) of any equilibrium state of a system of any number

of dynamic coordinates, there exist states that cannot be reached by reversible E -

conservative (d̄E = 0) processes or motions.

When the variables are thermodynamic variables, the E-conservative processes are known as

adiabatic processes.

A reversible process, or motion, is one that is performed in such a way that, at the conclusion

of the process, both the system and the local surroundings may be restored to their initial states

without producing any change in the rest of the universe.

3 Mentropy and Geometry

It was previously shown that the Second Law guarantees the existence of an integrating factor

for the First Law where the integrating factor is a function of only the speed[47]. The Second

Law also requires that the mentropy must be maximized for an isolated system for which d̄E = 0.

This principle becomes a variational principle for isolated systems. A metric may be obtained

by considering the stability conditions when q and S are taken as the independent variables. For

example, consider the terms of second order in small displacements beginning with the general

condition

Choose U = U(q, S), which, because of the identity φdS = sU − Fdq

δU − Fδq − φδS > 0 (2)

is a natural choice for the independent variables, and expand δU in powers of the δq and δS

δU = φδS + Fδq

+ 1
2

[
∂2U
∂q2

]
δq2 + 2

[
∂2U
∂q∂S

]
δqδS +

[
∂2U
∂S2

]
∂S2

+ terms of third order . . .

(3)
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The inequality (2) then shows that in Equation (3),

second order terms + third order terms + . . . > 0.

Retaining only the second order terms, the criterion of stability is that a quadratic differential

form be positive definite;

∂2U

∂S2
(dS)2 +

∂2U

∂S∂qα
(dS)(dqα) +

∂2U

∂qα∂qβ
(dqα)(dqβ) > 0; α, β = 1, 2, 3.

Adopting this quadratic form as the metric of a general system whose variables are held fixed, we

may then write this metric as

(ds)2 = hijdq
idqj; i, j = 0, 1, 2, 3, (4)

where the summation convention is used and

hij =
∂2U

∂qi∂qj
,

with q0 ≡ S/F0, the scaled mentropy for dimensional correctness.

Thus, the stability conditions provide a metric in the four-dimensional manifold of space-

mentropy. The arc length s in the space-mechanical entropy manifold may be parameterized by

choosing ds ≡ u0dt ≡ cdt, where u0 ≡ c is the unique velocity appearing in the integrating factor

of the second postulate. There are two reasons for choosing the unique velocity. First, it is the

only well-defined velocity we have thus far. Secondly, we may look ahead to the metric of the

Special Theory of Relativity. The metric may now be written as

c2(dt)2 = hijdq
idqj; i, j = 0, 1, 2, 3. (5)

Now suppose the systems considered are restricted to only E-conservative systems. Then the

principle of increasing mentropy may be imposed in the form of the variational principle

δ
∫ √

(dq0)2 = 0.

In order to use this variation principle, Eqn. (5) may be expanded, solved for (dq0) and squared

to arrive at the quadratic form

(dq0)2 =
1

h00

[
c2(dt)2 + 2h0αAdtdq

α − hαβdq
αdqβ

]
, (6)

where

A =
h0α

h00
uα ±

√
c2

h00
+
hαβ
h00

uαuβ +
h0α

h00
(uα)2
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with uα ≡ dqα/dt.

By defining x0 ≡ ct, xα = qα;α = 1, 2, 3, then Eqn. (6) may be written as

(dq0)2 =
1

f
ǵijdx

idxj ; i, j = 0, 1, 2, 3 (7)

where f ≡ h00. This metric obviously reduces, in the Euclidean limit of constant coefficients, to

the metric of Minkowski’s space-time manifold of Special Relativity[23]. It is interesting to note

that in the metric of Eqn. (6) the difference in the sign on the time and space elements of the

metric come from the fact that the stability conditions are given in terms of space and mentropy

while the variational principle was taken to be the Mentropy Principle. In this fashion the Second

Law guarantees the limiting aspect found in Einstein’s Special Theory of Relativity.

In his General Theory of Relativity, Einstein assumed the space-time manifold to be Riemannian[11].

However, this assumption involves the a priori assumption that the scalar product be invariant.

This assumption was later questioned by Weyl in his generalization of geometry[37]. From the

viewpoint that the adopted postulates should contain the other theories within them then it be-

comes desirable to determine whether or not these postulates specify the geometry of the (dq0)2

space-time manifold. More particularly do the adopted postulates lead to a geometry includes the

geometry of current theories? To arrive at a more general geometry would not be a limitation for

it would certainly include the others.

Recalling Eqn. (7), we can define

(dq0)2 =
1

f
ǵijdx

idxj ≡ 1

f
(dσ)2 ≡ gijdx

idxj . (8)

Now the Second Law guarantees the existence of the function mentropy and that dq0 be a perfect

differential; therefore

dq0 = q0
i dx

i, (9)

where q0
i ≡ ∂q0/∂xi. Then the exactness of dq0 is stated by

q0
i|j − q0

j|i = 0. (10)

By defining the parallel displacement of a vector to be

dζi = Γvisdx
sζv (11)

and using Eqns. (10) and (11) it may be seen that the connections must be symmetrical, or

Γvik = Γvki. (12)
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This result should not be taken to mean that only symmetric connections need to be considered.

Rather it means that given the ĝij’s that maximize (dq0)2, then the connections are symmetrical.

However, since a variational principle must be used to determine the ĝij’s, then both symmetric

and antisymmetrical connections will have to be considered.

In Weyl’s generalization of geometry he found it necessary to assume the symmetry of the

connections. He proved a theorem showing that the symmetry of the connections guaranteed

the existence of a local Euclidean limiting manifold and used this theorem in support of the

symmetry assumption. Here we find that the Second Law requires that the connections formed

by the solution coefficients must be symmetrical thus guaranteeing, through Weyl’s theorem, the

existence of a local Euclidean geometry within the Dynamic Theory.

Suppose now we consider whether the order of differentiating the change in mentropy makes

any difference. This means that we must use symmetric connections since the actual change in

mentropy will be determined by the metric coefficients that generate a maximum. Knowing that

the change in mentropy is a total derivative provides the knowledge that the mentropy space must

be Reimannian.

It may be shown that the requirement that the change in mentropy be a total derivative also

requires that the difference in the order of differentiation

∆(dq0)2 =
∂2(dq0)2

∂xi∂xj
− ∂2(dq0)2

∂xj∂xi

must vanish.

This is the necessary and sufficient condition that the differential mentropy change may be

transferred from an initial point to all points of the space in a manner that is independent of the

path.

The distinguishing features of Riemannian geometry is the invariance of the scalar product

under a vector transplantation. Therefore to determine whether the (dq0)2 space is a Riemannian

space, consider the vector ξi and η̂i. Now since ξi = gijξ
j and

dξi = Γrisdx
sξr = Γrisdx

sgrkξ
k =

∂gij
∂xs

ξidxs + gijdξ
j,

then

gijdξ
j = Γrisdx

sgrkξ
k − ∂gij

∂xs
ξjdss.

Or, since gijgij = δii = 1 and
∂gij
∂xs

= Γjis + Γijs,

then
dξj = gij[Γkisξ

k − (Γjis + Γijs)ξi]dx
s

= gij(−Γiks)ξ
kdxs

= −Γjksdx
sξk.
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Thus the change in the covariant and the contravariant vectors are given by

dξi = Γrisdx
sξr

dξi = −Γirsdx
sξr.

Now consider the change in the scalar product ξiη
i. Then

d(ξiη
i) = dξiη

i + ξidηi
= Γrisdx

sξrη
i + ξi(−Γirsdx

sηr)

= Γrisdx
sξrη

i − Γirsdx
sξiη

r.

Renaming the indices in the second term yields

d(ξiη
i) = (Γrisξrη

i − Γrisξrη
i)dxs.

Thus the geometry of the (dq0)2 manifold is Riemannian.

Next consider the question of what is the geometry of the (dσ)2 space? Equation (8) shows

that we may write (dσ)2 = f(dq0)2, which is reminiscent of Weyl’s generalized geometry. Further

we have

ǵij = fgij.

Then in the sigma space an arbitrary vector ξi would have a length ) given by the self-scalar

product

ĺ = ||ξ||2 = ǵijξ
iξj − fgijξ

iξj = fl2, (13)

where l is the length of the vector in the mentropy space.

If we differentiate Eqn. (13), we have

2ĺd́l = ĺ2
∂f

∂xi
dxi + 2fldl.

However, in the mentropy space the length of the vector is unchanged under parallel displace-

ment so that

dĺ =
1

2

∂f

∂xi
dxi

ĺ

f
=

1

2

∂ ln f

∂xi
dxiĺ. (14)

Comparing Eqn. (14) with the definition of the parallel displacement of a vector, Eqn. (11), we

find that

φi =
∂ ln f

∂xi

plays a role similar to that of the connections Γijk the definition of parallel displacement of a

vector. Therefore we shall define the change in the length of a vector under displacement to be

dl = (φidx
i)l. (15)
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This is the same definition Weyl made in his generalization of geometry. However, there is a

difference in the way it was obtained. Weyl chose this definition in analogy with the connections Γ

and the definition then led to the second more general metric. In this theory the fundamental laws

lead us to two metrics and Eqn. (14) for the change in the length of a vector under displacement.

