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timelike symmetry of a corresponding \optical" metric. We demonstrate that this

kind of symmetry is compatible with the existence of a negative viscous pressure and,

consequently, with cosmological entropy production. We establish an exactly solvable

model according to which the viscous pressure is a consequence of a self-interacting

one-particle force which is self-consistently exerted on the microscopic particles of a

relativistic gas. Furthermore, we show that a suÆciently high decay rate of the refrac-

tion index of an ultrarelativistic cosmic medium results in an inationary expansion of

the universe.
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1 Introduction

Standard relativistic cosmology relies on the cosmological principle according to which the Universe

is spatially homogeneous and isotropic on suÆciently large scales. This symmetry requirement

largely �xes the spacetime metric which may be written in the Robertson-Walker form (see, e.g.,

[1])

ds2 = �dt2 + a
2 (t)

�
dr2

1� kr2
+ r

2d�2 + r
2 sin2

�d�2

�
: (1)

The quantity k can take the values k = 0;�1 and characterizes the three possible cases of the

spatial curvature. Only one unknown function, the scale factor a, has to be determined by the

gravitational �eld equations.

For many purposes the cosmic substratum may be modeled as a uid. So called fundamental

observers are observers which are at rest with respect to the mean motion of the cosmic uid. The

symmetry requirements of the cosmological principle restrict the corresponding e�ective energy

momentum tensor T ik
(e� ) to be of the structure

T
ik
(e� ) = �u

i
u
k + Ph

ik
: (2)

Here, � is the energy density measured by an observer comoving with the uid four-velocity ui

which is normalized by uaua = �1. The quantity hik � gik + uiuk is the spatial projection tensor

with hiku
k = 0. The total pressure P is the sum

P = p+ � (3)

of an equilibrium part p > 0 and a non-equilibrium part � � 0 which is connected with entropy

production. A perfect uid is characterized by � = 0. A scalar, viscous pressure is the only

entropy producing phenomenon which is compatible with the symmetry requirements of the cos-

mological principle. Neither heat ows nor shear stresses are reconcilable with the assumption

of spatial homogeneity and isotropy. This demonstrates that symmetries are generally connected

with conditions on the properties and on the dynamics of the matter which generates this space-

time.

Spacetime symmetries are invariantly characterized by symmetry groups. Isometries of a space-

time are described by Killing vectors (KVs). To characterize spacetimes that admit a conformal

group one uses conformal Killing vectors (CKVs). A CKV �
a of the metric gik is de�ned by

$�gik � �i;k + �k;i = 2� (x) gik ; (4)

where $� is the Lie derivative along the vector �eld �
i. The semicolon denotes the covariant deriv-

ative with respect to gik. For the special case � = 0 the vector � is a KV. Maximally symmetric



Entropy 2002 , 4 51

spaces have the maximally possible number of KVs. The Minkowski space, e.g., has 10 KVs cor-

responding to its well-known 10 symmetries and conservation laws. According to the cosmological

principle, the four-dimensional spacetime contains maximally symmetric three-dimensional sub-

spaces of constant curvature, corresponding to the spatial symmetries of homogeneity and isotropy,

characterized by spacelike KVs. Timelike symmetries are not generally expected to exist in the

expanding universe since a timelike KV characterizes a stationary spacetime. However, it is known

[2] that under certain circumstances a conformal, timelike symmetry is possible in a Friedmann-

Lemâ�tre-Robertson-Walker (FLRW) universe. The existence of timelike or conformal, timelike

KVs is closely related to \global" equilibrium properties of perfect uids. For a gaseous uid

system of particles with mass m > 0, the global equilibrium condition can only be satis�ed if the

quantity �a � u
a
=T , where T is the uid temperature, is a (timelike) KV, equivalent to a sta-

tionary spacetime. For massless particles on the other hand, the condition for global equilibrium

requires ua=T to be a CKV. A CKV is compatible with the cosmological expansion. Macroscopi-

cally, a gas of massless particles obeys the equation of state for radiation, p = �=3. Only for this

perfect uid equation of state a global equilibrium is possible in the expanding universe. (The

fact that there exists an equilibrium also in the non-relativistic limit is not relevant in this paper.)

Any deviation from p = �=3 will destroy the conformal symmetry. In other words, the conformal

symmetry singles out perfect uids with the equation of state for radiation. Apparently, this also

implies that a conformal symmetry is incompatible with a non-vanishing entropy production.

