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Abstract: In this article we use the idea of algorithmic complexity (AC) to study

various cosmological scenarios, and as a means of quantizing the gravitational interac-

tion. We look at 5D and 7D cosmological models where the Universe begins as a higher

dimensional Planck size spacetime which fluctuates between Euclidean and Lorentzian

signatures. These fluctuations are governed by the AC of the two different signatures.

At some point a transition to a 4D Lorentzian signature Universe occurs, with the extra

dimensions becoming “frozen” or non-dynamical. We also apply the idea of algorithmic

complexity to study composite wormholes, the entropy of black holes, and the path

integral for quantum gravity. Some of the physical consequences of the idea presented

here are: the birth of the Universe with a fluctuating metric signature; the transition

from a fluctuating metric signature to Lorentzian one; “frozen” extra dimensions as a

consequence of this transition; quantum handles in the spacetime foam as regions with

multidimensional gravity.
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1 Introduction

The modern cosmological paradigm is that Universe started from the Big Bang, which was the

origin not only of all matter and energy, but also gave rise to the physical laws of Nature: Einstein

gravity, Yang-Mills equations, quantum mechanics etc. In this article we examine the possibility

that the Big Bang was a quantum birth (i.e. a quantum fluctuation) of the Universe from Nothing.

With this view one can imagine that there could exist other Universes with different physical laws

(e.g. non-Einstein gravity). Thus one would like to assign some probability for a given Universe

to fluctuate into existence. Based on path integral ideas one can write the probability for a given

Universe to come into existence as

P = A exp (−S) (1)

S is an action which has contributions from the fields that occur in the given Universe, and the

factor A is connected with the type of physical laws in the Universe. Such an expression is only

valid at or near the Planck scale.

These arguments lead to the following assumption: on the Planck scale the physical laws can

describe fluctuating processes. This implies that there is “something” that distinguishes one set of

physical laws from another. This “something” influences what kind of Universe with what kind

of physical laws will appear. Intuitively we expect that the simpler a physical law (e.g. the field

equations) the more probable is the corresponding Universe. This is a free rendering of Einstein’s

idea that “Everything should be made as simple as possible, but not simpler.” The problem is how

to recognize or formulate this “something”. Our proposal is that this “something” is connected

with Kolmogorov’s ideas on algorithmic complexity (AC). In this approach any physical system

(e.g. the Universe) can be thought of in terms of an algorithm. The longer and more complex

the algorithm, the less likely it is for such a system to appear. In particular Universes with

different physical laws (field equations) are described by different algorithms. The length of these

algorithms then affects the probability that this Universe with a certain set of physical laws will

fluctuate into existence.

The above discussion leads to the idea that the physical laws of a Universe are in some sense

dynamical. We will take the dynamical nature of the physical laws for different Universes as non-

differentiable or discrete quantity. The non-differentiable dynamics can have two manifestations:

• The cosmological appearance of a Universe with certain physical laws.

• The quantum fluctuations of physical laws at the level of the spacetime foam (e.g. at the

Planck scale).

The first case was discussed above – see Eq.(1). As an example of the second case consider a

5D spacetime with a mostly non-dynamical 55 metric component. Thus for most of spacetime
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we have 4D gravity + electromagnetism, i.e. 5D Kaluza-Klein theory in its initial interpretation.

However, there are small regions where the 55 metric component is a dynamical variable and one

has full 5D gravity. These fully dynamical regions can be thought of as quantum handles in the

spacetime foam [1].

We will now give mathematical details to this hypothesis about the connection between algo-

rithmic complexity and the probability for the existence of a given Universe with certain fields

and certain physical laws.

2 Kolmogorov’s algorithmic complexity

The mathematical definition for algorithmic complexity (AC) is

The algorithmic complexity K(x | y) of the object x for a given object y is the minimal length

of the “program” P that is written as a sequence of the zeros and ones which allows us to construct

x starting from y:

K(x | y) = min
A(P,y)=x

l(P ) (2)

l(P ) is length of the program P ; A(P, y) is the algorithm for calculating an object x, using the

program P , when the object y is given.

This definition gives us an exact mathematical meaning to the word “simple” in the spirit of

Einstein’s above-mentioned statement. In the next few sections we will demonstrate this idea of

the connection between algorithmic complex and cosmology and gravity with some examples.

3 A toy model for the birth of Minkowski space

In this section we sketch a model for the emergence of 4D Minkowski spacetime from a collapsing

7D spacetime as the result of a quantum fluctuation. The probability for this transition to occur

is linked with the algorithmic complexity of the equations describing either the 4D Minkowski

spacetime or the empty 7D spacetime [3]. Since this transition involves a discrete change in the

number of spacetime dimensions it can not be described by classical or quantum field theory. It

must be described by some non-differentiable (discrete) mechanics. We start with an empty 7D

spacetime with the metric given by

ds2 = dt2 − a2(t)dl21 − b2(t)dl22, (3)

where dl21 = dx2 + dy2 + dz2 is the metric of the 3D flat space E3 ; dl22 = du2 + dv2 + dw2 is the

metric of the extra dimensions (ED) which are also a flat E3 space. The 7D Lagrangian is [4]

L =
√
GR7D =

√−G (R4D + (cross terms) +RED) (4)
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here RED = 0; G is the determinant of the 7D metric; R7D and R4D are the scalar curvature of

the 7D and 4D spaces respectively. The Einstein vacuum field equations have the following form

ä

a
= − ȧ2

a2
+
ḃ2

b2
, (5a)

b̈

b
= − ḃ2

b2
+
ȧ2

a2
, (5b)

3
ȧḃ

ab
+
ȧ2

a2
+
ḃ2

b2
= 0, (5c)

where ( ˙ ) is the derivative with respect to t. This system has the following exact Kazner solution

a = a0

(
− t

a1

)α

; b = b0

(
− t

b1

)β

; t < 0; (6a)

α =
1−√

5

6
; β =

1 +
√
5

6
(6b)

where a0 � b0 � lPl and a1 = b1 = lPl (lPl is the Planck length). This represents a collapsing

7D spacetime. The scalar curvature is

−R

6
=
ä

a
+
b̈

b
+ 3

ȧḃ

ab
+
ȧ2

a2
+
ḃ2

b2
(7)

for these constants a0,1 and b0,1 the Ricci scalar is R ≈ 1/l2Pl when |t| ≈ tPl.

At times close to the Planck time (|t| ≈ tPl) we will assume that quantum fluctuations between

spacetimes of different dimensions is more likely. Thus there should be some likelihood of a

spontaneous transition from a 7D to a 4D spacetime, so that three of the extra spatial dimensions

of the 7D spacetime become non-dynamical. Mathematically this is written as

L7D −→ L4D (8a)√−G (R4D + (cross term)) −→ √−gR4D, (8b)

where g is determinant of the 4D metric. The form of the 4D metric is a lower dimensional

version of the 7D metric

ds2 = dt2 − a2(t)dl2 (9)

where the element dl2 = dl21 from Eq. (3). Einstein’s equations for this metrics are:

2
ä

a
+
ȧ2

a2
= 0, (10a)

ȧ2

a2
= 0, (10b)
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These equations have the following simple solution

a = a′0 = const. (11)

which is just 4D Minkowski spacetime. The probability for such a fluctuation to occur is deter-

mined by the AC of the 4D versus the 7D case. Looking at equations (5) and (10) one can see

that the AC of the 7D Universe is larger than for the 4D Universe since the system of equations

are more complex (the number of equations describing the 7D case is larger than the number of

equations describing the 4D case).

