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Abstract: We review some results on the connection among supergravity central

charges, BPS states and Bekenstein{Hawking entropy. In particular, N = 2 super-

gravity in four dimensions is studied in detail. For higher N supergravities we just give

an account of the general theory specializing the discussion to the N = 8 case when one

half of supersymmetry is preserved. We stress the fact that for extremal supergravity

black holes the entropy formula is topological, that is the entropy turns out to be a

moduli independent quantity and can be written in terms of invariants of the duality

group of the supergravity theory.
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1 Introduction: Extremal Black Holes from Classical General Relativity to String

Theory

Black hole physics has many aspects of great interest to physicists with very di�erent cultural

backgrounds. These range from astrophysics to classical general relativity, to quantum �eld theory

in curved space{times, particle physics and �nally string theory and supergravity. This is not

surprising since black holes are one of the basic consequences of a fundamental theory, namely

Einstein general relativity. Furthermore black holes have fascinating thermodynamical properties

that seem to encode the deepest properties of the so far unestablished fundamental theory of

quantum gravity. Central in this context is the Bekenstein{Hawking entropy:

SBH =
kB

G~

1

4
AreaH (1)

where kB is the Boltzman constant, G is Newton's constant, ~ is Planck's constant and AreaH

denotes the area of the horizon surface.

This very precise relation between a thermodynamical quantity and a geometrical quantity

such as the horizon area is a puzzle that stimulated the interest of theoretical phisicists for more

than twenty years. Indeed a microscopic statistical explanation of the area law for the black

hole entropy has been correctly regarded as possible only within a solid formulation of quantum

gravity. Superstring theory is the most serious candidate for a theory of quantum gravity and

as such should eventually provide such a microscopic explanation of the area law. Although

superstrings have been around for more than twenty years, a signi�cant progress in this direction

came only recently [1], after the so called second string revolution (1995). Indeed black holes are

a typical non{perturbative phenomenon and perturbative string theory could say very little about

their entropy: only non perturbative string theory can have a handle on it. Progresses in this

direction came after 1995 through the recognition of the role of string dualities. These dualities

allow to relate the strong coupling regime of one superstring model to the weak coupling regime of

another one and are all encoded in the symmetry group (the U{duality group) of the low energy

supergravity e�ective action.

What we want to emphasize is that the �rst instance of a microscopic explanation of the

area law within string theory has been limited to what in the language of general relativity

would be an extremal black hole. Indeed the extremality condition, namely the coincidence of

two horizons, obtains, in the context of a supersymmetric theory, a profound reinterpretation

that makes extremal black holes the most interesting objects to study. To introduce the concept

consider the usual Reissner Nordstrom metric describing a black{hole of mass m and electric (or
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magnetic) charge q:

ds2 = �dt2
�
1� 2m

�
+
q2

�2

�
+ d�2

�
1� 2m

�
+
q2

�2

��1
+ �2 d
2 (2)

where d
2 = (d�2 + sin2 � d�2) is the metric on a 2{sphere. As it is well known the metric (2)

admits two Killing horizons where the norm of the Killing vector @
@t

changes sign. The horizons

are at the two roots of the quadratic form � � �2m� + q2 + �2 namely at:

�� = m�
p
m2 � q2 (3)

If m < jqj the two horizons disappear and we have a naked singularity. For this reason in

the context of classical general relativity the cosmic censorship conjecture was advanced that

singularities should always be hidden inside horizon and this conjecture was formulated as the

bound:

m � jqj (4)

Of particular interest are the states that saturate the bound (4). If m = jqj the two horizons

coincide and, setting:

m = jqj ; � = r +m ; r2 = ~x � ~x (5)

the metric (2) can be rewritten as:

ds2 = �dt2
�
1 +

q

r

��2
+
�
1 +

q

r

�2 �
dr2 + r2 d
2

�
= �H�2(~x) dt2 +H2(~x) d~x � d~x (6)

where by:

H(~x) =

�
1 +

qp
~x � ~x

�
(7)

we have denoted a harmonic function in a three{dimensional space spanned by the three cartesian

coordinates ~x with the boundary condition that H(~x) goes to 1 at in�nity.