Therefore, we have no choice. Eqn. (14) is a derived equation and Eqn. (15) only renames the

logarithmic derivative.

Using Eqn. (15) we may obtain, in general,

dl2 = 2l2(φidx
i) = d(gijξ

iξj)

= gij|kξiξjdxk + gijΓ
i
lkξ
lξjdxk + gijΓ

i
lkξ
iξldxk.

Renaming the various summation indices, rearranging terms, and using the length of a vector, we

obtain

[gij|k + gljΓ
l
ik + gilΓ

l
jk]ξ

iξjdxk = 2gijφkξ
iξjdxk.

Since this must hold for arbitrary choice of ξi and dxk, we conclude that

(gij|k − 2gijφk) + gljΓ
l
ik + gliΓ

l
jk = 0.

This is the same system of linear equations for the connections of a Reimannian space except that

the inhomogeneous term gijs has now to be replaced by gijk − 2gijφk. Therefore the same linear

algebra as before leads to

Γijk = −
(
i

j k

)
+ gli[gljφk + glkφj − gjkφl] (16)

where
(
i
j k

)
is the usual Christoffel symbol of the second kind.

Now, since the mentropy space is Riemannian, then in the mentropy space we have Φ′
i ≡ 0 and

Γ′i
jk = −

(
i
jk

)
and the length ) of a vector is unchanged under parallel displacement. However, the

same displacement law in the sigma space, with metric ĝij , leads to the relation

dĺ = ±d
√
ǵijξiξj = ±d

√
fgijξiξj

= l
∂
√
f

∂xk dx
k

= ±1
2
∂ ln f
∂xk dx

k ĺ.

(17)

Thus ±(1/2)(∂ ln f/∂xk) plays the role of φk in Eqn. (15). It follows then that the ordinary

connections −
(
i
j k

)
constructed from ĝij are equal to the more general connections Γijk constructed

according to Eqn. (16) from gij and φk = (1/2)(∂ ln f/∂xk):

Γ́ijk = Γijk. (18)
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This can also be seen by direct computation from Eqn. (15) and

ǵij = fgij. (19)

We may interpret the change of metric from gij to ĝij by Eqn. (19) as a change of scale for the length

at every point of the Riemannian manifold by the variable gauge factor f . This transformation is

called a gauge transformation, and φk called a gauge vector field.

The generalized geometry thus separates the problem of measurement of angles from that of

measurement of length. For instance, the angle between the two vectors ξi and ηi at a given point

of the space is measured by the ratio

ξiηi

||ξ|| ||η|| =
gijξ

iξj√
(gijξiξj)(gijηiηj)

.

This ratio does not change under the gauge transformation Eqn. (19). The gauge transformation

is therefore an angle-preserving, or conformal, change of metric. On the other hand, the length of

vectors will change under Eqn. (19) according to Eqn. (14). Thus the metric tensor ĝij determines

angles, while one needs also the gauge vector φk to measure length.

Considering the sigma space, which is characterized by the tensor field ĝij and gauge vector

φ̂k. The same argument as before shows that we may, without changing the intrinsic geometric

properties of vector fields, replace the geometric quantities by use of a scalar field f as follows:

ǵij = fgij, φ́k = φk +
1

2

∂ ln f

∂xk
, Γ́ijk = Γijk. (20)

That is, in the new metric, vectors will have the same law of affine transplantation and the angle

between different vectors at the same point of the manifold will be preserved, but the local lengths

of a vector will be changed according to

ĺ2 = fl2

Thus the general Weyl geometry of the sigma space admits also a conformal gauge transformation.

4 Quantum Mechanics

In 1927 F. London derived quantum principles from Weyl’s geometry[21]. However, the results

of his work made it difficult to define length as a real number and because of this Weyl later

interpreted the mathematical formalism of his unified theory as connected with transplanting a

state vector of a quantum theoretical system.

Suppose that we consider an isolated, or E-conservative, system so that d̄E = 0. Then, because

of the Second Law dq0 ≥ 0 which is the principle of increasing mentropy. Then certainly (dq0)2 ≥ 0
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and also, since (dq0)2 = f(dσ)2, then f(dσ)2 ≥ 0. However, if f < 0, then (dσ)2 < 0 since it is

the product that must remain greater than, or equal to, zero. In this case

dq0 =
√
−f
√
−(dσ)2.

But

d(dσ) = φkdx
k(dσ)

and ∫
d(dσ)

(dσ)
=
∫
φkdx

k,

which implies that the element of arc (dσ) is given by

(dσ) = (dσ)0 e
∫
φkdx

k

,

where (dσ)0 is some initial value of the element of arc.

Now suppose an equilibrium, or reversible, state is desired so that dq0 = 0. Thus, the desired

condition is a null trajectory of the (dq0)2 manifold. Then, if f �= 0, the desired condition is also

a null trajectory of the (dσ)2 manifold. This implies that d(dσ) = 0 or (dσ) = (dσ)0, so that

e
∫
φkdx

k

= 1,

which is satisfied only if ∫
φkdx

k = 2πiN, (21)

where N is an integer. This is the quantum condition London introduced.

To illustrate how this condition arises from this approach, suppose a description of a hydrogen

atom is desired. A hydrogen atom is in a stable condition and, if isolated, satisfies the conditions

d̄E = 0 and dq0 = 0. These conditions along with f �= 0 establish the quantization of the integral

in Eqn. (21). To show how the Dynamic Theory removes from London’s work the difficulty of

defining length as a real number, consider an elementary presentation of London’s.

Suppose the field of a proton to be given by

φ0 =
α1

r
; φi ≡ 0; i �= 0.

Equality of forces for the simple case of circular motion requires that

mv2

r
=
e2

r2
.

Thus the period is given by T = 2πr/v and the velocity by

v =
e√
mr

.
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Now ∫
φkdx

k =
∫
φ0cT = 2πiN.

so that
α1cT

r
= α1c2π

√
mr

e
= 2πiN.

solving for the radius shows that the allowed radii1 are

r =
−N2e2

(α1)2mc2
.

By choosing

α1 =
2πie2

hc
≈ i

137
≡ iα,

where h is Planck’s constant, then the possible radii become

r =
N2h2

4π2e2m
,

which are the Bohr radii.

The imaginary α1 presented the difficulty, in London’s work, of defining length as a real number.

Here real distance, or length, may be defined, and properly should be, in the (dq0) manifold.

Recalling that the definition of the potentials is

φk = ±∂ ln f
1
2

∂xk
,

it may easily be seen that if f < 0, then φk becomes imaginary as does the length of arc in the

(dσ)2 manifold since the length of arc is given by

σ =
∫ √

(dσ)2.

However, the arc length in the (dq0)2 manifold is real since dq0 ≥ 0 by the Second Law.

It should be noted that the conditions for quantization are not restricted to d̄E = 0, dq0 = 0,

and f < 0 as used here. Any set of conditions which results in the final element of arc (dσ) being

equal to the initial element of arc (dσ)0 results in quantum conditions. It is particularly significant

to note that the quantization involves only forces which may be described in terms of the ”distance

curvature” and does not involve forces describable by a vector curvature. Thus interpreting the

gauge potentials φk to be electromagnetic potentials provides quantum effects for electromagnetic

forces.

1Please note that the α and r are in electrostatic units on this page.
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Here, again, is a distinction between curved and Euclidean manifolds, though here it appears

slightly different. Isomentropic systems require quantization. However, this quantization depends

upon the existence of a gauge function and appropriate restrictive conditions. Thus a curved space

may exhibit quantum effects but only if the curvature is accompanied by a gauge function or a

distance curvature.

Thus this theory, through London’s quantization, not only supports the contention that ”God

does not play with dice all the time” but, further, may supply the answer to the question, ”What

is waving in the wave function?” London showed that the wave function is directly related to

the element of the arc length in the sigma manifold. Therefore the ”waving” is the tendency of

this element of arc length to increase and decrease around a closed path. Using the calculus of

complex variables, the quantum number becomes the order, or multiplicity of the zero of (dσ).

This may also be stated in terms of null trajectories. Einstein’s null trajectory was the path light

travels and remains so here. However, this is the zeroth order null trajectory. The remaining null

trajectories for the complex arc length are given, as London showed, by the equations of Quantum

Mechanics.

5 Conclusions

The following are among those conclusions that may be made from the forgoing:

1. The thermodynamic laws require Einstein’s postulate concerning the constancy of the speed

of light,

2. The thermodynamic laws provide a metric through the stability conditions that lead to the

space-time manifold of Einstein’s Special Theory of Relativity when the mentropy principle is

used,

3. The thermodynamic laws require not one, but two manifolds for a complete description of

an event and the theory requires that one be a Riemannian and the other be a Weyl space,

4. The thermodynamic laws require that the equations of Schrödinger’s quantum Mechanics be

used for stable isomentropic states and that these quantum states are null trajectories in a Weyl

space, and

5. Neither the Special Theory of Relativity nor Weyl’s Quantum Principles are the primitive

concepts they are currently thought to be.

6 Non-Singular Gauge Potential

Weyl first proposed his gauge factor in his 1918 attempt to embed electromagnetism into geometry[36].