A summary of this idea of the emergence of a lower dimensional Universe from a higher dimen-

sional one goes as follows

• First, for t < 0 we have an empty 7D Kazner Universe (−∞ < t < 0) evolving according to

(5). This solution is collapsing toward a singularity at t = 0.

• Second, at time |t| ≈ tPl a quantum fluctuation of the dimensionality of spacetime takes

place. This results in a quantum splitting off of the ED, i.e. three of the six spatial dimen-

sions from the 7D Universe become non-dynamical resulting in an effective 4D Universe.

• Third, the linear 4D scales (a0 for 3D space and b0 for the other three EDs) become fixed,

classical variables whose values are determined by the values they took just before the

splitting off of the EDs. Thus we have a static, 4D, Minkowski Universe with three non-

dynamical EDs.

The probability P for this transition from a multidimensional Universe to a 4D Universe is deter-

mined by the AC of the two Universes. Mathematically we can write

PmultiD→4D =
e−K2

e−K1 + e−K2
, (12)

where K1,2 are respectively the AC of the multidimensional and the 4D Universes described by the

algorithms (system of equations) (5) and (10). Since the system (5) is larger (i.e. more complex)

than the system (10) we will assume K1 � K2 (even in simple cases the detailed calculation of

AC is a very complicated problem). Thus Eq.(12) can be approximate as follows:

PmultiD→4D ≈ 1− e−[K1−K2] ≈ 1. (13)

4 Fluctuation of the metric signature

In this section we present a variation of Bousso and Hawking’s idea [5] that the Universe began

as an Euclidean space, i.e. spacetime with Euclidean time, and later evolved into a Universe with
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Lorentzian signature. The variation that we want to consider is that the Universe started out as a

multi-dimensional space with its metric fluctuating between Euclidean and Lorentzian signatures

[6]. At some point on the boundary of this space a transition to a 4D Universe with a definite

signature takes place.

Since the metric signature is not a continuous variable its dynamics can not be described by

differential equations. To see this consider the multi-dimensional metric.

ds2
(MD) = ηĀB̄

(
hĀCdx

C
) (

hB̄Ddx
D
)

(14)

ηĀB̄ is the signature of the metric with viel-bein indices Ā, B̄ = 0, 1, 2, 3, 5, 6, · · · . xA are the

coordinates on the total space of the principal bundle with a structural group G, and C,D are the

multidimensional (MD) coordinate indices. The metric on the total space of the principal bundle

(we will consider gravity on the principal bundle) can be rewritten

ds2
(MD) = ηāb̄

(
hācdx

c + hāµdx
µ
) (

hb̄cdx
c + hb̄µdx

µ
)
+ ηµ̄ν̄ (h

µ̄
αdx

α)
(
hν̄βdx

β
)

(15)

ā, b̄ are the viel-bein indices for the fibre of the principal bundle, and c, d are the coordinate indices

on the fibre; µ̄, ν̄ and α, β play the same role for the 4D base of the principal bundle. For the con-

tinuous quantities, hĀC , we have gravitational equations, but ηĀB̄ are discrete (non-differentiable)

quantities without dynamical equations. Thus the dynamics of the metric signature, ηĀB̄, can

not be described by differential equations. We will instead apply a quantum-like description for

these degrees of freedom. This description will be stochastic along the general lines of ’t Hooft’s

proposition that quantum gravity may be a stochastic phenomenon [7]. The gravitational field

equations on the principal bundle are deduced in Appendix (A). In the following subsection (4.1)

we take Λ1,2 = 0.

4.1 The 5D Fluctuating Universe

In this subsection we consider the scenario where at the origin of the Universe a fluctuation

between Euclidean and Lorentzian metrics occurs. This is a modification of an idea initially

proposed by Hawking where there may be regions of the Universe with Euclidean or Lorentzian

signatures. The boundary between these two regions represents some quantum fluctuation between

the different metric signatures. Such transitions between metric signatures could occur in the very

Early Universe on the scale of Planck length.

We start with a vacuum 5D Universe with the metric

ds2
(5) = σdt2 + b(t) (dξ + cos θdϕ)2 + a(r)dΩ2

2 + r2
0e

2ψ(t) [dχ− ω(t) (dξ + cos θdϕ)]2 (16)
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here σ = ±1 for the Euclidean and Lorentzian signatures respectively. The 3D space metric

dl2 = b(t) (dξ + cos θdϕ)2 + a(r)dΩ2
2 describes the Hopf bundle with an S1 fibre over an S2 base.

In the 5-bein formalism we have

ds2
(5) = ηĀB̄e

ĀeB̄ (17)

here Ā, B̄ are the 5-bein indices and

ηĀB̄ = (±1,+1,+1,+1,+1) , (18a)

e0̄ = dt, (18b)

e1̄ =
√
b (dξ + cos θdϕ) , (18c)

e2̄ =
√
adθ, (18d)

e3̄ =
√
a sin θdϕ, (18e)

e5̄ = r0e
ψ [dχ− ω(t) (dξ + cos θdϕ)] (18f)

According to the following theorem [4]

Let G be a structural group of the principal bundle. Then there is a one-to-one correspondence

between the G-invariant metrics

ds2 = ϕ(xα)
(
σa + Aa

µdx
µ
)2
+ gµν(x

α)dxµdxν (19)

on the total space X and the triples (gµν , A
a
µ, ϕ). Here gµν is the 4D metric on the base; Aa

µ

are the gauge fields of the group G (the off-diagonal components of the multidimensional metric);

dl2 = σaσa is the symmetric metric on the fibre a = 5, · · · , dimG is the index on the fibre and

µ = 0, 1, 2, 3 is the index on the base.

the metric in Eq. (16) has the following electromagnetic potential

A = ω(t) (dξ + cos θdϕ) =
ω√
b
e1̄ (20)

For this potential the Maxwell tensor is

F = dA =
ω̇√
b
e0̄ ∧ e1̄ − ω

a
e2̄ ∧ e3̄ (21)

which yields an electrical field like

E1̄ = F0̄1̄ =
ω̇√
b

(22)

and a magnetic field like

H1̄ =
1

2
ε1j̄k̄F

j̄k̄ = −ω

a
(23)
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The 5D, vacuum Einstein equations [6] resulting from Eq. (16) are

G0̄0̄ ∝ 2
ḃψ̇

b
+ 4

ȧψ̇

a
+ 2

ȧḃ

ab
+
ȧ2

a2
+ σ

(
b

a2
− 4

a

)
+ r2

0e
2ψ

(
σH2

1̄ − E2
1̄

)
= 0,(24a)

G1̄1̄ ∝ 4ψ̈ + 4ψ̇2 + 4
ä

a
+ 4

ȧψ̇

a
+ σ

(
3
b

a2
− 4

a

)
− ȧ2

a2
+ r2

0e
2ψ

(
σH2

1̄ − E2
1̄

)
= 0,(24b)

G2̄2̄ = G3̄3̄ ∝ 4ψ̈ + 4ψ̇2 + 2
b̈

b
+ 2

ḃψ̇

b
− ḃ2

b2
+ 2

ä

a
+ 2

ȧψ̇

a
+
ȧḃ

ab
− ȧ2

a2
− σ

b

a2
− r2

0e
2ψ

(
σH2

1̄ − E2
1̄

)
= 0,(24c)