Moreover, the extremal Reissner{Nordstr�om con�guration is a soliton of classical general rel-

ativity, interpolating between the at Minkowski space{time, asymptotically reached at spatial

in�nity �!1, and the Bertotti{Robinson metric describing the conformally at geometry near

the horizon r ! 0 [2]:

ds2BR = � r2

M2
BR

dt2 +
M2

BR

r2

�
dr2 + r2d


�
: (8)

Last, let us note the the condition m = jqj can be written as a no force condition between the

gravitational interaction Fg =
m
r2

and the electric repulsion Fq = � q

r2
.
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Extremal black-hole con�gurations are embedded in a natural way in supergravity theories.

Indeed supergravity, being invariant under local super-Poincar�e transformations, includes general

relativity, that is it describes gravitation coupled to other �elds in a supersymmetric framework.

Therefore it admits, among its classical solutions, black holes.

Thinking of a black-hole con�guration as a particular bosonic background of an N -extended

locally supersymmetric theory gives a simple and natural understanding to the cosmic censorship

conjecture. Indeed, in theories with extended supersymmetry the bound (5) is just a consequence

of the supersymmetry algebra, and this ensures that in these theories the cosmic censorship

conjecture is always veri�ed, that is there are no naked singularities.

For extremal con�gurations, supersymmetry imposes that if the bound m = jqj is saturated in the
classical theory, the same must be true also when quantum corrections are taken into account. This

is particularly relevant, since the quantum physics of black holes is described by Hawking theory,

which states that quantum black holes are not stable, they radiate a termic radiation as a black{

body, and correspondingly they lose their energy (mass). The only stable black-hole con�gurations

are then the extremal ones, because they have the minimal possible energy compatible with the

relation (4) and so they cannot radiate.

When the black hole is embedded in an N -extended supergravity background the solutions

depend in general also on scalar �elds. In this case, the electric charge q has to be replaced by the

maximum eigenvalue of the central charge appearing in the supersymmetry algebra (depending

on the expectation value of scalar �elds and on the electric and magnetic charges). The Reissner{

Nordstr�om metric takes in general a more complicated form.

However, extremal black holes preserving some supersymmetries have a peculiar feature: the event

horizon loses all information about scalar �elds. Indeed, also in the scalar-dependent case, the near

horizon geometry is still described by a conformally at, Bertotti{Robinson-type geometry, with

a mass parameter MBR depending on the electric and magnetic charges but not on the scalars. 1

This peculiarity has a counterpart in the fact that extremal solutions of supergravity have to satisfy

a set of �rst order di�erential equations imposed by the existence of at least one supercovariant

spinor, leaving invariant a fraction of the initial supersymmetry. First order di�erential equations
d�
dr

= f(�) have in general �xed points, corresponding to the values of r for which f(�) = 0.

It is possible to show [3] that the �rst order di�erential equations expressing the Killing spinors

1This in fact can be thought as one aspect of the more general fact (true also for non-supersymmetric black

holes) that near the horizon black holes loose their `hair' (no hair theorems). That is if one tries to perturb the

black hole with whatever additional hair (some slight mass anisotropy, or a long-range �eld, like a scalar) all these

features disappear near the horizon, except for those associated with the conserved quantities of general relativity,

namely, for a non-rotating black hole, its mass and charge.

Again, as it happened for the BPS bound, supersymmetry gives a deeper and more natural understanding of this

general feature.
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equations for extremal black holes have as �xed point exactly the event horizon. The horizon is

an attractor point [4]. Scalar �elds, independently of their boundary conditions at spatial in�nity,

approaching the horizon ow to a �xed point given by a certain ratio of electric and magnetic

charges.