Schrödinger noticed that for a large number of systems satisfying the Bohr-Sommerfeld quanti-

zation conditions, the exponent of the non-integrable Weyl factor ) = )0exp
[

1
γ

∫
φjdx

j
]

became



Entropy 2001 , 3 89

quantized[31]. He also showed that, if the unit of quantization was taken to be imaginary with a

magnitude of Planck’s constant, then the Weyl factor was unity. London showed that the Weyl fac-

tor was proportional to the Schrödinger wave function and that, if one knew the gauge potentials

appearing in the exponent of the Weyl factor and asked what paths are allowed if the exponent

were to remain quantized, the paths allowed were those given by Shrödinger wave mechanics[20].

Though London’s reinterpretation was tentative, Weyl seized upon it and presented a formulation

in a 1929 paper that is considered a classic, was complete and went further to propose that electro-

magnetism could be derived from the gauge potential[38]. In this paper, Weyl introduced a special

case of Noether’s theorem, which displayed the analogy between energy-momentum and electro-

magnetic conservation laws and, thereby, made the result familiar to physicists in the context of

field theory.

Many scientists have engaged in gauge theory research as a result of this initial work. These

researchers have given numerous invaluable contributions to the field. However, the synopsis above

is sufficient to display that the basis of quantum gauge theory began with the concept of quantized

motion. London showed that the solutions to Shrödinger’s wave equation determined the paths

that were allowed, while Weyl’s gauge factor remained unity and its exponent quantized. This

provided a description of quantized paths or motion.

The exponent of the gauge factor may be thought of as having three parts: an integrand (which

are the gauge potentials), a path (which is given by the differentials) and an integral value (the

result of integrating the integrand over the path). Thus, while London showed that the equations of

quantum mechanics gave the paths allowed by a quantized exponent provided the gauge potentials

were known, another question may be put to the exponent with equal expectations with regard

to the descriptions of physical phenomena.

Particles exhibit quantized potentials, and it is the interactions of a particle with electromag-

netic fields that establishes the identity of a particle. If this identity is to persist in time and

through movement in space, the identifying gauge potentials must be independent of this motion.

Consider the question of what gauge potentials are allowed which are independent of the path

and satisfy the quantum condition of the exponent? The gauge potentials sought must satisfy∫
φjdx

j = i2πN where the i on the right hand side indicates an imaginary value and the sum-

mation convention is to be applied to the j’s, Here N has been used to distinguish the gauge

potential quantum number from the previous orbital or path, quantum number, n. If the gauge

potentials are to be independent of the dxj then all of the path elements may be chosen to be

zero except a single arbitrary dxj . Therefore, the gauge potentials must satisfy the condition that∫
φjdx

j = i2πNj , where now the summation convention is not used and each gauge potential is

quantized by the value Nj .

When φ0 is identified with the electrostatic potential, as is done in quantum mechanics, the
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quantum number, N0, quantizes the charge of the electrostatic potential. Therefore, the same

quantum condition that Schrödinger, London, and Weyl used to quantize the paths allowed by a

unity scale factor also quantizes the gauge potentials allowed for the particles! One of the first

results of this quantization of electric charge may be seen when using Weyl’s derivation of the

electromagnetic fields. Fields which are given as ∂jφk − ∂kφj = Fjk are quantized by a difference

in the gauge potential quantum numbers. Quantized gauge fields may have negative quantum

numbers even if all gauge potential quantum numbers are positive.

Further, since these fields must satisfy Maxwell’s field equations, the dependence of the gauge

potentials upon space may be determined using the technique of seeking a solution that is the

product of functions of the independent variables. When this assumed solution is tried in the

Maxwell equation ∇ • B = 0, and the variables are separated, the differential equation for the

radial dependence of the quantized, particle gauge potential is found to be (r − λN)fr + r2f ′
r = 0

where fr is the unknown function of radius, r. The solution to the differential equation is the non-

singular function fr = k
r
e−

λN
r where the subscript in the exponent indicates that the exponent

depends upon the particle’s gauge potential quantum numbers and may, therefore, be different for

different particles.

Forces of interaction between two particles which are the negative slopes of this type of non-

singular potential, given the same λN for each particle, change their sign when the separation

r equals λN , since force is proportional to N0k
r2

(
1 − λN

r

)
e−

λN
r . Therefore, particles, which have

repulsive long-range interactions, must have attractive short-range interactions.

Particles with different λN will have forces that do not obey Newton’s third law as the force on

one particle due to the presence of a second particle will vanish when the separation equals λ2.

While the force on the second particle due to the presence of the first particle will vanish as at a

separation of λ1.

Consequences of such interactions are worked out below and appear to have no need for renor-

malization, as might be expected of a non-singular potential. Also, the interactions between unlike

particles, λ1 �= λ2, must be solved as a two-particle system which appears to reduce to well-known

bilinear forms[4, 27, 51, 33, 34] upon applying appropriate restrictive assumptions, such as all

motion is assumed to be motion about the center of mass or all motion is assumed to be of the

center of mass.

7 Using Newton’s Equations of Motion

A non-singular, electrostatic potential of the form φ =
(
k
r

)
e

−λ
r , where the λ may be different

for each particle, would not satisfy Newton’s third law concerning equal and opposite forces for

all separations, r, and would necessitate revisiting all of the equations of motion concerning the
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interaction of unlike particles. An investigation of the equations of motion may start with the

well-known change of coordinates which allows one the see the motion about the center of mass,

R̄ = m1r̄1+m2r̄2
m1+m2

r̄ = r̄1 − r̄2
(22)

where the small r’s represent vectors to each body, or between the bodies, and the capital R

represents the vector to the center of mass of the two bodies. Of course the inverse transformations

associated with the transformation contained in Equations (26) exist and are the usual ones

associated with the center of mass (COM) approach.

By using the COM approach and writing the low velocity limit of the equations of motion

(EOM), we find

m1r̈1r̂1 = F̄ i1 + F̄ e1
m2r̈2r̂2 = F̄ i2 + F̄ e2

(23)

where the superscripts i and e represent internal and external forces respectively and theˆdenotes

a unit vector. By using the standard definition for the total mass, M = m1 +m2, and the reduced

mass, µ = (m1m2)/M and setting all external forces to zero, Equations (23) may be put into the

form
MR̈R̂ = F̄ i1 + F̄ i2
µr̈r̂ = µ

m1
F̄ i1 − µ

m2
F̄ i2.

(24)

The EOM of Equations (24) display the effect of Newton’s Third Law on the two-body problem.

Should Newton’s Third Law hold in both magnitude and direction then the first equation shows

that the force on the COM vanishes while the two forces, which must remain separate when

Newton’s Third Law does not hold, becomes a single-force statement without any reference to the

mass of the bodies. Further, the first equation gives the motion OF the COM while the second

equation gives the motion ABOUT the COM.

Many other conclusions might be pointed out concerning Equations (24). However, it may

be of more interest to specialize the forces appearing in the EOM to those of the electric forces

between electrically charged particles that exhibit the non-singular potential above. These forces

have two traits that have important consequences. First, they depend only upon the separation of

the two bodies. That is, the magnitude of the forces depend upon the separation distance, while

the direction of the forces are on a line between the bodies. This means that they have ”central

force” properties. Secondly, they are the result of taking the gradient of a potential. They are

not, however, conservative forces in the classical sense for that would include the assumption of

Newton’s Third Law.

Though the following presentation will use symbols of general forces it may be useful to display

here the functional dependence of the forces that the non-singular potentials produce. The force
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on body one due to the presence of body two is

F̄ i1 = −Z1e∇̄V i2 = −
(
Z1Z2e

2

4πε0

)
1

r2

(
1 − λ2

r

)
e(−

λ2
r )r̂, (25)

while the force on body two due to the presence of body one is

F̄ i2 = −Z2e∇̄V i1 =

(
Z1Z2e

2

4πε0

)
1

r2

(
1 − λ1

r

)
e(−

λ1
r )r̂. (26)

Equations (25) and (26) exhibit the property that at large separations they approximately obey

Newton’s Third Law, but as the separation approaches the larger of the λ’s they begin to severely

depart from Newton’s Third Law. Therefore, these two forces cannot be combined into a single

central force as is done in classical mechanics, nor can their potentials be combined into a single

potential.

Additionally, these forces display the attribute of central forces since they each have the form

F̄ = r̂F (r). (27)

One of the attributes of central forces is a constant angular momentum since the torque is

N̄ = r̄ × F̄ = (r̄ × r̂)F (r) = 0. (28)

Therefore,
dL̄

dt
=
d[m(r̄ × v̄)]

dt
= 0. (29)

From Equation (29) it may be seen that since the total angular momentum must be a constant,

then both the vectors r and v must lie in a fixed plane perpendicular to the angular momentum,

L.