R5̄5̄ ∝ ψ̈ + ψ̇2 +
ȧψ̇

a
+
ḃψ̇

2b
+
r2
0

2
e2ψ

(
σH2

1̄ + E2
1̄

)
= 0,(24d)

R2̄5̄ ∝ ω̈ + ω̇

(
ȧ

a
− ḃ

2b
+ 3ψ̇

)
− σ

b

a2
ω = 0(24e)

where GĀB̄ = RĀB̄ − 1
2
ηĀB̄R is the Einstein tensor. Our basic assumption is that at the Planck

scale there can exist regions where a quantum fluctuation between Euclidean and Lorentzian metric

signatures occurs. There are two copies of the classical equations (24): one with σ = +1 and

another with σ = −1. It is this quantity σ which we take as having quantum fluctuations between

its two discrete values. The basic question under this assumption is how to calculate the relative

probability for each pair of equations from (24) (the ones with σ = +1 versus the ones with

σ = −1).
We will define the probability for each pair of equations in terms of the algorithmic complexity

of each pair. We can diagrammatically represent the fluctuations between the Euclidean and

Lorentzian versions of Einstein’s equations in the following way

σ = +1 ←→ σ = −1
⇓

(G+)0̄0̄ ←→ (G−)0̄0̄

(G+)1̄1̄ ←→ (G−)1̄1̄

(G+)2̄2̄ ←→ (G−)2̄2̄

(G+)3̄3̄ ←→ (G−)3̄3̄

(R+)5̄5̄ ←→ (R−)5̄5̄

(25)

The signs± indicates if the equation belongs to the Euclidean or Lorentzian mode. Expression (25)

sums up the idea that treating σ as a quantum quantity leads to quantum fluctuations between

the classical equations: (R+)ĀB̄ ↔ (R−)ĀB̄ or (G+)ĀB̄ ↔ (G−)ĀB̄. The probability connected

with each pair of equations (R±
ĀB̄

or G±
ĀB̄

) is determined by the AC of each equation.
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Fluctuation (R+)2̄5̄ ←→ (R−)2̄5̄. The R2̄5̄ equation in the Euclidean and Lorentzian modes is

respectively

ω̈ + ω̇

(
ȧ

a
− ḃ

2b
+ 3ψ̇

)
− b

a2
ω = 0, (26a)

ω̈ + ω̇

(
ȧ

a
− ḃ

2b
+ 3ψ̇

)
+

b

a2
ω = 0. (26b)

Let us consider the ψ = 0 case (below we will see that this is consistent with the R5̄5̄ equation).

It is easy to see that Eq. (26a) can be deduced from the instanton condition

E2
1̄ = H2

1̄ or
ω

a
= ± ω̇√

b
(27)

The second equation (26b) does not have a similar simplification via the instanton condition (27).

This is just the well known fact that instantons can exist only in Euclidean space. Based of this

simplification from a second order equation (26a) to a first order equation (27) we consider the

Euclidean equation (26a) simpler from an algorithmic point of view than the Lorentzian equation

(26b). To a first, rough approximation we can take the probability of the Euclidean mode as

p+
25 ≈ 1 and for the Lorentzian mode as p−25 ≈ 0. Strictly the exact definition for each p±ab is

p±ab =
e−K

±
ab

e−K
+
ab + e−K

−
ab

(28)

where K±
ab is the AC for the R±

ab = 0 or G±
ab = 0 equation. For K+

25 � K−
25 we have p+

25 ≈ 1 and

p−25 ≈ 0.

The expression for the probability in Eq. (28) can be seen as the discrete variable analog of

the Euclidean path integral transition probability. For a continuous variable the Euclidean path

integral gives the probability for the variable to evolve from some initial configuration to some

final configuration as being proportional to the exponential of minus the action (∝ e−S). Eq. (28)
is similar, but with the AC replacing the action. The denominator normalizes the probability (it

is a sum rather than integral since we are dealing with a discrete variable).

Fluctuation (R+)5̄5̄ ←→ (R−)5̄5̄. The R5̄5̄ equation in the Euclidean and Lorentzian modes is

respectively

ψ̈ + ψ̇2 +
ȧ

a
ψ̇ +

ḃ

b
ψ̇ +

r2
0

2
e2ψ

(
H2

1̄ + E2
1̄

)
= 0, (29a)

ψ̈ + ψ̇2 +
ȧ

a
ψ̇ +

ḃ

b
ψ̇ +

r2
0

2
e2ψ

(−H2
1̄ + E2

1̄

)
= 0, (29b)
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The Lorentzian mode (29b) has a trivial solution

ψ = 0 (30)

provided the instanton condition (i.e. H2
1̄ = E2

1̄) holds. Thus for this equation we take the

Lorentzian mode as having a smaller AC, and in the contrast with the previous subsection, the

Lorentzian mode has the greater probability. Again to a first, rough approximation the probability

of the Euclidean mode is p+
55 ≈ 0 and consequently for the Lorentzian mode p−55 ≈ 1 .

Fluctuation (G+)1̄1̄ ←→ (G−)1̄1̄ and G+
2̄2̄

←→ G−
2̄2̄

Taking into account (30) we can write these

equations as

4
ä

a
+ σ

(
3
b

a2
− 4

a

)
− ȧ2

a2
+ r2

0

(
σH2

1̄ − E2
1̄

)
= 0, (31a)

2
b̈

b
− ḃ2

b2
+ 2

ä

a
+
ȧḃ

ab
− ȧ2

a2
− σ

b

a2
− r2

0

(
σH2

1̄ − E2
1̄

)
= 0. (31b)

For the Euclidean mode (σ = +1) with the instanton condition (27)) one can have b = a (an

isotropic Universe) which reduces the two equations of (31) to only one equation

4
ä

a
− ȧ2

a2
− 1

a
= 0. (32)

For the Lorentzian mode (σ = −1) b �= a (an anisotropic Universe) there are still two equations

4
ä

a
−

(
3
b

a2
− 4

a

)
− ȧ2

a2
− r2

0

(
H2

1̄ + E2
1̄

)
= 0, (33a)

2
b̈

b
− ḃ2

b2
+ 2

ä

a
+
ȧḃ

ab
− ȧ2

a2
+

b

a2
+ r2

0

(
H2

1̄ + E2
1̄

)
= 0, (33b)

Thus under the instanton condition (27) and ψ = 0 we find that the Euclidean mode (32)

effectively reduces to one, second order equation which corresponds to an isotropic Universe; the

Lorentzian mode (33) still has two, second order equations which describe an anisotropic Universe.

Thus we assign the Euclidean mode the smaller AC and as for the previous equations make the

rough approximation p+
11 ≈ 1 for the Euclidean mode, p−11 ≈ 0 for the Lorentzian mode.