Remembering now that the black-hole entropy is given by the area{entropy Bekenstein{Hawking

relation (1), we see that the entropy of extremal black holes is a topological quantity, in the sense

that it is �xed in terms of the quantized electric and magnetic charges while it does not depend on

continuous parameters as scalars. The horizon mass parameter MBR turns out to be given in this

case (extremal con�gurations) by the maximum eigenvalue ZM of the central charge appearing in

the supersymmetry algebra, evaluated at the �xed point:

MBR =MBR(e; g) = ZM(�fix; e; g) (9)

that gives, for the Bekenstein{Hawking entropy:

SB�H =
ABR(e; g)

4
= �jZM(�fix; e; g)j2 (10)

Many e�orts were spent in the course of the years to give an explanation for the large, topo-

logical entropy of extremal black holes in the context of a quantum theory of gravity, like string

theory. In particular, one would like to give a microscopical, statistical mechanics interpretation of

this thermodynamical quantity. Although we will not treat at all the microscopical point of view

throughout this paper, it is important to mention that such an interpretation became possible

after the introduction of D-branes in the context of string theory [5]. Following this approach,

extremal black holes are interpreted as bound states of D-branes in a space{time compacti�ed

to four or �ve dimensions, and the di�erent microstates giving rise to the Bekenstein{Hawking

entropy come from the di�erent ways of wrapping branes in the internal directions.

It is important to note that all calculations made in particular cases using this approach furnished

values, for the Bekenstein{Hawking entropy, compatible with those performed with the super-

gravity, macroscopical techniques. The entropy formula turns out to be in all cases a U-duality

invariant expression (homogeneous of degree two) built out of electric and magnetic charges and

as such can be in fact also computed through certain (moduli independent) topological quantities

which only depend on the nature of the U-duality groups and the appropriate representations of

electric and magnetic charges. For example in the N = 8 theory the entropy can be shown to

correspond to the unique quartic E7 invariant built in terms of the 56 dimensional representation.

Actually, one can derive for all N � 2 theories topological U-invariants constructed in terms of the

(moduli dependent) central charges and matter charges and show that, as expected, they coincide

with the squared ADM mass at �xed scalars.
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In the next section we shall interpret black holes of this form as BPS saturated states namely

as quantum states �lling special irreducible representations of the supersymmetry algebra, the so

called short supermultiplets, the shortening condition being precisely the saturation of the cosmic

censorship bound (4). Indeed such a bound can be restated as the equality of the mass with

the central charge which occurs when a certain fraction of the supersymmetry charges identically

annihilate the state. The remaining supercharges applied to the BPS state build up a unitary

irreducible representation of supersymmetry that is shorter than the typical one since it contains

less states. As we stress in the next section it is precisely this interpretation what makes extremal

black holes relevant to the string theory. Indeed these classical solutions of supergravity belong to

the non perturbative particle spectrum of superstring theory, and are not accessible to perturbative

string theory.

2 Extremal Black{Holes as quantum BPS states

In the previous section we have reviewed the idea of extremal black holes as it arises in classical

general relativity. Extremal black{holes have become objects of utmost relevance in the context

of superstrings after the second string revolution has taken place in 1995. Indeed supersymmetric

extremal black{holes have been studied in depth in a vast recent literature [6, 2, 7]. This interest

is just part of a more general interest in the p{brane classical solutions of supergravity theories

in all dimensions 4 � D � 11 [8, 9]. This interest streams from the interpretation of the classical

solutions of supergravity that preserve a fraction of the original supersymmetries as the BPS non

perturbative states necessary to complete the perturbative string spectrum and make it invariant

under the many conjectured duality symmetries [10, 11, 12, 13, 14]. Extremal black{holes and

their parent p{branes in higher dimensions are therefore viewed as additional particle{like states

that compose the spectrum of a fundamental quantum theory. The reader should be advised

that the holes we are discussing here are neither stellar{mass, nor mini{black holes: their mass is

typically of the order of the Planck{mass:

MBlack Hole � MP lanck (11)

The Schwarzschild radius is therefore microscopic.