The purpose of the present paper is to show that, contrary to this expectation, entropy produc-

tion due to a scalar viscous pressure may well be consistent with a conformal, timelike symmetry,

albeit not a symmetry of the spacetime metric itself but the symmetry of an associated \optical"

metric, characterized by a time dependent refraction index. The introduction of an e�ective re-

fraction index of the medium as a new scalar parameter to characterize the cosmological evolution

was shown to be useful in the context of cosmological particle production [3]. Here we explore the

role of this parameter in more detail and for a di�erent kind of non-equilibrium states for which

the (not necessarily small) deviations from equilibrium are due to an increase in the entropy per

particle, whereas the number of particles is preserved. In particular, we demonstrate that a time

variation of the refraction index may take into account such kind of entropy producing deviations

from the perfect uid behavior. The standard global equilibrium for p = �=3 is then recovered as

the limiting case for a refraction index unity. In this limit the optical metric coincides with the

spacetime metric. Moreover, we show that a time dependent refraction index may be regarded as

a consequence of the action of self-interacting forces on the microscopic constituents of an ultra-

relativistic cosmic medium. Although entropy is produced, the microscopic particles are governed

by an equilibrium distribution function. The deviations from standard equilibrium are mapped

onto a non-zero, time varying chemical potential which is related to the refraction index in a
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simple way. Furthermore, we investigate the conditions under which the corresponding viscous

pressure is suÆciently large to violate the strong energy condition and discuss simple examples

for an inationary evolution of the early universe.

The paper is organized as follows. In section 2 we summarize basic thermodynamic relations

for a bulk viscous uid. Section 3 presents the conformal symmetry concept of an optical metric

and clari�es its relation to the production of entropy within the medium. Section 4 is devoted

to a microscopic derivation of the uid dynamics from relativistic gas theory in terms of a self-

interacting one-particle force. Cosmological applications, in particular the conditions for power-

law ination, are discussed in section 5, while section 6 sums up our conclusions on the relation

between cosmological entropy production and the conformal symmetry of an optical metric. Units

have been chosen so that c = kB = h = 1.

2 Basic thermodynamics

We assume the cosmic substratum to be modeled by a homogeneous and isotropic uid with the

energy-momentum tensor (2) and a particle number ow vector N i, given by

N
i = nu

i
; (5)

where n is the particle number density. The conservation laws for particle number and energy are

N
i
;i = 0 ) _n + 3Hn = 0 (6)

and

uiT
ik
(e� );k = 0 ) _�+ 3H (� + p+�) = 0 ; (7)

respectively, where H � _a=a is the Hubble rate and _n � n;iu
i etc. In the following we recall basic

relations for the evolution of the relevant thermodynamical quantities. With the help of the Gibbs

equation (see, e.g., [4])

Tds = d
�

n
+ pd

1

n
; (8)

where s is the entropy per particle and T is the equilibrium temperature, we obtain

nT _s = _�� (�+ p)
_n

n
: (9)

Using here the conservation laws (6) and (7) yields

nT _s = �3H� : (10)
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Since n, T and H are positive, the entropy per particle increases for a negative viscous pressure

�. From the Gibbs-Duhem relation (see, e.g., [4])

dp = (� + p)
dT

T
+ nTd

�
�

T

�
; (11)

where � is the chemical potential, it follows that

�
�

T

��
=

_p

nT
�
�+ p

nT

_T

T
: (12)

We assume equations of state in the general form

p = p (n; T ) ; � = � (n; T ) ; (13)

i.e., particle number density and temperature are taken as the independent thermodynamical

variables. Di�erentiating the latter relation and using the balances (6) and (7) provides us with

an evolution law for the temperature,

_T

T
= �3H�

@p

@�
; (14)

where

� � 1�
_s

3H

n

@p=@T
(15)

and

@p

@�
�

(@p=@T )n
(@�=@T )n

;
@�

@T
�

�
@�

@T

�
n

:

Moreover, we have used the general relation

@�

@n
=
� + p

n
�
T

n

@p

@T
;

which follows from the fact that the entropy is a state function, i.e., @2
s=@n@T = @

2
s=@T@n. For

the special case of a perfect uid, i.e., _s = 0, and for ultrarelativistic matter, i.e., p = �=3, the

temperature law (14) speci�es to

_T

T
= �

_a

a
) aT = const

�
_s = 0; p =

�

3

�
; (16)

which is the well-known behavior T / a
�1 for the radiation temperature in an expanding universe.