Fluctuation (G+)0̄0̄ ←→ (G−)0̄0̄ The equation G±
0̄0̄
= 0 has the following form

2
ḃψ̇

b
+ 4

ȧψ̇

a
+ 2

ȧḃ

ab
+
ȧ2

a2
+ σ

(
−4

a
+

b

a2

)
+ r2

0e
2ψ

(
σH2

1̄ − E2
1̄

)
= 0 (34)
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Assuming all the previous conditions (the instanton condition, ψ = 0, and b = a) the Euclidean

mode equations become
ȧ2

a2
− 1

a
= 0 (35)

while the Lorentzian mode equations become

3
ȧ2

a2
+ 3

1

a
− r2

0

(
H2

1̄ + E2
1̄

)
= 0. (36)

The instanton condition again implies that the Euclidean mode has a smaller AC. Thus to a first,

rough approximation we take p+
00 ≈ 1 and p−00 ≈ 0.

Mixed system of the equations Under the approximation where the probability associated

with each of the equations in (24) is p ≈ 0 or 1 the mixed system of equations which describe a

Universe fluctuating between Euclidean and Lorentzian modes

ȧ2

a2
− 1

a
= 0, (37a)

ω̇ = ± ω√
a
, (37b)

4
ä

a
− ȧ2

a2
− 1

a
= 0. (37c)

here b = a, ψ = 0 and the instanton condition are all assumed to hold. This system of mixed

Euclidean and Lorentzian equations has the following simple solution

a =
t2

4
, (38a)

ω = t2. (38b)

The mixed origin of the Universe The following model for the quantum birth of Universe

has been advanced by Hawking : one begins with an Euclidean space of the Planck size (R4, S4

or some other smooth non-singular Euclidean space); then a Lorentzian Universe emerges from a

boundary of this initial Euclidean piece. In this scenario the Euclidean and Lorentzian spaces are

connected by a hypersurface with a mixed signature.

In this section we present a variation of this picture for the quantum mechanical origin of

the Universe. We assume that the Universe begins as a quantum fluctuating system between

Euclidean and Lorentzian modes. Then at some point in time there is a quantum transition to

the Lorentzian mode.
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To support these statements mathematically we begin by calculating the average of the Ricci

scalar 〈
R(σ)

〉
= p+R (σ = +1) + p−R (σ = −1) (39)

where p+ and p− are the probabilities for the scalar curvature with σ = +1 and σ = −1 respec-

tively. Using

−3

2
R(σ) = Gᾱ

ᾱ +R5̄
5̄ (40)

and averaging gives

−3

2

〈
R(σ)

〉
= p+

αα

(
G+

)ᾱ
ᾱ
+ p−αα

(
G−)ᾱ

ᾱ
+ p+

55

(
R+

)5̄

5̄
+ p−55

(
R−)5̄

5̄

=
(
G+

)0̄

0̄
+

(
G+

)1̄

1̄
+

(
G+

)2̄

2̄
+

(
G+

)3̄

3̄
+

(
R−)5̄

5̄
. (41)

Thus for the mixed system of equations we find〈
R(σ)

〉
= 0. (42)

In this toy model the Universe originates from an empty, multidimensional, non-singular (in the

sense that 〈R(σ)〉 = 0), spacetime of Planck scale size (τ � τPl). In our model the spacetime is

M4 × S1, with M4 being a space with fluctuating metric signature: Euclidean ↔ Lorentzian. At

some point a quantum transition to the Lorentzian mode occurs, and at the same or later time

the 55 component of the metric becomes a non-dynamical quantity. Thus the fluctuation of the

metric signature of the original Planck scaled, 5D Universe leads to a 4D Lorentzian Universe and

a “frozen” or non-dynamical 5th dimension.

4.2 The 7D Fluctuating Universe

In this subsection we study a 7D cosmological solution with a fluctuating metric signature as in

the last subsection. We take the gauge group of the EDs as G = SU(2), with the 7D metric taking

the form

ds2 = b (xα)
(
ωā + Aā

µ (x
α) dxµ

)
(ωā + Aāµ (x

α) dxµ) + gµν (x
α) dxµdxν . (43)

Most of the calculational details for this 7D metric are given in Appendix (A).

The total space of the principal bundle is denoted as E; the structural group is denoted as G.
The factor-space H = E/G is the base of the principal bundle, and is described by the 4D metric

ds2
(4) = ηµ̄ν̄ (h

µ̄
αdx

α)
(
hν̄βdx

β
)

(44)
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which is the last term in Eq. (43). We now insert a 4D cosmological constant term into the MD

action

S =

∫
(R + 2Λ1)

√
|G|d4+Nx+

∫
(2Λ2)

√
|g|d4x =

∫ [∫
(R + 2Λ1)

√
|γ|dNy + 2Λ2

] √
|g|d4x

(45)

R is the Ricci scalar and GAB = ηC̄D̄h
C̄
Ah

D̄
B is the MD metric on the total space; gµν = ηᾱβ̄h

ᾱ
µh

β̄
ν is

the 4D metric on the base of the principal bundle; γab = ηc̄d̄h
c̄
ah

d̄
b is the metric on G; G, g and γ

are the appropriate metric determinates; Λ1,2 are the MD and 4D Λ-constants; N = dim(G). The
MD action of Eq. (45) has several points in common with the 4D EYM action considered in Ref.

[17] (non-zero cosmological constants and effective SU(2) “Yang-Mills” gauge fields). Eq. (45)

also has a connection to the action for the Non-gravitating Vacuum Energy Theory [18]. In Ref.

[18] Guendelman considers an action which has degrees of freedom which are independent of the

metric, with the resulting action having two measures of integration (involving metric and non-

metric degrees of freedom). Eq. 45 incorporates two distinct degrees of freedom : the continuous

variables, hĀB, and the discrete variables, ηĀB̄. In Ref. [18] both the metric and non-metric degrees

of freedom were continuous.

The independent, continuous degrees of freedom are: the vier-bein hµ̄ν (x
α), the gauge potential

hāµ(x
α) = Aā

µ(x
α) and the scalar field b(xα). eāb is defined as

ωā = eābdx
b (46)

xb are the coordinates on the group G; ωā are the 1-forms satisfying

dωā = f āb̄c̄ω
b̄ ∧ ωc̄ (47)

f ā
b̄c̄
are the structural constants of SU(2). Varying the action in Eq. (45) with respect to hµ̄ν , h

ā
ν

and b leads to (see the Appendix for details)

Rµ̄ν̄ − 1

2
ηµ̄ν̄R = ηµ̄ν̄

(
Λ1 +

Λ2

b3/2

)
, (48a)

Rāµ̄ = 0, (48b)

Rā
ā = −6

5

(
Λ1 +

Λ2

b3/2

)
. (48c)

Eq. (48a) are the Einstein vacuum equations with Λ-terms; Eq. (48b) are the “Yang-Mills” equa-

tions; Eq. (48c)is reminiscent of Brans-Dicke theory since the metric on each fibre is symmetric

and has only one degree of freedom - the scalar factor b(xµ).