The total angular momentum about the origin is given by

L̄ = L̄1 + L̄2 (30)

Then, using the EOM, Equations (23), with vanishing external forces,

dL̄

dt
=
dL̄1

dt
+
dL̄2

dt
= r̄1 × F̄ i1 + r̄2 × F̄ i2. (31)

Equation (31) may be written in terms of the COM coordinates to find

dL̄

dt
= R̄× (F̄ i1 + F̄ i2) + r̄ ×

(
µF̄ i1
m1

− µF̄ i2
m2

)
. (32)
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By using the forces given by Equations (25) and (26) then Equation (32) becomes

dL̄

dt
=

k

r2

[(
1 − λ1

r

)
e−

λ1
r −

(
1 − λ2

r

)
e−

λ2
r

]
(R̄× r̂) (33)

from which it may be seen that there are two ways for the change in total angular momentum to

vanish. The first is that λ1 = λ2 and the second is for the COM to be on the line defined by the

two bodies. This requires that, for two distinctly different bodies, their motion must have a total

angular momentum that is constant with respect to some point in the plane determined by the

positions of the two bodies and this point may be taken as the origin. Further, both bodies must

be on a line with the angle θ, or θ + π, in this plane. The significance of this is that Equation

(32) requires that, not only must the total angular momentum be constant in time, but so must

the angular momentum ABOUT , and OF , the COM.

By using this result together with the EOM, Equations (23) and (24), with the force laws,

Equations (25) and (26), the Conservation of Energy, and transferring to the cylindrical coordi-

nates typical of motion for central forces, it may be shown that the energy, which is a constant of

the low velocity motion, becomes

E = K + V +Kc + Vc (34)

where K + V is the energy of ABOUT the COM and Kc + Vc is the energy OF the COM. In

Equation (34), the parts are given by:

K = µk
2r

[(
1 − λ1

r

)
e−

λ1
r

m2
+
(
1 − λ2

r

)
e−

λ2
r

m1

]

V = −µk
r

[
e−

λ1
r

m2
+ e−

λ2
r

m1

]

Kc = kR
2r2

[(
1− λ1

r

)
e−

λ1
r −

(
1 − λ2

r

)
e−

λ2
r

]

Vc = −k
r

[
e−

λ1
r − e−

λ2
r

]
(35)

where k = (Z1Z2e
2)/(4πε0).

Now one may assume circular orbits for both the COM and motion about the COM and assume

that both orbits have quantized angular momentum to obtain an expanded Bohr model of the

two-body problem, which may be shown to be

E = − µZ2e4f(λ)

2(4πε0)2n2
θh̄

2


h(λ) + k(λ)

[
n2
cµf(λ)

Mg(λ)n4
θ

] 1
3


 (36)

with nθ being the quantum number for the motion about the COM and nc being the quantum
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number of the motion of the COM and the functions of lambdas are given by the definitions

f(λ) = µ
[(

1 − λ1
r

)
e
−λ1

r

m2
+
(
1 − λ2

r

)
e
−λ2

r

m1

]

g(λ) =
[(

1 − λ1
r

)
e

−λ1
r −

(
1 − λ2

r

)
e

−λ2
r

]

h(λ) = µ
[(

1 + λ1
r

)
e
−λ1

r

m2
+
(
1 − λ2

r

)
e
−λ2

r

m1

]

k(λ) =
[(

1 − λ1
r

)
e

−λ1
r −

(
1 − λ2

r

)
e

−λ2
r

]
.

(37)

By putting Equations (37) in this form, it is easy to see that the vanishing of the lambdas reduces

Equation (36) to the classical energy equation of Bohr’s theory.

The first-order approximation to the Bohr energy levels may be found by assuming that λ1 = 0

and λ2 is very small compared to r in Equations (35) and (37). Keeping only terms of the first

order of λ2/r negative cube roots are avoided and yields the first approximation of the energy as

E ∼ − µZ2e4

2(4πε0)2h̄
2

(
1 − µ2λ2Ze

2

m2(4πε0)n2
θh̄

2

)
. (38)

For the atomic hydrogen atom ionization energy a λ2 of 1 fermi produces a prediction of the energy

level that is approximately 2×10−5 different from Bohr’s model. Comparing this to the statement

of experimental error of 5 × 10−5 makes it important to redo the ionization energy with reduced

experimental error[16].

8 Using Schrödinger’s Wave Equation

An expanded Schrödinger-like wave equation may be developed using similar assumptions that

Schrödinger used[32]. To be consistent with the energy expression of Equation (34), the de-Broglie

relations for motion about the COM and for motion of the COM must be used. When this is

done, and the required linear behavior and free system limit is met, the resulting wave equation

ends up being

− h̄2
µ
∂2Ψ(x,X,t)
∂x2

+ V (x, t)Ψ(x,X, t)

− h̄2

2M
∂2Ψ(x,X,t)
∂X2 + Vc(x, t)Ψ(x,X, t) = ih̄∂Ψ(x,X,t)

∂t
.

(39)

The time-independent, expanded wave equation in cylindrical coordinates is then

− h̄2
2µ
∂2Ψ(r̄,R̄)
∂r̄2

+ V (r̄, R̄)Ψ(r̄, R̄)

− h̄2

2M
∂2Ψ(r̄,R̄)
∂R̄2 + Vc(r̄, R̄)Ψ(r̄, R̄) = EΨ(r̄, R̄)

(40)

where the potentials are those in Equations (35).
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The estimate of the difference in prediction between the Bohr energy levels and the similar

predictions of the non-singular potentials was 2 × 10−5 . In order to compare the energy levels

with the Schrödinger energy levels the potentials of Equations (35) should be used in Equation

(40).

The vector equation of Equation (40) may be solved by the method of separation of variables.

First, by trying a solution of the form, Ψ(r̄, R̄) = Ψ(r̄)Ψ(R̄), one finds that Equation (40) separates

into two sets of three equations each where one set depends upon (r, θ, φ) and the other set depends

upon (R,Θ,Φ). The separation constant, Ec, is related to the COM kinetic energy.

The two sets of three equations may be separated further by trying Ψ(r̄) = ΨrΨθΨφ and

Ψ(R̄) = ΨRΨΘΨΦ. The solutions for ΨΘ and ΨΦ are identical to the solutions for Ψθ and Ψφ
respectively with the separation constants mL and L corresponding to the separation constants

m" and ).

The equation for Ψr becomes

1

r2

d

dr

[
r2dΨr

dr

]
+

2µ

h̄2 [E − Ec − V (r)− Vc(r)]Ψr =
)()+ 1)Ψr

r2
.

Recognizing the potential difficulties of obtaining solutions with both V (r) and Vc(r) having

transcendental terms, an investigation of the influence of the non-singular potentials may be

conducted by assuming λ1 � r and λ2 � r.

Following the method of solving Schrödinger’s time-independent equation, the following defini-

tions:

ρ = 2βr; β2 =
2µ(E − Ec)

h̄2 ; γ =
µZe2

4πε0h̄
2β

and

λ =
2µZe2

4πε0h̄
2

[
(2m1 +m2)λ1

(m1 +m2)
− m1λ2

(m1 +m2)

]
,

together with the trial solution,

Ψr(ρ) = e−ρ/2F (ρ) = e−ρ/2
[
ρs

∞∑
k=0

akρ
k

]
, a0 �= 0 and s ≥ 0,

requires that two relations must be met; namely

s(s+ 1) = )()+ 1) + λ

and

aj+1 =
s + j + 1 − γ

(s+ j + 1)(s+ j + 2) − [)()+ 1) + λ]
aj .
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In order to satisfy s ≥ 0, s = )+ δ where

δ = −
(
)+

1

2

)1 −
√√√√1 +

λ

()+ 1
2
)2


 .

Further, the series will terminate if γ − δ = n is an integer. The solution may then be put into

the form

E − Ec =
En(

1 + 2δ
n

) ; where En =
−µZ2e4

(4πε0)22h̄
2n2

.

The COM radial equation has no potential terms and is

1

R2

d

dR

(
R2dΨR

dR

)
+

2MEc

h̄2 ΨR = L(L+ 1)ΨR.

This equation has a Bessel function solution of the form

ΨR = R− 1
2 [C1Iν(αR)] where ν =

1

2

√
1 + 4L(L+ 1) and α =

√∣∣∣∣2MEc

h̄2

∣∣∣∣.
This solution does not fully establish the value of Ec. This value can be determined, but is not

done here, by considering that Equation (33) requires that R̄× r̂ = 0.

9 Using Relativistic Quantum Mechanics

To obtain a Lorentz covariant EOM, one must begin with a Lorentz covariant relation between

energy and momentum[7, 25]. In special relativity, the energy, E, momentum, p, and rest mass,

m, of a free particle are connected by the relation

E2 = p2c2 +m2c4. (41)

Defining the four quantities

P µ =
(
E

c
, p̄
)

and the corresponding quantities

Pµ =
(
E

c
,−p̄

)

shows that the quantity PµP
µ is a Lorentz scalar. Using the summation convention, Equation

(41) becomes

PµP
µ =

E2

c2
− p2 = m2c2 (42)
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For two free particles taken together as a system, the energy, momentum and mass should all be

additive, that is

Es = E1 + E2; P̄s = P̄1 + P̄2; M = m1 +m2.