Yet, as the monopoles in gauge theories, these non{perturbative quantum states originate from

regular solutions of the classical �eld equations, the same Einstein equations one deals with in

classical general relativity and astrophysics. The essential new ingredient, in this respect, is super-

symmetry that requires the presence of vector �elds and scalar �elds in appropriate proportions.

Hence the black{holes we are going to discuss are solutions of generalized Einstein{Maxwell{

dilaton equations.
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>From an abstract viewpoint BPS saturated states are characterized by the fact that they

preserve a fraction, 1=2 or 1=4 or 1=8 of the original supersymmetries. What this actually means

is that there is a suitable projection operator IP2
BPS = IPBPS acting on the supersymmetry charge

QSUSY , such that:

(IPBPS QSUSY ) jBPS state >= 0 (12)

Since the supersymmetry transformation rules of any supersymmetric �eld theory are linear in the

�rst derivatives of the �elds eq.(12) is actually a system of �rst order di�erential equations. This

system has to be combined with the second order �eld equations of supergravity and the common

solutions to both system of equations is a classical BPS saturated state. That it is actually an

exact state of non{perturbative string theory follows from supersymmetry representation theory.

The classical BPS state is by de�nition an element of a short supermultiplet and, if supersymmetry

is unbroken, it cannot be renormalized to a long supermultiplet.

Translating eq. (12) into an explicit �rst order di�erential system requires knowledge of the

supersymmetry transformation rules of supergravity. These latter have a rich geometrical struc-

ture that is the purpose of the present paper to illustrate. Indeed the geometrical structure of

supergravity which originates in its scalar sector is transferred into the physics of extremal black

holes by the BPS saturation condition.

To ful�ll the above program, it is necessary �rst to review the formalism of D = 4 N -extended

supergravity theories. We begin by recalling the algebraic de�nition of D = 4 BPS states in a

theory with an even number of supercharges N = 2� 2.

2.1 General de�nition of BPS states in a 4D theory with N = 2 � p supersymmetries

The D = 4 supersymmetry algebra with N = 2 � p supersymmetry charges is given by�
QA� ; QB�

	
= i (C �)�� P� ÆAB � C�� ZAB

(A;B = 1; : : : ; 2p) (13)

where the SUSY charges QA � Q
y
A0 = QT

AC are Majorana spinors, C is the charge conjugation

matrix, P� is the 4{momentum operator and the antisymmetric tensor ZAB = �ZBA is the central

charge operator. It can always be reduced to normal form

ZAB =

0BBB@
�Z1 0 : : : 0

0 �Z2 : : : 0

: : : : : : : : : : : :

0 0 : : : �Zp

1CCCA (14)

2The case with N = odd can be similarly treated but needs some minor modi�cations due to the fact the

eigenvalues of an antisymmetric matrix in odd dimensions are f�i�i; 0g.
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where � is the 2 � 2 antisymmetric matrix, (every zero is a 2 � 2 zero matrix) and the p skew

eigenvalues ZI of ZAB are the central charges.

If we identify each index A;B; : : : with a pair of indices

A = (a; I) ; a; b; � � � = 1; 2 ; I; J; � � � = 1; : : : ; p (15)

then the superalgebra (13) can be rewritten as:�
QaIj� ; QbJ j�

	
= i (C �)�� P� Æab ÆIJ � C�� �ab � ZZIJ (16)

where the SUSY charges QaI � Q
y
aI0 = QT

aI C are Majorana spinors, C is the charge conjugation

matrix, P� is the 4{momentum operator, �ab is the two{dimensional Levi Civita symbol and the

central charge operator is now represented by the symmetric tensor ZZIJ = ZZJI which can always be

diagonalized ZZIJ = ÆIJ ZJ . The p eigenvalues ZJ are the skew eigenvalues introduced in equation

(14).