We now investigate Eqs. (48a)-(48c) using the ansatz

ds2 = σdt2 + b(t)
(
ωā + Aā

µdx
µ
)
(ωā + Aāµdx

µ) + a(t)dΩ2
3 (49)



Entropy 2002, 4 16

σ = ±1 describes the possible quantum fluctuation of the metric signature between Euclidean

and Lorentzian modes, Aā
µ are SU(2) gauge potentials, dΩ

2
3 = dχ2 + sin2 χ

(
dθ2 + sin2 θdφ2

)
is the

metric on the unit S3 sphere and x0 = t, x1 = χ, x2 = θ, x3 = φ, x5 = α, x6 = β, x7 = γ. (α, β, γ

are the Euler angles for the SU(2) group)

ω1 =
1

2
(sinαdβ − sin β cosαdγ), (50a)

ω2 = −1

2
(cosαdβ + sin β sinαdγ), (50b)

ω3 =
1

2
(dα+ cos βdγ). (50c)

The off-diagonal components of the MD metric take the instanton-like form [19] [20]

Aa
χ =

1

4
{− sin θ cosϕ;− sin θ sinϕ; cos θ} (f(t)− 1), (51a)

Aa
θ =

1

4
{− sinϕ;− cosϕ; 0} (f(t)− 1), (51b)

Aa
ϕ =

1

4
{0; 0; 1} (f(t)− 1). (51c)

Substituting into Eqs. (48a)-(48c) gives

1

3
Rā
ā = R5̄

5̄ = −σ

2

b̈

b
+
2

b
− σ

4

ḃ2

b2
− 3

4
σ
ȧḃ

ab
+
1

8

b

a

(
σE2 +H2

)
= −2

5

(
Λ1 +

2Λ2

b3/2

)
, (52a)

G0̄0̄ = −3σ
b
+
3

4

ḃ2

b2
− 3

σ

a
+
9

4

ȧḃ

ab
+

3

16

ȧ2

a2
− 3

16

b

a

(
E2 − σH2

)
= σ

(
Λ1 +

Λ2

b3/2

)
, (52b)

G1̄1̄ =
3

2
σ
b̈

b
− 3

b
+ σ

ä

a
− 1

a
+
3

2
σ
ȧḃ

ab
− σ

4

ȧ2

a2
+

1

16

b

a

(
σE2 −H2

)
=

(
Λ1 +

Λ2

b3/2

)
, (52c)

G2̄7̄ = 2f̈ + 5
ḃḟ

b
+
ȧḟ

a
− 4

σ

a
f

(
f 2 − 1

)
= 0, (52d)

E2 = Ea
i E

ai = ḟ 2, H2 = Ha
i H

ai =
(f 2 − 1)

2

a
, (52e)

GĀB̄ = RĀB̄ − (1/2)ηĀB̄R; i = 1, 2, 3 are space indices; the “electromagnetic” fields are

Ea
i = F a

0i, Ha
i =

1

2
εijkF

ajk (53)

F a
µν is the field strength tensor for the non-Abelian gauge group. The wormhole instanton of Ref.

[17] had a vanishing “electric” field. In contrast the solution studied here has both non-vanishing

“electric” and “magnetic” fields.
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As in the 5D case we assume a quantum fluctuation between Euclidean and Lorentzian modes

which can be described by a diagram similar to Eq. (25))

σ = +1 ←→ σ = −1
⇓

(R+)
5̄
5̄ ←→ (R−)5̄5̄

(G+)0̄0̄ ←→ (G−)0̄0̄

(G+)1̄1̄ ←→ (G−)1̄1̄

(G+)2̄7̄ ←→ (G−)2̄7̄

(54)

As in the 5D case we will estimate the probability for each pair of equations in (54).

Fluctuation (G+)2̄7̄ ←→ (G−)2̄7̄ This equation in the Euclidean mode is

2f̈ + 5
ḃḟ

b
+
ȧḟ

a
− 4

a
f

(
f 2 − 1

)
= 0 (55)

which has the instanton solution

ḟ =
1− f 2

√
a

, (56)

where

b = b0 = const (57)

Eq. (56) implies the instanton condition

Ea
i E

i
a = Ha

i H
i
a. (58)

In the Lorentzian mode

2f̈ + 5
ḃḟ

b
+
ȧḟ

a
+

4

a
f

(
f 2 − 1

)
= 0 (59)

and the instanton solution (58) is not a solution of (59), since the non-singular, instanton solution

exists only in the Euclidean case. Thus in terms of the AC criteria the Euclidean equation (55) is

simpler than Lorentzian equation (59), since it is equivalent to the first order differential equation

(56).

To a first, rough approximation we set the probability of the G2̄7̄ = 0 equation for the Euclidean

mode to p+
27 ≈ 1 and the Lorentzian mode to p−27 ≈ 0. The exact definition for each p±AB probability

is given in Eq. (28). If K+
27 � K−

27 we have p
+
27 ≈ 1 and p−27 ≈ 0.
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Fluctuation (R+)
5̄
5̄ ←→ (R−)5̄5̄ This equation in the Euclidean and Lorentzian modes is respec-

tively

−1

2

b̈

b
+
2

b
− 1

4

ḃ2

b2
− 3

4

ȧḃ

ab
+
1

8

b

a

(
E2 +H2

)
= −2

5

(
Λ1 +

2Λ2

b3/2

)
, (60a)

1

2

b̈

b
+
2

b
+
1

4

ḃ2

b2
+
3

4

ȧḃ

ab
+
1

8

b

a

(−E2 +H2
)
= −2

5

(
Λ1 +

2Λ2

b3/2

)
, (60b)

The Lorentzian mode equation is simpler because the two last terms annihilate as a consequence

of the instanton condition (58). To a first rough approximation we set the probability of the R5̄
5̄

equation for the Euclidean mode to p+
55 ≈ 0 and the Lorentzian mode to p−55 ≈ 1.

Fluctuation (G+)0̄0̄ ←→ (G−)0̄0̄ This equation in the Euclidean mode and Lorentzian mode is

respectively

−3

b
+
3

4

ḃ2

b2
− 3

a
+
9

4

ȧḃ

ab
+

3

16

ȧ2

a2
− 3

16

b

a

(
E2 −H2

)
=

(
Λ1 +

Λ2

b3/2

)
(61a)

3

b
+
3

4

ḃ2

b2
+

3

a
+
9

4

ȧḃ

ab
+

3

16

ȧ2

a2
− 3

16

b

a

(
E2 +H2

)
= −

(
Λ1 +

Λ2

b3/2

)
. (61b)

In this case because of the instanton condition (58) the Euclidean equation is simpler and therefore

in the first rough approximation we can set the probability of the G0̄0̄ = 0 equation for the

Euclidean mode to p+
00 ≈ 1 and the Lorentzian mode to p−00 ≈ 0.

Fluctuation (G+)1̄1̄ ←→ (G−)1̄1̄ This equation in the Euclidean mode and Lorentzian mode is

respectively

3

2

b̈

b
− 3

b
+
ä

a
− 1

a
+
3

2

ȧḃ

ab
− 1

4

ȧ2

a2
+

1

16

b

a

(
E2 −H2

)
=

(
Λ1 +

Λ2

b3/2

)
(62a)

−3

2

b̈

b
− 3

b
− ä

a
− 1

a
− 3

2

ȧḃ

ab
+
1

4

ȧ2

a2
− 1

16

b

a

(
E2 +H2

)
=

(
Λ1 +

Λ2

b3/2

)
. (62b)

As in the previous paragraph, as a consequence of the instanton condition (58), the Euclidean

mode is simpler. Therefore in the first rough approximation we set p+
11 ≈ 1 and p−11 ≈ 0.
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Mixed system of equations The mixed system of equations for the 7D spacetime with fluc-

tuating metric signature is

2f̈ + 5
ḃḟ

b
+
ȧḟ

a
− 4

a
f

(
f 2 − 1

)
= 0, (63a)