For the two particle, free system, Equation (46) becomes

PsµP
µ
s =

E2
s

c2
− P 2

s = M2c2

or

(p1µ + p2µ)(p
1µ + p2µ) = (m1 +m2)

2c2. (43)

Equation (43) leads to a free system Klein-Gordon equation of the form[
h̄2 (∂1µ + ∂2µ) (∂

µ
1 + ∂µ2 ) + (m1 +m2)

2c2
]
Ψ(x) = 0 (44)

as the 2-particle, free system Klein-Gordon equation.

Equation (44) allows us to use natural units where the units of action and the speed of light

may be set to unity.

Standard procedure of relativistic quantum mechanics allows one to seek a wave equation of

the form

i
∂

∂t
Ψ(x) = HΨ(x) (45)

where H is the system Hamiltonian.

A necessary (but not sufficient) condition that Equation (45) be Lorentz covariant is that the

Hamiltonian, H , be linear in the spatial derivatives. When the Hamiltonian of the two body

system is

H = H1 +H2 = −(ᾱ1 · P̄1 + β1m1) − (ᾱ2 · P̄2 + β2m2).

For free particles, there is no distinction between the α’s and β’s, and the system’s Hamiltonian

would be given by

H = −[ᾱ · (P̄1 + P̄2) + β(m1 +m2)] (46)

when there is no interaction between the particles.

The properties of the α’s and β would then be the same as developed classically or

α2
1 = α2

2 = α2
3 = 1

β2 = 1

{α1, α2} = {α2, α3} = {α3, α1} = α3α1 + α1α3 = 0

ᾱβ + βᾱ = 0

In the x-representation, the Hamiltonian equation becomes

i ∂
∂t

Ψ(x) = [iᾱ · (∇̄1 + ∇̄2) − β(m1 +m2)]Ψ(x) (47)
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where Ψ(x) =< x| > .

The two independent particle, free system Hamiltonain obeys the free system relativistic energy-

momentum equation, but the requirement of Lorentz covariance has not yet been imposed on the

system.

Multiply Equation (47) on the left by the matrix β and remembering that the total Hamiltonian

in Equation (46) is the sum of the Hamiltonian of each particle, results in

[i(∂1µ + ∂2µ)γ
µ +m1 +m2]Ψ(x) = 0. (48)

Equation (48) may also be written as

[i∂θµγ
µ +mθ] I

θφ(x) = 0 (49)

where I =
(

1
1

)
.

All inertial observers must agree on Equation (49). Now the properties of the matrices are the

same as in the classical case in that

[γµ, γν ] = 2gµν =

{
1, µ = ν = 0

−1, µ = ν = 1, 2, 3 as well as 0, µ �= ν

and
γo

+
= γ0 (Hermitian)

γi
+

= −γi. (anti −Hermitian)

Just as under the Lorentz transformation,

xµ
′
= Lµνx

ν ,

each component of a vector transforms into a linear combination of all components, also require

that each component of the wave function transforms into a linear combination of all four com-

ponents; i.e.,

Ψ(x) ELTΨ′(x′) = SΨ(x) (spinor transformation)

where the symbol ELT means ”transform under a Lorentz transformation into...”. S must be a

4 × 4 matrix. An inverse transformation is required to exist or S−1S = SS−1 = I.

Now if Equation (49) is to be Lorentz covariant we must require that[
i∂′θµγ

µ +mθ
]
Iθφ′(x′) = 0 (50)

where ∂′1µ = ∂

∂xµ1
1

so that the primed and unprimed inertial observers agree on the form of the

Hamiltonian.
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To obtain Equation (50) from (49) one must write

Ψ(x) = S−1Ψ′(x′)

and

∂µ =
∂xν

′

∂xµ
∂ν′ = Lνµ∂ν′ .

Putting these into Equation (53) gives

[iLνθµ∂θνγ
µ +mθ]I

θS−1Ψ′(x′) = 0.

Multiplying on the left by S then gives

[iLνθµ∂1ν′Sγ
µS−1 +mθ]I

θΨ′(x′) = 0,

which would be identical to Equation (54) if

Lν1µSγ
µS−1 = γν

and

Lν2µSγ
µS−1 = γν .

The Lorentz transformation should be the same for both particles so that Lν1µ = Lν2µ and then

the spinor transformation is identical to the classical case for each particle and each leads to the

same condition that must be imposed on the S matrix in order that the two particle Dirac equation

be Lorentz covariant.

Notice that, by considering the two particles as a system, the total system angular momentum

includes the total angular momentum of both particles and is to be conserved.

Now consider the situation where the two particles making up the system interact with each

other with forces which do not only obey Newton’s Third Law yet neither body interacts with

system’s surroundings.

Therefore, consider the substitution

Pµ → P̃µ − eAµ(x)

in the two particle, non-interacting, free system Hamiltonian. In the x-representation, this becomes

i∂µ → i∂µ − eAµ(x),

so that the Equation (49) becomes

[(i∂1µ − e1A2µ(x) + i∂2µ − e2A1µ(x))γ
µ +m1 +m2] Ψ(x) = 0. (51)
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Equation (51) may also be written

[
(i∂θµI

θ − eθA
Tθ
µ (x))γµ +mθI

θ
]
Ψ(x) = 0, (52)

where ATθµ is the transpose of Aθµ.

When e1 is the electric charge of the first particle, e2 is the electric charge of the second

particle, A1 is the potential of the first particle, and A2 is the potential of the second particle,

then Equations (51) and (52) should describe the interaction between the two bodies making up

the system which does not have any interactions with its surroundings.

Consider the problem to be separated into the motion of the COM and the motion about the

COM. Then subscript 1 ⇒ r, θ, φ with A1µ(r, θ, φ) and A2µ(r, θ, φ) and subscript 2 ⇒ R,Θ,Φ.

Recalling that one of the requirements on the free system Hamiltonian was that its solutions

also be solutions of the free system Klein-Gordon equation, it should be of some interest to see

whether or not the solutions of Equation (52) are also solutions of the corresponding Klein-Gordon

equation. Since the Klein-Gordon equation is a second-order differential equation, whereas the

Hamiltonian is of first-order, it will be necessary to operate on the latter with first order differential

operators in order to cast it into a form similar to the Klein-Gordon equation. If we operate on

the left of Equation (52) with the operator

[(i∂θµI
θ − eθA

Tθµ(x))γµ − (mθI
θ)],

we obtain [
(i∂θµI

θ − eθA
Tθµ)γµ(i∂θνI

θ − eθA
Tθν)γν − (mθI

θ)2
]
Ψ(x) = 0. (53)

The corresponding Klein-Gordon equation comes from Equation (44) with the substitution

∂µ → ∂µ − eAµ. Then we would have

[
(i∂θµI

θ − eθA
Tθ
µ )(i∂µθ I

θ − eθA
Tθµ) − (mθI

θ)2
]
Ψ(x) = 0. (54)

We notice that in Equation (53) we have

γµγν =
1

2
[γµ, γν ] +

1

2
[γµ, γν ] = gµν = σµν

where gµν = 1
2
[γµ, γν ] which may be shown to be σoi = 1

2
[γ0γi − γiγ0]. But

i
dα

dt
= [α,H ] and H = −[ᾱ · P̄θ + βmθ]I

θ then γ0S = γ0[γ̄ · P̄θ −mθ]I
θ.
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Now let ᾱ = x̄i1 + x̄i2 = x̄θI
θ, then look at

ẋiθI
θ = −i[(xi1 + xi2), γ

0H ]

= −i[(xi1 + xi2), γ
0γ̄ · (P̄1 + P̄2) − γ0(m1 +m2)]

= −i[(xi1 + xi2), γ
0(−γjP1j − γjP2j)]

= i{γ0γj [xi1, P1j] + γ0γj [xi2, P2j ]}
= i{γ0γj(−ih̄δij) + γiγj(−ih̄δij)}
= 2γ0γi

or ẋθI
θ = 2γ0γi. (55)

Therefore, Equation (55) gives us σoi = 1
2
(ẋi1 + ẋi2) = 1

2
ẋθI

θ.

On the other hand σij = −2iSk (i, j, k cyclic), but with two particles in the system this

should be written

σij = −i(Sk1 + Sk2 ) = −iSkθ Iθ. (56)

Putting Equations (54-56) into Equation (53) we find

[(i∂1µ − e1A2µ + i∂2µ − e2A1µ)(i∂1µ − e1A2µ + i∂2µ − e2A1µ)(g
µν + σµν)

− (m1 +m2)
2]Ψ(x)

= [(i∂1µ − e1A2µ + i∂2µ − e2A1µ)(i∂
µ
1 − e1A

µ
2 + i∂µ2 − e2A

µ
1 ) − (m1 +m2)

2

+ (i∂1µ − e1A2µ + i∂2µ − e2A1µ)(i∂1ν − e1A2ν + i∂2ν − e2A1ν)σ
µν ]Ψ(x) = 0.

or [
(i∂θµI

θ − eθA
Tθ
µ )(i∂µθ I

θ − eθA
Tθµ) − (mθI

θ)

+(i∂θµI
θ − eθA

Tθ
µ )(i∂θνI

θ − eθA
Tθ
µ )(i∂θνI

θ − eθA
Tθ
ν )σµν

]
Ψ(x) = 0 (57)

Most of the terms involving the matrices σµν vanish. This is because the scalar product of a

symmetric and an anti-symmetric tensor vanishes. That is, if Sµν and T µν satisfy

Sµν = Sνµ, T µν = −T νµ then SµνT
µν = 0.