The Bogomolny bound on the mass of a generalized monopole state:

M � jZIj 8ZI ; I = 1; : : : ; p (17)

is an elementary consequence of the supersymmetry algebra and of the identi�cation between

central charges and topological charges. To see this it is convenient to introduce the following

reduced supercharges:

S
�
aIj� =

1

2

�
QaI0 � i �abQbI

�
�

(18)

They can be regarded as the result of applying a projection operator to the supersymmetry charges:

S
�
aI = QbI IP

�
ba

IP�ba =
1

2
(1Æba � i�ba0) (19)

Combining eq.(16) with the de�nition (18) and choosing the rest frame where the four momentum

is P� =(M; 0; 0; 0), we obtain the algebra:n
S
�
aI ; S

�
bJ

o
= ��ac C IP�cb (M � ZI) ÆIJ (20)

By positivity of the operator
n
S
�
aI ; S

�
bJ

o
it follows that on a generic state the Bogomolny bound

(17) is ful�lled. Furthermore it also follows that the states which saturate the bounds:

(M � ZI) jBPS state,ii = 0 (21)
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are those which are annihilated by the corresponding reduced supercharges:

S
�
aI jBPS state,ii = 0 (22)

On one hand eq.(22) de�nes short multiplet representations of the original algebra (16) in the

following sense: one constructs a linear representation of (16) where all states are identically

annihilated by the operators S
�
aI for I = 1; : : : ; nmax. If nmax = 1 we have the minimum shortening,

if nmax = p we have the maximum shortening. On the other hand eq.(22) can be translated into

a �rst order di�erential equation on the bosonic �elds of supergravity.

Indeed, let us consider a con�guration where all the fermionic �elds are zero. In order for

a con�guration to be supersymmetric we have to impose that the supersymmetry variations of

all the �elds are zero in the background. Since the bosonic �elds transform into spinors, they

are automatically zero in the background; for the fermionic �elds, instead, this condition gives a

di�erential equation for the bosonic �elds which is called \Killing spinor" equation. Indeed, the

gravitino transformation law contains the covariant derivative of the supersymmetry parameter

�A and the di�erential equation one obtains in this case determines the functional dependence of

the parameter on the space{time coordinates. The corresponding solution for �A is called a Killing

spinor.

Setting the fermionic SUSY rules appropriate to such a background equal to zero we �nd the

following Killing spinor equation:

0 = Æfermions = SUSY rule (bosons; �AI) (23)

where the SUSY parameter satis�es the following conditions (�� denotes a time{like Killing vector):

�� � �aI = i "ab �
bI ; I = 1; : : : ; nmax

�aI = 0 ; I > nmax

(24)

Hence eq.s (23) with a parameter satisfying the condition (24) will be our operative de�nition of

BPS states.

3 Four-dimensional BPS black{holes and the general form of the supergravity action

In this section we begin the study of BPS black{hole solutions in four space-time dimensions. To

this aim we �rst have to introduce the main features of four dimensional supergravities. Four

dimensional supergravity theories contain in the bosonic sector, besides the metric, a number of

vectors and scalars. The relevant bosonic action is known to have the following general form:

S =

Z p�g d4x
�
2R + Im N��F

�
�� F �j�� +

1

6
gIJ(�)@��

I@��J+

+
1

2
Re N��

�����p�gF
�

�� F �
��

�
(25)
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Table 1: Scalar Manifolds of Extended Supergravities

N U-Duality group Mscalar nV ; m

1 U � Sp(2n; IR) K�ahler nV ; m

2 U � Sp(2n+ 2; IR) MQ(nH)
MSK(n) n + 1; 2n+ 4nH

3 SU(3; n) � Sp(2n+ 6; IR)
SU(3;n)

S(U(3)�U(n)) 3 + n, 6n

4 SU(1; 1)
 SO(6; n) � Sp(2n+ 12; IR)
SU(1;1)

U(1)

 SO(6;n)