Entropy 2002 , 4 54

With the help of Eqs. (13), (6), (9) and (14), the time evolution of the pressure may generally

be written as

_p = c
2
s _�� 3H�

�
@p

@�
� c

2
s

�
; (17)

where

c
2
s =

�
@p

@�

�
ad

=
n

�+ p

@p

@n
+

T

� + p

(@p=@T )
2

@�=@T
(18)

is the square of the adiabatic sound velocity cs [see, e.g. [5]]. Using Eq. (17) in Eq. (12) yields

�
�

T

��
= 3H

�
� + p

nT

�
@p

@�
� c

2
s

�
�

�

nT

�
@p

@�
�

� + p

T@�=@T

��
: (19)

The relations so far are completely general. Below we shall use them in connection with a rela-

tivistic Maxwell-Boltzmann gas with internal self-interactions. It is expedient to emphasize that

a viscous pressure � according to (19) inuences the time behavior of the quantity �=T . Lateron

we shall be interested in a special case in which this non-equilibrium term is the only \source" for

(�=T )
�
.

3 Conformal symmetry of optical metrics

Given a spacetime metric gik and an isotropic medium with a four-velocity ua and a refraction

index nr, one introduces the \optical" metric �gik by [6]

�gik � gik +

�
1�

1

n2
r

�
uiuk = hik �

1

n2
r

uiuk : (20)

Optical metrics are known to be helpful in simplifying the equations of light propagation in

isotropic, refractive media. With respect to a metric �gik light propagates as in vacuum. Here we

are interested in the role of optical metrics in relativistic gas dynamics. Guided by the connec-

tion between spacetime symmetries and equilibrium properties, outlined in the introduction, our

starting point is to assume �a � u
a
=T to be a conformal Killing vector of the optical metric, i.e.,

$��gik = 2 �gik : (21)

The main objective of this paper is to explore the uid dynamics which is compatible with the

latter requirement. In particular, we are interested in the question to what extent the CKV
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condition (21) admits the production of entropy in a cosmological context. In a �rst step, using

the relations

$�

u
i

T
= 0 ; $�

ui

T
=
u
a

T
$�gia ; $�S =

_S

T
;

the last one being valid for any scalar S, the left-hand side of Eq. (21) is written as

$��gik = $�gik + 2
uiuk

T

"�
1�

1

n2
r

�
_T

T
+

_nr

n3
r

#
+ 2

�
1�

1

n2
r

�
uku

a$�gia : (22)

In a second step we �nd an explicit expression for the �rst term on the right-hand side of Eq.

(22). As any symmetric tensor, the Lie derivative of gik may be decomposed into contributions

parallel and perpendicular to the four-velocity. For homogeneous and isotropic media such a split

amounts to

$�gik �
�
ui

T

�
;k
+
�
uk

T

�
;i
=

2

T

_a

a
gik +

2

T

 
_T

T
+

_a

a

!
uiuk ; (23)

where we have used that in a FLRW universe ui;k = Hh
i
k ) u

i
;i = 3_a=a. Combining Eqs. (22) and

(23) we obtain

$��gik =
2

T

_a

a
hik + 2

uiuk

n2
rT

 
_nr

nr
+

_T

T

!
(24)

for the left-hand side of Eq. (21). Together with the de�nition (20) one �nds

 =
1

T

_a

a

for the conformal factor in (21) and

_nr

nr
= �

"
_a

a
+

_T

T

#
(25)

for the change rate of the refraction index. The last relation implies

nr /
1

aT
;

i.e., all deviations from aT = const (pure radiation, p = �=3, cf. Eq. (16)) have been mapped

onto the time-varying refraction index nr. This demonstrates explicitly, that nr is indeed a useful
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quantity to characterize a uid dynamics with a temperature evolution that is di�erent from that

for _s = 0 and p = �=3.

Inserting now the general temperature law (14) into Eq. (25), we obtain

_nr

nr
= �

�
1� 3

@p

@�
�

�
_a

a
: (26)

The variable � depends on _s according to Eq. (15). Consequently, Eq. (26) establishes a relation

between the rate of change of the refraction index and the expansion rate for a viscous cosmological

uid under the condition of a conformal symmetry of the optical metric �gik. This implies the

statement that a conformal symmetry (21) does not contradict a production of entropy. To obtain

a better understanding of this feature, we present a derivation for such kind of uid dynamics for

a relativistic gas in the following section.