In Equation (57), the quantity σµν is anti-symmetric under interchange of µ and ν. The

terms involving −ie1∂1µA2νσ
µνΨ(x) = −ie1σ

µνΨ(x)(∂1µA2ν) − ie1A2ν∂1µσ
µνΨ(x) are also anti-

symmetric. Now let us write out the coefficient of σµν in Equation (57):

(−∂1µ∂1ν − i∂1µe1A2ν − ∂1µ∂2ν − i∂1µe2A1ν

− ie1A2µ∂1ν + e1A2µe1A2ν − ie1A2µ∂2ν + e1A2µe2A1ν

− ∂2µ∂1ν − i∂2µe1A2ν − ∂2µ∂2ν − i∂2µe2A1ν

− ie2A1µ∂1ν + e2A1µe1A2ν − ie2A1µ∂2ν + e2A1µe2A1ν).
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Obviously the terms −∂1µ∂1ν ,−∂2µ∂2ν , e
2
2A1µA1ν , and e2

1A2µA2ν are symmetric so they may be

dropped. Combining terms leads to

[−i∂1µ(e1A2ν + e2A1ν) − (∂1µ∂2ν + ∂2µ∂1ν) − ie1A2µ(∂1ν + ∂2ν) + 2e1e2(A2µA1ν)

− i∂2µ(e1A2ν + e2A1ν) − ie2A1µ(∂1ν + ∂2ν)].

The terms −(∂1µ∂2ν + ∂2µ∂1ν) and e1e2(A2µA1ν +A1µA2ν) are symmetric under an interchange of

µ and ν. The following is left

[ie1(∂1µ + ∂2µ)A2ν − ie2(∂1µ + ∂2µ)A1ν − i(e1A2µ + e2A2µ)(∂1ν + ∂2ν)].

Using
−ie1∂1µA2νσ

µνΨ = −ie1σ
µνΨ(∂1µ∂2ν) − ie1A2ν∂1µσ

µνΨ

−ie1∂2µA2νσ
µνΨ = −ie1σ

µνΨ(∂2µ∂2ν) − ie1A2ν∂2µσ
µνΨ

−ie2∂1µA1νσ
µνΨ = −ie2σ

µνΨ(∂1µA1ν) − ie2A1ν∂1µσ
µνΨ

−ie2∂2µA1νσ
µνΨ = −ie2σ

µνΨ(∂2µA1ν) − ie2A1ν∂2µσ
µνΨ

leads to
[−ie1 σµν Ψ(∂1µA2ν + ∂2µA2ν) − ie2σ

µνΨ(∂1µA1ν + ∂2µA1ν)

− ie1A2ν(∂1µ + ∂2µ)σ
µνΨ − ie2A1ν(∂1µ + ∂2µ)σ

µνΨ

− ie1A2µ(∂1ν + ∂2ν)σ
µνΨ − ie2A1µ(∂1ν + ∂2ν)σ

µνΨ].

In the last four terms the coefficients of σµν are symmetric in an interchange of µ and ν so only

the first two terms remain. These may be written in symmetric and anti-symmetric form since

∂µAν =
1

2
(∂µAν + ∂νAµ) +

1

2
(∂µAν − ∂νAµ).

Only the anti-symmetric part will survive. Rewriting Equation (57) as

[(i∂1µ − e1A2µ + i∂2µ − e2A1µ)(i∂
µ
1 + e1A

µ
2 + i∂µ2 − e2A

µ
1 ) − (m1 +m2)

2

− ie1σ
µν(∂1µA2ν − ∂1νA2µ) − ie1σ

µν(∂2µA2ν − ∂2νA2µ)

− e2σ
µν(∂1µA1ν − ∂1νA1µ) − ie2σ

µν(∂2µA1ν − ∂2νA1µ)]Ψ = 0.

Defining Bβθµν = ∂θµA
Tβ
ν − ∂θνA

Tβ
µ this may be written as

[(
i∂θµI

θ − eθA
Tθ
µ

) (
i∂µθ I

θ − eθA
Tθµ
)
−
(
mθI

θ
)2 − iσµνeβB

β
θµνI

θ
]
Ψ(x) = 0. (58)

Equation (58) appears to be a very interesting equation. Typically the fields Fµν = ∂µAν−∂νAµ
are identified as the electromagnetic field and the result is the Klein-Gordon equation with fields.
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Here the derivatives and gauge potentials are mixed so care must be taken when interpreting the

terms. Also remember

σµν =




0 ẋ1 + ẋ2 ẏ1 + ẏ2 ż1 + ż2

−ẋ1 − ẋ2 0 −2i(S1 + S2)
3 2i(S1 + S2)

2

−ẏ1 − ẏ2 2i(S1 + S2)
3 0 −2i(S2 + S2)

1

−ż − ż −2i(S1 + S2)
2 2i(S1 + S2)

1 0




or this may be written as σµν = σµνθ I
θ.

Notice that should both particles have spin ±1/2 the total system spin, which is S = S1 +S2 =

SθI
θ, must take on the values −1, 0, or 1, similar to the values allowed for isospin. A system with

three spin 1/2 particles would take on values of −3/2,−1/2, 1/2, or = 3/2.

Perhaps Equation (58) may best be understood by considering the motion ABOUT the COM

and the motion OF the COM as being our two motions. Further, consider the two particle system

for which the potentials of Equations (35), hold. Now consider the two extremes of, first, the

motion OF the COM is small compared to the motion ABOUT the COM. This would be the

case when the particle separation is large compared to the larger of the λ’s. In this case it may

be seen that, in Equation (35), the COM potential vanishes, and the remaining potential about

the COM approaches the classical electrostatic potential. Further, Equation (52) collapses to the

classical Dirac equation for the motion of a particle in the field of another. Next, consider the

case when the particle separation is of the order of the two λ’s and the motion ABOUT the COM

may be neglected. In this case the potential ABOUT the COM is being driven to zero by the

exponents while the potential of the COM is becoming dominant. Notice that the potentials at

large separations produce a dominant negative potential, as in the hydrogen atom. Separations of

the order of the λ’s produce a very sharp positive potential which returns to zero as the separations

become less than the smaller of the λ’s. This sets up the condition whereby the COM may be

trapped in a positive energy well from which it may escape through tunneling.

In order to see this conclusion, consider the plot of the potential of the center of mass in

Equation (39), Vc in Figure 2.

Consider the extension of the above to a system of three particles interacting yet having no

outside fields influencing their motions. This would lead to the three momenta

P̃1µ = P1µ − e1(A
2
µ + A3

µ)

P̃2µ = P2µ − e2(A
3
µ + A1

µ)

P̃3µ = P3µ − e3(A
1
µ + A2

µ)

or P̃θµ = Pθµ − eθC
βγ
µ with the definition Cβγµ = Aβµ + Aγµ, where θ, β, and γ are cyclic. Then

Equation (52) may be written[(
i∂θµI

θ − eθC
βκ
µ

)
γµ +mθI

θ
]
Ψ(x) = 0 (59)
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Figure 2: COM Potential for λ1 � λ2.
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where θ, β, and γ are cyclic. By defining Bηβκθµν = ∂θµC
ηβκ
ν − ∂θνC

ηβκ
µ Equation (58) becomes[(

i∂θµI
θ − eθC

βκ
µ

) (
i∂µθ I

θ − eθC
βκµ
)
−
(
mθI

θ
)
− iσµνeηB

ηβκ
θµν I

θ
]
Ψ(x) = 0 (60)

where θ, β, κ, and η range from 1 to 3 and θ, β, and η are cyclic.

Equation (60) represents the Klein-Gordon equation for three particles when one particle is

different from the other two. However, for three like particles it remains valid, but has some terms

that vanish due to the equal and opposite forces.

The extension to N particles should follow readily and would provide for solving the internal

motions of a system made up of N particles interacting relativistically with each other in the

absence of external forces. The discussion of the two-particle system above led to the conclusion

that when, all motion is taken to be motion OF the COM, the potential well formed was a positive

energy well which would allow the calculation of the lifetime of the state. This would argue that

an N -particle system, for which the COM is required to move, that any bound state of the COM

might also be trapped in a positive energy well. The lifetimes of these states would then be subject

to calculation.

10 Gauge Fields and Gravity

The preceeding sections have shown how the Dynamic Theory, through Weyl’s quantum principle,

leads to a non-singular electrostatic potential. A unification of the electromagnetic and the nuclear

forces was then required by this non-singular potential. Further, it should be noted that the only

geometry that has been discussed was related to Weyl’s geometrical gauge function. A geometrical

gauge function produces gauge forces but does not produce, or is not produced by, a Riemannian

curvature. Therefore, the gauge forces discussed in the previous sections cannot incorporate

gravitational forces that are described by a Riemannian curvature.

However, the first and second laws that provide the basis for the predictions of the previous

sections are not limited to a specific number of work terms. They would provide an equally

powerful and consistent basis for a five dimensional theory as for one in four dimensions. This

sections briefly displays the use of the laws in a five dimensional space and shows how a restriction

on a manifold with only gauge forces can lead to forces described by a Riemannian curvature.