1

2

b̈

b
+
2

b
+
1

4

ḃ2

b2
+
3

4

ȧḃ

ab
+
1

8

b

a

(−E2 +H2
)

= −2

5

(
Λ1 +

2Λ2

b3/2

)
, (63b)

−3

b
+
3

4

ḃ2

b2
− 3

a
+
9

4

ȧḃ

ab
+

3

16

ȧ2

a2
− 3

16

b

a

(
E2 −H2

)
=

(
Λ1 +

Λ2

b3/2

)
, (63c)

3

2

b̈

b
− 3

b
+
ä

a
− 1

a
+
3

2

ȧḃ

ab
− 1

4

ȧ2

a2
+

1

16

b

a

(
E2 −H2

)
=

(
Λ1 +

Λ2

b3/2

)
. (63d)

The solution for this system is

a = t2, (64a)

f =
t2 − t20
t2 + t20

, (64b)

b = b0 = const, (64c)

Λ1 = − 1

b0
, (64d)

Λ2 = −2
√
b0. (64e)

The existence of this solution is somewhat surprising ! Normally in any dimension the Bianchi

identities are satisfied. Therefore some gravitational field equations are not independent of the

others. Ordinarily the superfluous equations are associated with initial conditions (i.e. Eq. (63c)

above). In our case the mixed system above comes from a model with a varying metric signature.

As a consequence the Bianchi identities are not correct and this system should be unsolvable.

Evidently the solution is a condition for the solvability of the mixed system which uniquely defines

the Λ-constants. If the solution in Eqs. (64) is unique then it must be absolutely stable.

The physical meaning of this solution is:

• Eq. (64a) implies a flat 4D Einstein spacetime that is not effected by matter.

• Eq. (64b) implies a Polyakov - ’t Hooft instanton gauge field configuration which is not

effected by gravity.

• Eq. (64c) implies a frozen ED.

• Eqs. (64d)-(64e) imply that the dynamical equations uniquely determine the Λ1,2-constants.



Entropy 2002, 4 20

It is interesting to note that the effective cosmological constant terms on the right hand side of

Eqs. (48a) (48c) (i.e. Λ1 and Λ2/b
3/2) are inversely proportional to the size of the ED, b0. Thus

in order to have a small cosmological constant term one needs to have a large ED. This could be

seen as supporting the large extra dimensions scenarios [14].

4.3 Physical applications of the solutions

4.3.1 Regular Universe

We can interpret the 5D and 7D solutions as a 4D Universe with fluctuating metric signature, filled

with a U(1) and SU(2) instanton gauge field and frozen ED. Surprisingly this Universe has only

one manifestation of gravity: the frozen ED that result from the fluctuating metric signature.

These model Universes are simple examples of possible effects connected with the dynamics of

non-differentiable variables.

4.3.2 Non-singular birth of the Universe

Various researchers (e.g. see Ref. [5]) have speculated about the quantum birth of the Universe

from “Nothing”. In light of this we can interpret a small piece (with linear size of the Planck

length ≈ lPl) of our model 5D/7D Universe as a quantum birth of the regular 4D Universe. In

contrast to other scenarios this origin has a metric signature trembling between Euclidean and

Lorentzian modes. Further we postulate that on a boundary of this spacetime there occurs

• a quantum transition to only one Lorentzian mode with a fixed metric signature.

• a splitting off the ED so that the metric on the fibres (hāb ) becomes a non-dynamical variable.

After this splitting off the linear size of the gauge group remains constant yielding ordinary

4D Einstein-Yang-Mills gravity.

These assumptions about a quantum transition from fluctuating metric signature (±1,+1, · · · ,+1)
to Lorentzian signature (−1,+1, · · · ,+1) and a splitting off of the ED should not be seen as

something extraordinary and new, but rather as an extension of our postulate about the quantum

birth of the regular 4D Universe, discussed above, with certain laws (gravitational equations

+ non-differentiable dynamic). The present case can be seen a quantum-stochastic change or

evolution of these laws (here this involves only the quantum transition of η00 and the splitting off

of the ED).

The probability for the quantum birth is

P ≈ Ne−S (65)
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where S is the Euclidean, dimensionless action, which should be S ≈ 1 in Planck units. The

factor N is of more interest, since it contains information about the topological structure of the

boundary of the origin.

The probability for the quantum-stochastic transition to Lorentzian mode and splitting off of

the ED should be determined by the AC of the final and initial states. Such a quantum-stochastic

transition can occur only if the final state with Lorentzian mode and splitting off of the ED is

simpler than the initial state with the fluctuating metric signature and dynamic ED.

5 Algorithmic complexity applied to non-cosmological systems

In the following three subsections we give examples of the application of algorithmic complexity

to various non-cosmological systems. First, we study a composite wormhole which consists of a

5D throat region connecting two Reissner-Nordström blackholes. Second, we estimate the entropy

of the simplest vacuum solution to 4D gravity: the Schwarzschild black hole. Finally, we look at

the path integral in gravity in terms of AC.

5.1 A composite 5D wormhole as the sum of Holographic principle and the AC idea

In this section we construct a composite wormhole by connecting two 4D Reissner-Nordström

solutions via a 5D wormhole-like throat. There are two holographic surfaces located between the

two Reissner-Nordström and 5D solution. For the Reissner-Nordström solution the surface is an

event horizons, and for the 5D solution the surface is a T−horizon (the properties of T−horizons
is discussed below). The main idea of this subsection is that such a composite object is simpler

in terms of AC than either component separately. This follows from the fact that the Reissner-

Nordström solution has a very complicated time dependent metric under the event horizon whereas

the 5D throat does not. In contrast, outside the event horizon the 4D Reissner-Nordström solutions

is simpler than the 5D throat.

We begin by considering the 5D wormhole-like metric

ds2 = ∆(r)dt2 − dr2 − a(r)dΩ2 +−r2
1∆(r)(dχ− ω(r)dt)2 (66)

χ is the extra, 5th coordinate. The metric is symmetric around r = 0. The 5D vacuum Einstein
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equations are

∆′′

∆
− ∆′2

∆2
+
a′∆′

a∆
+ r2

1∆
2ω′2 = 0, (67a)

ω′′ + 2ω′∆
′

∆
+ ω′a

′

a
= 0, (67b)

∆′2

∆2
+

4

a
− a′2

a2
− r2

1∆
2ω′2 = 0, (67c)

a′′ − 2 = 0 (67d)

These equations have the following solution [8] [9]

a = r2
0 + r2, (68a)

∆ =
q

2r0

r2 − r2
0

r2 + r2
0

, (68b)

ω =
4r2

0

r1q

r

r2 − r2
0

(68c)

Where r0 > 0 and q are constants.

The composite wormhole that we consider [10] consists of two 4D Reissner-Nordström black

holes which are connected by the wormhole-like solution of (68). One interpretation for this

composite wormhole is as a model of a quantum handle in the spacetime foam. The 5D and 4D

physical quantities must be “sewn” together by the following conditions:

1

∆0

− r2
1ω

2
0∆0 = Gtt (±r0) = gtt (r+) = 0, (69a)

a0 = Gθθ(±r0) = gθθ(r+) = r2
+, (69b)

G and g are 5D and 4D metric tensors respectively, and r+ is the event horizon for the Reissner

- Nordström solution. The quantities with the (0) subscript are evaluated at r = ±r0. Note that

Gtt(±r0) = 0 and ds2 = 0 on the surfaces r = ±r0. Hypersurface such as r = ±r0 have been

called T−horizons by Bronnikov [11].