4 Kinetic theory

The particles of a relativistic gas are assumed to move under the inuence of a four-force F i

in between elastic binary collisions, described by Boltzmann's collision integral C [f; f ]. The

equations of motion of the gas particles are

dxi

d
= p

i
;

Dpi

d
= F

i
; (27)

where  is a parameter along the particle worldline which for massive particles may be related

to the proper time � by  = �=m. Since the particle four-momenta are normalized according to

p
i
pi = �m

2, the force F i has to satisfy the relation piF
i = 0. The corresponding equation for the

invariant one-particle distribution function f = f (x (�) ; p (�)) may be written as (cf. [4, 7, 8, 9])

L [f ] +
@(F i

f)

@pi
= C[f; f ] ; (28)

where

L [f ] � p
i @f

@xi
� �k

ilp
i
p
l @f

@pk
(29)

is the Liouville operator. It will turn out that a suitably chosen e�ective one-particle force F i may

give rise to a time-dependent refraction index on the macroscopic level. The particle number ow

4-vector N i and the energy momentum tensor T ik are de�ned in a standard way (see, e.g., [7, 8])

as

N
i =

Z
dPpif (x; p) , T

ik =

Z
dPpipkf (x; p) . (30)
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Since we shall identify the particle number ow in (30) with the corresponding quantity in Eq. (5),

we have used here the same symbol, although these expressions may not coincide in the general

case. The integrals in the de�nitions (30) and in the following are integrals over the entire mass

shell pipi = �m
2. The entropy ow vector Sa is given by [7, 8]

S
a = �

Z
p
a [f ln f � f ] dP , (31)

where we have restricted ourselves to the case of classical Maxwell-Boltzmann particles. Using

the general relationship [9]�Z
p
a1 ::::p

anp
b
fdP

�
;b

=

Z
p
a1 :::p

anL [f ] dP ; (32)

we �nd for the balance equations

N
a
;a =

Z
dP

�
C [f; f ]�

@(fF i)

@pi

�
= 0 (33)

and

T
ak
;k =

Z
dPpa

�
C [f; f ]�

@(fF i)

@pi

�
=

Z
dPfF a

: (34)

In particular, the energy balance becomes

uaT
ak
;k =

Z
dPfuaF

a
: (35)

The entropy production density is a sum of two terms:

S
i
;i = �c + �F : (36)

Here,

�c � �

Z
dPC [f; f ] ln f (37)

is the familiar contribution of Boltzmann's collision integral, while

�F � �

Z
dPF i @f

@pi
=

Z
dPf

@F
i

@pi
(38)

takes into account an entropy production due to the action of the force F i. Since Boltzmann's H

theorem guarantees �c � 0, we have

S
i
;i � �F � 0 : (39)
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We restrict ourselves to the class of forces which admit solutions of Eq. (28) that are of the type

of J�uttner's distribution function

f
0 (x; p) = exp [� + �ap

a] ; (40)

where � = � (x) and �a (x) is timelike. For f ! f
0 the collision integral vanishes, i.e., C [f 0

; f
0] =

0. With f replaced by f 0 in the de�nitions (30) and (31), the quantities Na, T ab and Sa may be

split with respect to the unique four-velocity ua according to

N
a = nu

a , T
ab = �u

a
u
b + ph

ab , S
a = nsu

a . (41)

Here we have identi�ed the general uid quantities of the previous section with those following

from the dynamics of a Maxwell-Boltzmann gas. Note that the energy-momentum tensor T ik in

Eqs. (30) and (41) does not coincide with the tensor T ik
(e� ) introduced in Eq. (2). The exact

integral expressions for n, �, p are given, e.g., in [4]). The entropy per particle s is

s =
�+ p

nT
�
�

T
: (42)

For f ! f
0 the energy balance (35) takes the form

_� + 3H (� + p) = �

Z
dPf 0

uaF
a
: (43)

The entropy production density becomes

S
a
;a = �F = n _s = �

Z
dP�iF

i
: (44)

With the identi�cation �i = ui=T we may write

n _s = �3H
�

T
; (45)

where we have introduced the quantity � by

3H� �

Z
dPuiF

i
: (46)

Notice that we have identi�ed this kinetic theory based viscous pressure with the corresponding

phenomenological quantity of the previous sections. Consequently, the energy balance (43) takes

the form (7). This implies the conclusion that a non-vanishing viscous pressure may generally

be compatible with an equilibrium-type distribution function, provided, the gas particles move in a

suitable force �eld. Conventionally, a bulk viscous pressure arises as a consequence of deviations
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from an equilibrium distribution. Wheras these deviations have to be small in standard non-

equilibrium theories, a corresponding restriction is absent in the present case.