Several researchers used an extension into five dimensions in their search to unify the elec-

tromagnetic, nuclear and gravitational forces[18, 35, 26, 15, 14, 8, 22]. However, in each of these

attempts, the real world was thought to be described in the four dimensions of space and time and

the fifth dimension was used in order to get additional degrees of freedom to work with in their

search for the unifying field. On the other hand, numerous researchers used the basis of quantum

mechanics in their research into the unification of the various forces of Nature[36, 31, 20, 38].

Neither approach has produced the desired unification.
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Consider combining these two areas of research in the following manner. Let a five-dimensional

manifold have some physical reality in all five dimensions. The first four are the four of space and

time as used in Einstein’s General Theory of Relativity. The physical manifestation of the fifth

dimension is to be learned during this investigation. Whatever the fifth dimension turns out to be,

requiring it to be conserved will embed a four-dimensional hypersurface into the five-dimensional

manifold.

The starting point of this investigation is the exponent of the non-integrable Weyl factor

l = l0exp
[

1
γ

∫
φjdx

j
]
. The quantum principle requires this exponent to be quantized as in∫

φjdx
j = i2πN where the i on the right hand side indicates an imaginary value and the summa-

tion convention is to be applied to the j’s. Here the indices are to be considered to range from 0 to

4, with 0, (1, 2, 3) and 4 representing time, space and the new fifth dimension respectively. Just

as Weyl showed the gauge fields may be derived from these gauge potentials and the components

of the 5-dimensional field tensor may be written in matrix form as

Fij =

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 E1 E2 E3 V0

−E1 0 B3 −B2 V1

−E2 −B3 0 B1 V2

−E3 B2 −B1 0 V3

−V0 −V1 −V2 −V3 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

For simplicity, all the field components may be set to zero except for the V0 component. The surface

field tensor will be given by Fαβ = Fijy
i
αy
j
β where yiα = ∂yi

∂xα = δiα for i = 0, 1, 2, 3 and y4
α = ∂y4

∂xα .

The space indices, i, j, k range over 0, 1, 2, 3, 4 while the surface indices α, β, η, ν only take on

values of 0, 1, 2, 3. The surface metric is found from gαβ = aijy
i
αy
j
β = aαβ + hαβ where hαβ =

2aα4y
4
β + a44y

4
αy

4
β.

The space energy-momentum tensor for matter under the influence of gauge fields is given

by T ijsp = γuiuj + 1
c2

[
F ikF

kj + 1
4
aijF klFkl

]
and may be written in terms of the surface metric

as T αβsp = γuαuβ + 1
c2

[
F αk F

kβ + F α4 F
4β + 1

4

(
gαβ − hαβ

)
(F µνFµν + F 4νF4ν)

]
since u4 ≡ dy4

dt
=

∂y4

∂t
+ ∇̄ • (y4ū) = 0 is the statement required by the conservation of the fifth dimension.

The surface energy-momentum tensor may now be found within the space tensor and written

T αβ = T αβsp − 1
c2

[
F α4 F

4β − 1
2
hαβF 4νF4ν

]
. The form of this expression for the surface energy-

momentum tensor suggests writing

CT αβ ≡ Gαβ ≡ Rαβ − 1

2
gαβR (61)

which, of course, look like the field equations of Einstein’s General Theory of Relativity, when

Equations (61) are taken to be Einstein’s field equations, Gµν = −8πκ
c2
T µν where κ is the gravita-

tional constant. Then the field V0, which is the only non-zero field component considered, must
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be related to the gravitational field and the fifth gauge potential must be related to the gravita-

tional potential. Therefore, the physical reality of the fifth dimension is gravitating mass or its

equivalent, mass.

11 The Gravitational Schrödinger’s Equation

The preceding section showed that the conservation of mass embeds a four dimensional hyper-

surface within a five dimensional manifold of space, time and mass. It was also shown that the

description of the surface must obey Einstein’s equations of his General theory of Relativity. A

description may also be obtained from the surrounding five dimensional manifold. Weyl’s Gauge

Principle has been applied to the four dimensional, non-integrable manifold to specify a descrip-

tion of motion for which the gauge is a constant. The same may be done in five dimensions. In the

case where the electrostatic potential is taken to be zero, a non-zero, non-singular gravitational

potential may be left which has the same dependence upon radial distance as the electrostatic po-

tential previously discussed. Then Weyl’s Principle applies to this potential when integrable paths

are desired and it should be no surprise that the same logical approach produces a gravitational

Schrödinger-like equation where the only differences are the use of the gravitational potential and

a gravitational unit of action.

When this is done, and the required linear behavior and free system limit is met, the resulting

gravitational wave equation ends up being

− h̄2g
µ
∂2Ψ(x,X,t)
∂x2

+ V (x, t)Ψ(x,X, t)

− h̄2g
2M
∂2Ψ(x,X,t)
∂X2 + Vc(x, t)Ψ(x,X, t) = ih̄g

∂Ψ(x,X,t)
∂t

.
(62)

The time-independent, expanded wave equation in cylindrical coordinates is then

− h̄2g
2µ
∂2Ψ(r̄,R̄)
∂r̄2

+ V (r̄, R̄)Ψ(r̄, R̄)

− h̄2g
2M
∂2Ψ(r̄,R̄)
∂R̄2 + Vc(r̄, R̄)Ψ(r̄, R̄) = EgΨ(r̄, R̄)

(63)

where the potentials are gravitational potentials of the same form as the electrostatic potentials

in Equations (35).

The vector equation of Equation (63) may be solved, just as before, by the method of separation

of variables. First, by trying a solution of the form, Ψ(r̄, R̄) = Ψ(r̄)Ψ(R̄), one finds that Equation

(63) separates into two sets of three equations each where one set depends upon (r, θ, φ) and the

other set depends upon (R,Θ,Φ). The separation constant, Ec, is related to the COM kinetic

energy.

The two sets of three equations may be separated further by trying Ψ(r̄) = ΨrΨθΨφ and

Ψ(R̄) = ΨRΨΘΨΦ. The solutions for ΨΘ and ΨΦ are identical to the solutions for Ψθ and Ψφ
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respectively with the separation constants mL and L corresponding to the separation constants

m" and ).

The equation for Ψr becomes

1
r2
d
dr

[
r2 dΨr

dr

]
+ 2µ
h̄2g

[E − Ec − V (r) − Vc(r)]Ψr = "("+1)Ψr

r2
.

Recognizing the possible difficulties of obtaining solutions with both V (r) and Vc(r) having tran-

scendental terms, an investigation of the influence of the non-singular potentials may be conducted

by assuming λ1 � r and λ2 � r.

Following the method, previously used for solving Schrödinger’s time-independent equation,

the following definitions:

ρ = 2βr; β2 = 2µ(E−Ec)

h̄2g
; γ = µGm1m2

h̄2gβ

and

λ = 2µGm1m2

h̄2g

[
(2m1+m2)λ1

(m1+m2)
− m1λ2

(m1+m2)

]
,

together with the trial solution,

Ψr(ρ) = e−ρ/2F (ρ) = e−ρ/2
[
ρs
∑∞
k=0 akρ

k
]
, a0 �= 0 and s ≥ 0,

requires that two relations must be met; namely

s(s+ 1) = )()+ 1) + λ

and

aj+1 = s+j+1−γ
(s+j+1)(s+j+2)−["("+1)+λ]

aj .

In order to satisfy s ≥ 0, s = )+ δ where

δ = −
(
)+ 1

2

) [
1 −

√
1 + λ

("+ 1
2
)2

]
.

Further, the series will terminate if γ − δ = n is an integer. The solution may then be put into

the form

E − Ec =
En

(1+ 2δ
n )

; where En = −µ(Gm1m2)2

2h̄2gn
2 .

The COM radial equation has no potential terms and is

1
R2
d
dR

(
R2 dΨR

dR

)
+ 2MEc

h̄2g
ΨR = L(L+ 1)ΨR.

This equation has a Bessel function solution of the form

ΨR = R− 1
2 [C1Iν(αR)] where ν = 1

2

√
1 + 4L(L+ 1) and α =

√∣∣∣∣2MEc

h̄2g

∣∣∣∣.
This solution does not fully establish the value of Ec. This value can be determined, but is not

done here, by considering that Equation (33) requires that R̄× r̂ = 0.
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11.1 Limiting Case Solutions

In the limit where λ1 = λ2 = 0, it may easily be seen that the above solution collapses back

to a solution for the gravitational problem just as the solution for the electrostatic case. That

is, in solving the Ψφ(φ) equation, we shall find that the equation has acceptable solutions only

for certain values of ml. Using these values of ml in the equation for Ψθ(θ), it turns out that

this equation has acceptable solutions only for certain values of l. With these values of l in the

equation for Ψr(r), this equation is found to have acceptable solutions only for certain values of

the total energy, E; that is, the energy of the gravitational orbits is quantized! In exactly the

same manner as in the atomic case, the angular momentum and the energy are both quantized

functions. This fact allows one to write

mr2 dθ
dt

= angular momentum = nh̄g and 1
2
m
(
dr
dt

)2
+
n2h̄2g
2mr2

+ V (r) = E.