Gχt can be connected to the 4D electric field by examining the 5D (Rχt = 0) and 4D Maxwell

equations [
a2

(
ω′∆2

)]′
= 0, (70a)(

r2Er

)′
= 0, (70b)

Er is the 4D electric field. These two equations are essentially Gauss’s law; they indicate that

some quantity multiplied by an area is conserved. In 4D this quantity is the 4D Maxwell electric
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field. We can naturally join this 4D, Reissner - Nordström electric field, ERN = e/r2
+, with the

Kaluza - Klein, “electrical” field, EKK = ω′∆2, on the event and T−horizons

ω′
0∆

2
0 =

q

a0

= EKK = ERN =
e

r2
+

. (71)

It is interesting to note that the event and T−horizons can be viewed as holographic surfaces

which can be used to define the whole spacetime [12] [13]. To show this we consider the 4D and

5D metrics in turn. The metric for the Reissner-Nordström spacetime is

ds2 = δ(r)dt2 − dr2

δ(r)
− r2

(
dθ2 + sin2 θdϕ2

)
, (72)

and the electromagnetic potential is

Aµ = {ω(r), 0, 0, 0}. (73)

The Einstein - Maxwell equations are

−δ′

r
+
1− δ

r2
=

κ

2
ω′2, (74)

−δ′′

2
− δ′

r
= −κ

2
ω′2, (75)

ω′ =
q

r2
. (76)

Eq. (75) is a consequence of (74) and (76). For the Reissner - Nordström blackhole the event

horizon is defined by the condition δ(rg) = 0, where rg is the radius of the event horizon. Hence

in this case we see that on the event horizon

δ′g =
1

rg
− κ

2
rgω

′
g
2
, (77)

here (g) means that the corresponding value is evaluated on the event horizon. Thus the Einstein

equation, Eq. (74), is a first-order differential equation in the spacetime outside the horizon

(r ≥ rg). Condition (77) tells us that the derivative of the metric on the event horizon is expressed

through the value of the metric on the event horizon. This shows that the Holographic principle

applies in this case since the spacetime can be determined from information on some surface (the

event horizon).

Now we consider the 5D WH-like metric (66) with field equations (67). On the T−horizon
∆(±r0) = 0, and therefore from Eq. (74) we have

∆′
0 = ± q

a0

= ± q

2r2
0

. (78)
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The signs (±) correspond, respectively, to (r = ∓r0) where the T−horizons are located. This also
indicates that the Holographic principle applies to the T−horizons.

¿From an algorithmic point of view we can now argue that such a composite structure is more

likely to occur than either the 4D Reissner-Nordström or 5D wormhole solution separately. The

AC of the interior, throat region of the composite system is calculated with one algorithm (the

5D Einstein vacuum equations) while the AC of the exterior region is calculated with another

algorithm (the 4D Einstein-Maxwell equations). Because the AC of the interior region can be

calculated from the Holographic principle using the T -horizon, its AC is simpler than if it had

been calculated from the 4D Einstein-Maxwell equations algorithm especially since the metric

under the event horizon is time dependent. The AC of the exterior region can be calculated from

the Holographic principle using the event horizon, with the 4D Einstein-Maxwell equations as

the algorithm. Thus the exterior regions AC is simpler if it is calculated using the 4D Einstein-

Maxwell equations rather than the 5D vacuum Einstein equations. Applying the Holographic

principle and ideas of AC we have found that the composite wormhole has a lower AC than either

solution separately. Such a composite wormhole is only expected to be important at the Planck

scale.

5.2 The AC of the Schwarzschild black hole.

Bekenstein [15] and Hawking [16] have shown that an entropy can be associated with a black

hole. The entropy is connected the area of the black hole’s event horizon. Usually the concept of

entropy arises in statistical systems where one has a great number of particles. However, in the

case of the entropy of a black hole one associates an entropy with a single object (i.e. the black

hole). In some sense AC is a concept similar to entropy. In this section we will estimate the AC

for a Schwarzschild black hole.

For some gravitational field configuration the AC is determined, according to the definition (2),

by the smallest algorithm which yields this configuration (i.e. which yields the metric). Thus

the Einstein equations are the algorithm for calculating the gravitational field configuration. In

order to calculate the metric for the whole spacetime one must have, in addition to Einstein’s field

equations, some initial and/or boundary conditions.

In order to estimate the AC for the Schwarzschild black hole we write the metric in the following

form:

ds2 = dt2 − eλ(t,R)dR2 − r2(t, R)
(
dθ2 + sin2 θdφ2

)
, (79)
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for which the Einstein’s equations are:

−e−λr′2 + 2rr̈ + ṙ2 + 1 = 0, (80a)

−e−λ

r
(2r′′ − r′λ′) +

ṙλ̇

t
+ λ̈+

λ̇2

2
+
2r̈

r
= 0, (80b)

−e−λ
r2

(
2rr′′ + r′2 − rr′λ′

)
+

1

r2

(
rȧλ̇+ ȧ2 + 1

)
= 0, (80c)

2ṙ′ − λ̇r′ = 0, (80d)

where (′) and ( ˙ ) are respectively derivatives of t and r. We take the t = 0 section as a

Cauchy hypersurface. The initial data on this hypersurface then defines the metric on the whole

Schwarzschild spacetime. However, because of the Holography principle the amount of initial data

needed is smaller than one would naively expect. ¿From Eq.(80c) one sees that for t = 0 the first

time derivative of all components of the metric tensor are zero. Therefore the initial data must

satisfy:

2rr′′ + r′2 − rr′λ′ − eλ = 0. (81)

In order to solve Eq. (81) on the surface t = 0 we take boundary conditions of the following form:

r′(R = 0, t = 0) = 0, r(R = 0, t = 0) = rg, (82)

where rg is radius at the event horizon. Thus the metric on the whole Schwarzschild spacetime is

defined by the value of the Gθθ component of metric at the origin. The AC for the Schwarzschild

metrics can be written as the sum of two quantities. The first quantity is connected with some

Lorentz-invariant number which is related to the event horizon (the surface t = 0, R = 0). The

second quantity is connected with the Einstein equations. We take the first quantity to be related

to the area of the event horizon (4πr2
g). We will divide this by 4πl2Pl in order to obtain a dimen-

sionless number. The second quantity is taken as the length of the program for calculating the

metric. Thus the AC of the Schwarzschild black hole is given by the following expression :

K ≈ L

[(
rg
lPl

)2
]
+ LEinstein, (83)

L[(rg/lPl)
2] is the program length for the definition of the dimensionless number r2

g/l
2
Pl which

is determined from some universal machine. LEinstein is the program length of the solution of

Einstein’s differential equations using some universal machine, for example, the Turing machine.

Finding an exact expression for the length, L, for determining the number (rg/lPl)
2 is a difficult

problem. As a rough approximation we assume that each Planck sized cell, l3Pl can contain one
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bit so that L[(rg/lpl)
2] ≈ (rg/lpl)

2. With this approximation we can compare the first term of Eq.

(83) with the Bekenstein-Hawking equation

S = 4πr2
g . (84)

Thus there appears to be some relation between these two quantities.