Substituting the distribution (40) into Eq. (28) we obtain

p
a
�;a + �(a;b)p

a
p
b = ��iF

i �
@F

i

@pi
. (47)

To make further progress, we have to chose speci�c force types. The most general force compatible

with the cosmological principle is [10]

F
i = �F

�
Ep

i + p
a
pau

i
�
; (48)

where E � �uip
i is the particle energy measured by a comoving observer. Generally, F may still

depend on E. With

@F
i

@pi
= �

@F

@pi

�
Ep

i + p
a
pau

i
�
� F

�
�uip

i + 4E + 2piu
i
�

=
@F

@E

�
m

2 � E
2
�
� 3FE ; (49)

the condition (47) then speci�es to

p
a
�;a + �(a;b)p

a
p
b = �3Fuap

a +

�
@F

@E
�
F

T

�
habp

a
p
b . (50)

Now we restrict ourselves to the case @F=@E = 0 and consider massless particles pipi = �m
2 = 0,

which macroscopically corresponds to an equation of state p = �=3. As a consequence we �nd

�;a = �3Fua ) _� = 3F (51)

and

�(a;b) �
1

2

��
ua

T

�
;b
+
�
ub

T

�
;a

�
=
H

T
gab �

F

T
uaub : (52)

Combining the relations (51) and (52), we obtain

�(a;b) =
1

2
$�gab =

H

T
gab �

_�

3T
uaub : (53)

Using the equation of state p = nT = �=3 in Eq. (12) and identifying � = �=T , we have

�
�

T

��
= _� = �3

 
_a

a
+

_T

T

!
: (54)
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In the standard case (without a force contribution) one has � = const (= 0) and recovers the

familiar cooling rate _T=T = � _a=a for a relativistic uid. We conclude that the force �eld manifests

itself in the existence of a non-vanishing, time dependent chemical potential. From (54) and (53)

we recover

Tu
a
u
b
�(a;b) =

T

2
u
a
u
b$�gab =

_T

T
; (55)

which shows the consistency of our approach. Comparing (53) with (23) we obtain

_T

T
+

_a

a
= �

_�

3
)

_nr

nr
=

_�

3
= F ; (56)

i.e., with the identi�cation _nr=nr = _�=3 we recover the conformal symmetry relation (25). More-

over, we have traced back the time variation of the refraction index to a self-consistent interaction

within the system. From the moment equation (34) it follows that

T
ak
;k = FukT

ak ) uaT
ak
;k = � _�� 3H (�+ p) = F� : (57)

Since � = 3nT we reproduce Eq. (7) with

3H� = 3nTF ) F =
�

nT
H : (58)

This is consistent with (46) and (48). The quantity F depends on macroscopic uid quantities.

According to (27) and (48), these macroscopic quantities determine the motion of the individual

microscopic particles which themselves are the constituents of the macroscopic medium. Conse-

quently, the force F i describes a self-interaction of the uid. This self-interaction is accompanied

by a time variation of the chemical potential, equivalent to a time dependent refraction index.

From the entropy production density (44) we �nd

S
a
;a = �

F

T
uaubT

ab = �
3H�

T
= n _s : (59)

This means

_s = �
3H�

nT
; (60)

consistent with (45) and the phenomenological relation (10). The ratio _s= (3H) = ��= (nT ) which

characterizes the quantity � is just the ratio between non-equilibrium pressure � and equilibrium

pressure p = nT . Via Eqs. (51) and (58), relation (60) also implies�
�

T

��
=

3H�

nT
= � _s = 3

_nr

nr
= 3F : (61)
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With the �rst equation in (61) we have recovered the special case of Eq. (19) for p = nT , � = 3nT ,

c
2
s = @p=@� = 1=3. Furthermore, we have precised, how a decaying refraction index generates a

negative contribution to the pressure, equivalent to positive entropy production. Integrating the

part (�=T )
�
= 3 _nr=nr of Eq. (61) by assuming �=T ! 0 for nr ! 1 (standard radiation with

� = 0 and nr = 1), we �nd

exp
h
�

T

i
= n

3
r : (62)

Consequently, the distribution function (40) can be written as

f
0 = exp

h
�

T

i
exp

�
�
E

T

�
= n

3
r exp

�
�
E

T

�
; (63)

i.e., the dissipative force gives rise to a time varying factor n3
r in the equilibrium-type distribution

function.