These equations provide the elliptical solutions familar to planet orbits. There the semi-major

axis is given by a =
∣∣∣−GMm

2E

∣∣∣ and the eccentricity may be found as ξ = 2

√
1 +

2En2h̄2g
m(GMm)2

. From the

expression for the eccentricity, one may anticipate that this property of planetary orbits will not

be quantized.

For the quantum numbers n, l and ml, there are many possible quantum states to find the

planetary orbits to be in. The solar system with all the planets and comets may also be consid-

ered as a multi-planet system with all the similar potential relations between the planets as has

been seen for the multi-electron atoms. Here there is an increased complexity and richness of

possibilities in the differing properties of each planet. These solutions may allow classifying stars

in the universe as the atoms are now classified; that is, there may be a periodic table of stars.

Those who have not read of the data supporting the quantization of the solar system may wish

to look in Dr. Halton Arp’s book ”Seeing Red” published by Apeiron (1998). The quantized

orbits of the planets, taken individually as a single planet system, would show quantized semi-

major axis as an =
∣∣∣∣GMmh̄2gn2

µ(GMm)2

∣∣∣∣ =
∣∣∣∣ h̄2gn2

µGMm

∣∣∣∣. If the experimental value of an for the Earth is taken

with the Earth’s quantum number, 5, then the value of the gravitational unity of action for the

solar system would be h̄g = 2

√
a5µEGMmE

25
∼= 5.32x1039J-sec.

The red shifts due to the five dimensional, time dependent, non-singular gravitational potentials

has been worked out[48]. When these are taken to be quantized potentials, one finds the red

shifts must exhibit different types of quantization. The quantized red shift relation is

zn = exp

[(−G
c2

)(
nrMre

−λr
Rr

Rr
− neMee

−λe
Re

Re

)
+
(
nrHL
c

)
e

−λr
Rr

]
− 1

where the subscript r refers to conditions and time of photon reception and the subscript e denotes

the conditions of the photon emission.
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There are now two types of quantization and both may be put into the form of ratios as

Z(nr+k)+1

Znr +1
= exp

[(−G
c2

)(
Mre

−λr
Rr

Rr

)
+
(
HL
c

)
e

−λr
Rr

]nrk

for the quantization associated with the gravia-

tional potential where the red shifted light is received, and
Z(ne+k)+1

Zne+1
= exp

[(
G
c2

)(
Mee

−λe
Re

Re

)]nek

for

the quantization of the gravitational potential where the red shifted light is emitted. For the cases

where λe � Re and λr � Rr there is some simplification of these ratios. In the limit of a very

dense emitter close to the point of reception, one obtains
Z(ne+k)+1

Zne+1
= exp

[(
G
c2

) (
Me

Re

)]nek
= Xnek.

One should expect that a non-singular gravitational potential will have a maximum gravitational

potential that can be obtained. Then X would be given by the maximum allowed exponent.

On the other hand, suppose one looks at the low red shift limit, where the distance between the

emitter and the point of reception dominates. Then one finds
Z(nr+k)+1

Znr +1
= exp

[(
HL
c

)
e

−λr
Rr

]nrk

.

From this expression it is easy to see that a cluster of emitters at roughly the same distance will

display a quantized red shift according to that distance.

Arp discusses red shift quantization at 72 km/sec periodicity, 32.5 periodicity and quantization

such that
Z(nr+k)+1

Znr +1
= (1.228)nrk. The first two might be distance quantization while the later

might be the quantized red shifts from emitters near maximum gravitational density.

12 Light Quanta

The presentation to this point has shown how the Dynamic Theory offers a new view of dynamic

mechanical systems. Questions naturally arise concerning the predictive ability of the theory that

may not be completely answered in the sections above. This section presents an example of how

the theory provides new approaches to old problems. The problem chosen is the century old

apparent theoretical dichotomy between the wave and particle description of light.

The concept of a photon started with Einstein’s light quanta.[9] The concept has been the

subject of many articles since 1905. The name photon was first introduced by Lewis 21 years

later.[19] However, both Planck’s[28] and Einstein’s derivations of the famous relation between

energy and frequency, ε = hν, came from studies of radiation in thermal equilibrium with a system

described by statistical thermodynamics. In 1917 Einstein wrote, ‘The properties of elementary

processes required by [his momentum fluctuation relation] make it seem almost inevitable to

formulate a truly quantized theory of radiation.’[12] Einstein was not, and never would be satisfied,

with his and others, inability to obtain such a theory. In 1924, after the experimental evidence

of the Compton Effect provided proof of the quantization of light, he wrote, ‘There are therefore

now two theories of light, both indispensable, and—as one must admit today despite twenty years

of tremendous effort on the part of theoretical physicists—without any logical connection.’[13]
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Weyl’s quantum principle may be used to derive Maxwell’s electromagnetic field equations.[38]

These, in turn, may be used to derive the electromagnetic wave equations. At the same time

the quantum principle requires that the gauge potentials be quantized since
∫
Njφjdx

j = 2πiN

where i =
√−1 and there is no summation over the j’s. The radial electrostatic dependence may

be investigated by considering No to be nonzero and Nx=Ny=Nz=0. The concept of a photon,

as a particle, is one that is electrically neutral. The wave description allows the discussion of

polarization such that an electromagnetic wave traveling along the x axis may have its electric

field directed along the y axis. Then, consider No=Nx=Nz=0. The quantum principle requires

that the y component of the gauge (vector) potential be quantized, as φy = NB cos 2π
(
x
λ
− νt

)
where the dependence upon x and t was chosen to be sure that the electric field, given by ξ (x, t) =
∂φy(x,t)
∂(ct)

= NBν
c2

sin 2π
(
x
λ
− νt

)
, satisfies the wave equations. This expression may be used to find

the average value of the Poynting vector, or I =
(

1
µo

)
〈ξ2〉. The average value of the square of

electric field, over one cycle, is given by 〈ξ2 (x, t)〉 = N2B2ν2

c3

∫ t= 1
ν

t=0 sin2 2π
(
x
λ
− νt

)
dt = N2B2ν

2c2
.

Therefore, I =
(
N2B2

2µoc3

)
ν. Now a quantum of light for which N=1 would have an energy flow

of I = hν when B =
√

2µohc3. Einstein’s energy relation, for a single light quantum passing

through a unit area, is then ε = hν.

13 Conclusions

The first result displayed was that the quantum principle requires the gauge potentials of particles

to be quantized in integer steps. This quantization leads to non-singular gauge potentials, which

may be different for different particles. These results argue that the quantum principle provides

more information than previously tapped. The appearance of non-singular potentials removes the

problems requiring renormalization.

Section VII points out that while the description of two different particles, interacting through

their gauge potentials, may not be reduced to a problem of a single particle in an electric field

fixed in space, the two-particle problem is solvable.

Section VIII displays a method for solving the Schrödinger wave equation extended so as to

describe the interaction between two different particles. Further, this section evaluates the first-

order deviation in the energy predictions between the classical and the non-singular potentials

and determines this value to be within the experimental error of past energy experiments.

Section IX presents a relativistic approach to the gauge interactions between unlike particles.

The equations for the two-particle system appear as generalizations of the equations currently

used in the electro-weak theories. The total spin of the two-particle system appears to play a role

identical to that of isospin.

When the three-particle system is addressed, the resulting equations appear as generalizations
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of the Su(3) group. Again, the total spin plays a role identical to isospin.

There are many possible conclusions these results may support. The more obvious ones might

be:

1) the phenomena currently allocated to description by weak nuclear forces may be described

by the difference between the non-singular potentials of the particles,

2) the strong force may be due to the non-singular nature of the potentials and not due to an

independent force, and

3) isospin is simply the total spin of an n-particle system.

Section X points out that a 5-dimensional gauge field may be described by a 4-dimensional

curved surface embedded into the 5-dimensional manifold by an appropriate restriction. The

5-dimensional gauge field in a manifold of space-time-mass derived from the gauge principle,

may have a 4-dimensional hypersurface embedded into in by the conservation of mass. On the

hypersurface, Einstein’s gravitational field equations must be satisfied. Therefore, there exists

three ways of describing phenomena on the hypersurface:

1) a gauge field description from the 5-D manifold of space-time-mass with the restriction of

conservation of mass,

2) a geometric surface description using tangents to the surface to form the surface metric (the

first fundamental quadratic form of the surface), and

3) a geometric surface description using the normal to the surface to form the surface metric

(the second fundamental quadratic form of the surface).

The use of the quantum principle to determine the quantized particle gauge potentials and

their non-singular character argues that the weak and strong nuclear forces are the result of this

non-singular character. It further argues that the gravitational field is a gauge field linked to the

electromagnetic field in a 5-dimensional manifold of space-time-mass, but, when conservation of

mass is imposed, it may be described by the geometry of the 4-D hypersurface of space-time,

embedded into the 5-D manifold by the conservation of mass.

A photon may be defined as a gauge vector potential with the quantum number set to unity

and which satisfies the wave equation. Further, the light quanta comes from Weyl’s quantum

principle which also provides the basis for radiation and needs no connection to statistics or

thermodynamics. Weyl’s quantum principle provides the logical connection that Einstein was

trying to find.
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