5.3 Algorithmic complexity and the path integral

In this section we will propose an alternative method of calculating the path integral in quantum

gravity. The basic idea is to replace the action (I[g]) in the path integral by the AC (K[g]). It is

important to note that K[g] is a positive functional of g. Under this replacement of the action by

the AC the path integral becomes∫
D[g]e−i(I[g]+

∫
gµνJµνdx) →

∫
D[g]e−i(K[g]+

∫
gµνJµνdx) = eiZ[Jµν ], (85)

where gµν is some arbitrary metric; K[g] is the AC for the metric g; Z[J ] is a generating functional

for quantum gravity.

The most complicated gravitational fields (in terms of AC) are those metrics which satisfy

or are the result of no field equations. Such configurations are essentially random fields with

no algorithm connecting the values of the metric at neighboring points in the spacetime. Thus

according to Kolmogorov’s definition of AC such random metrics would have a large AC. Metrics

which are the solutions to some gravity equations (Einstein’s equations, R2 - theory, Euclidean

theory, etc.) have a smaller AC in comparison with random metrics. In this sense one can take

gravitational instantons as the simplest gravitational objects: they are symmetrical spaces, with

the corresponding metrics possessing the same symmetry group. One way of understanding why

instantons have a small AC is that they can be determined via their topological charges rather

than by the field equations. This greatly reduces the AC of such configurations.

Thus, as a first approximation the path integral in quantum gravity can be defined as the sum

over the gravitational instantons. The next order of approximation would include the contributions

from metrics which are solutions of Einstein’s equations, R2 - theories, multidimensional theories

etc. The larger the AC of a given configuration the larger the order of approximation at which

it contributes to the path integral. An interesting point is that for quantum gravity based on

the integral (85) the Universe can contain different regions where different gravitational equations

hold. An example of this is the composite wormhole discussed above.
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6 Conclusions

In this paper we have considered the possibility that Nature can have changing the physical laws.

We have postulated that the dynamics of this changing may be connected with the AC of a

particular set of laws. This leads to the proposition that an object with a smaller AC has a greater

probability to fluctuate into existence.

Some physical consequences that can results from this hypothesized fluctuation of physical laws

at the Planck scale are: the birth of the Universe with a fluctuating metric signature; the transition

from a fluctuating metric signature to Lorentzian one; “frozen” extra dimensions as a consequence

of this transition; quantum handles in the spacetime foam as regions with multidimensional gravity

and so on.
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A Gravitational equations

We start from the Lagrangian adopted for the vacuum gravitational theory on the principal bundle

with the structural group G (dim(G) = N). G is the gauge group associated with the EDs

S =

∫
(R + 2Λ1)

√
|G|d4+Nx+

∫
(2Λ′

2)
√
|g|d4x (86)

where R is the Ricci scalar for the total space; G and g are the determinant of the metric on the

total space and base of the principal bundle respectively, Λ1,Λ
′
2 are the MD and 4D λ-constants.

This Lagrangian is correct if the coordinate transformations conserve the topological structure of

the total space (i.e. does not mix the fibres)

y′a = y′a
(
yb

)
+ fa (xα) , (87a)

x′µ = x′µ (xα) . (87b)

The metric on the total space can be written as

ds2
(MD) = b

(
ωā + hāµdx

µ
)
(ωā + hāµdx

µ) + (hµ̄αdx
α)

(
hµ̄βdx

β
)

(88a)

ωā = eābdy
b hāb = eāb (88b)

where xµ and yb are the coordinates along the base and fibres respectively; (Greek indices)=

0, 1, 2, 3 and (Latin indices)= 5, 6, · · · , N ; Ā = ā, µ̄ is the viel-bein index; ηĀB̄ = {±1,±1, · · · ,±1}
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is the signature of the MD metric; ωā are the 1-forms satisfying to the structural equations

dωā = f āb̄c̄ω
b̄ ∧ ωc̄ (89)

where f ā
b̄c̄
are the structural constants for the gauge group G.

The independent degrees of freedom for gravity on the principal bundle with the structural

group G is vier-bein hµ̄ν (x
α), gauge potential hāν(x

α) and scalar field b(xα) [4]. All functions depend

only on the point xµ on the base of the principal bundle as a consequence of the symmetry of the

fibres.

Varying the action (86) with respect to hµ̄ν (x
α) leads to∫ (

Rµ
ν̄ −

1

2
hµν̄R− Λ1h

µ
ν̄

) √
|γ|dNy − Λ′

2h
µ
ν̄ = 0 (90)

where |γ| = dethāb = bN det eāb is the volume element on the fibre and
√|G| = √|g|√|γ| is a

consequence of the following structure of the MD metric

h = hĀB =

(
hāb hāµ
0 hν̄µ

)
, (91a)

h−1 = hBĀ =

(
hbā −hbāhāνhνν̄
0 hµν̄

)
, (91b)

hbā = (hāb )
−1

hµν̄ =
(
hν̄µ

)−1
. (91c)

An integration over the EDs can be easily performed since no functions depend on ya∫
(· · · )

√
|γ|dNy = (· · · )

∫ √
|γ|dNy = (· · · ) bN/2VG (92)

where VG =
∫ √

det(eāb )d
Ny is the volume of the gauge group G. In this case Eq. (90) becomes

Rµ
ν̄ −

1

2
hµν̄R =

(
Λ1 +

Λ2

bN/2

)
hµν̄ (93)

where Λ′
2 = VGΛ2.

Varying with respect to hāµ(x
α) leads to

Rµ
ā = 0 (94)

as hāµ does not consists in det(hĀB) = det(hāb ) det(h
µ̄
ν ).
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Varying with respect to b(xα) leads to

δS

δb
=

∑
ā,b

δhāb
δb

δS

δhāb
= hāA

(
RA
ā − 1

2
hAā − Λ1h

A
ā

)
(95)

here we used Eq. (93) and hµā =. This equation we write in the form

Rā
ā −

N

2
R = NΛ1 (96)

¿From Eq. (93) we have

hν̄µ

[
Rµ
ν̄ −

1

2
hµν̄R−

(
Λ1 +

Λ2

bN/2

)
hµν̄R

]
= hν̄µ [· · · ] + hν̄a [· · · ] =

hν̄A

[
RA
ν̄ − 1

2
hAν̄ R−

(
Λ1 +

Λ2

bN/2

)
hAν̄ R

]
= Rν̄

ν̄ − 2R− 4

(
Λ1 +

Λ2

bN/2

)
= 0 (97a)

Adding Eqs. (97a) and (96) we find

R = RĀ
Ā = − 2

N + 2

[
(N + 4)Λ1 +

4Λ2

bN/2

]
(98)

Finally we have

Rā
ā = − 2N

N + 2

(
Λ1 +

Λ2

bN/2

)
, (99a)

Rµ
ā = 0 (99b)

Rµ
ν̄ −

1

2
hµν̄R =

(
Λ1 +

Λ2

bN/2

)
hµν̄ (99c)

This equation system can be rewritten as

Rā
ā = − 2N

N + 2

(
Λ1 +

Λ2

bN/2

)
, (100a)

Rµ̄ā = 0 (100b)

Rµ̄ν̄ − 1

2
ηµ̄ν̄R =

(
Λ1 +

Λ2

bN/2

)
ηµ̄ν̄ (100c)

here we have used hν̄b = 0.
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