In order to check the consistency of the entire framework, we may now use the force (48)

with (58) in the microscopic equations of motion in Eq. (27). Contracting the latter with the

macroscopic four-velocity results in

D (uip
i)

d
= uiF

i + ui;kp
i
p
k
; (64)

where we have used that

Dui

d
= u

i
;np

n
:

Since ui;k = Hhik for the homogeneous, isotropic case under consideration here and with Eq. (48)

for m = 0 and (58) this reduces to

�
dE

d
=

�
1 +

�

nT

�
HE

2
: (65)

Since dE=d = E;mp
m = E _E [cf. Eq. (27)] we obtain �nally

�
_E

E
=

�
1 +

�

nT

�
_a

a
)

_E

E
=

_T

T
: (66)

It follows that the distribution function (63) is indeed maintained for particles under the action

of the force F i, which proves the consistency of our approach. While the second factor in the

expression (63) for f 0 remains constant, the �rst one changes according to Eq. (61).
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5 Conformal symmetric universe

Now we combine the non-equilibrium uid dynamics of the previous section with the gravitational

�eld equations. In a homogeneous and isotropic, spatially at universe Einstein's equations reduce

to

8�G� = 3H2
; _H = �4�G (� + p+�) : (67)

The relation between � and _nr in Eq. (61) may be solved with respect to the non-equilibrium

pressure,

� =
1

3

_nr=nr

_a=a
� : (68)

For �+ 3P we obtain

� + 3P =
1

3

�
_nr=nr

_a=a
+ 2

�
: (69)

The case �+ 3P = 0 is equivalent to

�
_nr

nr
= 2

_a

a
: (70)

Consequently, for a decaying refraction index with j _nr=nrj � 2 _a=a the strong energy condition

� + 3P > 0 is violated and we have accelerated expansion. This may be explicitly demonstrated

for a simple example. With � from (68) the energy balance (7) may be written

_� +

�
4
_a

a
+

_nr

nr

�
� = 0 ) �nra

4 = const : (71)

The simplest case is to assume a decay rate which is proportional to the Hubble rate:

_nr

nr
= �4�

_a

a
) �a

4(1��) = const : (72)

The constant factor � in the range 0 � � < 1 has been chosen for convenience. Of course, � can

be assumed constant at most piecewise. Integration of Friedmann's equation yields

a / t
1

2(1��) : (73)

Obviously, there is accelerated expansion �a � 0 for � � 1=2, which is consistent with (70). The

limit � = 0 corresponds to the standard radiation dominated universe. If � approaches � � 1,

we have � � const and, according to Eq. (67), an approximately constant Hubble rate H, i.e.,
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exponential expansion. Any � in the range 0 � � < 1 is connected with entropy production.

Combining (68) and (72) we �nd

� = �
4

3
�� (74)

and, with (60),

_s = 12�
_a

a
= 6

�

(1� �) t
: (75)

The entropy per particle grows logarithmically with the cosmic time. According to (58), (74), and

(48), the corresponding force is

F
i = 4�HEpi : (76)

The action of this force on the microscopic constituents of the medium realizes a power-law

evolution (73) of the universe, which is a manifestation of a conformal symmetry (21) of the

optical metric (20) and, moreover, implies a positive entropy production according to (75). This

represents an exactly solvable model, both macroscopically and microscopically, of a speci�c non-

equilibrium con�guration of a self-interacting cosmic gas.

6 Conclusions

We have shown that the introduction of a refraction index nr of the cosmic medium as a new scalar

parameter allows us to understand early phases of the cosmological evolution as a speci�c non-

equilibrium con�guration of a self-interacting relativistic gas. The latter is characterized by an

equilibrium-type distribution function of the microscopic particles. Deviations from equilibrium

are mapped onto a time-varying chemical potential which is related to nr in a simple way. The

refraction index de�nes an optical metric �gik = gik � (1� n
�2
r )uiuk which coincides with the

spacetime metric gik for nr = 1. A decaying refraction index gives rise to a negative contribution

to the scalar pressure of the cosmic substratum. We have established an exactly solvable, self-

consistent model for this type of dynamics which is connected with entropy production, but at

the same time realizes a conformal, timelike symmetry of the optical metric. In other words,

for any deviation from the behavior of an ultrarelativistic perfect uid which is due to a scalar,

viscous pressure, one may �nd a refraction index such that the evolution of the universe appears

as the manifestation of a conformal, timelike symmetry of the corresponding optical metric. For a

decay rate of the refraction index which is of the order of the Hubble expansion rate, the associated

negative pressures may lead to a violation of the strong energy condition �+3P > 0. Consequently,

the resulting dynamics is inationary.
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