SO(6)�SO(n) 6 + n, 6n+ 2

5 SU(1; 5) � Sp(20; IR)
SU(1;5)

S(U(1)�U(5)) 10, 10

6 SO?(12) � Sp(32; IR)
SO?(12)

U(1)�SU(6) 16, 30

7; 8 E7(�7) � Sp(56; IR)
E7(�7)

SU(8)
28, 70

MQ(nH) denotes a quaternionic manifold of quaternionic dimension nH and MSK(n) a Special

K�ahler manifold of complex dimension n.

where gIJ(�) (I; J; � � � = 1; � � � ; m is the scalar metric on the �-model described by the m{

dimensional scalar manifoldMscalar and the vectors kinetic matrix N��(�) is a complex, symmet-

ric, nV � nV matrix depending on the scalar �elds. The number of vectors and scalars, that is nV

and m, and the geometrical properties of the scalar manifoldMscalar depend on the number N of

supersymmetries and are resumed in Table 1. The relation between this scalar geometry and the

kinetic matrix N has a very general and universal form. Indeed it is related to the solution of a

general problem, namely how to lift the action of the scalar manifold isometries from the scalar

to the vector �elds. Such a lift is necessary because of supersymmetry since scalars and vectors

generically belong to the same supermultiplet and must rotate coherently under symmetry oper-

ations. This problem has been solved in a general (non supersymmetric) framework in reference

[15] by considering the possible extension of the Dirac electric{magnetic duality to more general

theories involving scalars. In the next subsection we review this approach and in particular we

show how enforcing covariance with respect to such duality rotations leads to a determination of

the kinetic matrix N . The structure of N enters the black{hole equations in a crucial way so that

the topological invariant associated with the hole, that is its entropy, is an invariant of the group

of electro-magnetic duality rotations, the U{duality group.

3.1 Duality Rotations and Symplectic Covariance

Let us review the general structure of an abelian theory of vectors and scalars displaying covariance

under a group of duality rotations. The basic reference is the 1981 paper by Gaillard and Zumino

[15]. A general presentation in D = 2p dimensions can be found in [18]. Here we �x D = 4.

We consider a theory of nV gauge �elds A�
� , in a D = 4 space{time with Lorentz signature.
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They correspond to a set of nV di�erential 1{forms

A� � A�
� dx

� (� = 1; : : : ; nV ) (26)

The corresponding �eld strengths and their Hodge duals are de�ned by

F� � dA� � F�
�� dx

� ^ dx�

F�
�� � 1

2

�
@�A

�
� � @�A

�
�

�
?F� � eF�

�� dx
� ^ dx�eF�

�� � 1

2
"���� F�j�� (27)

In addition to the gauge �elds let us also introduce a set of real scalar �elds �I ( I = 1; : : : ; m)

spanning an m{dimensional manifoldMscalar endowed with a metric gIJ(�). Utilizing the above

�eld content we can write the following action functional:

S =

Z �
� ��(�)F�

�� F
��� + ���(�)F

�
�� ? F

��� +
1

2
gIJ(�) @��

I @��J
�
d4x (28)

where the scalar �elds dependent nV � nV matrix ��(�) generalizes the inverse of the squared

coupling constant 1
g2

appearing in ordinary gauge theories. The �eld dependent matrix ���(�)

is instead a generalization of the theta{angle of quantum chromodynamics. Both  and � are

symmetric matrices. Finally, we have introduced the operator ? that maps a �eld strength into

its Hodge dual �
?F�

�
��
� 1

2
����� F�j��: (29)

Introducing self{dual and antiself{dual combinations

F� =
1

2
(F � i ? F)

?F� = �iF� (30)

and the �eld{dependent symmetric matrices

N = � � i

N = � + i ; (31)

the vector part of the Lagrangian (28) can be rewritten as

Lvec = i
�F�TNF� � F+TNF+

�
(32)
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Introducing further the new tensors

eG��� � 1

2

@L
@F�

��

= (��� + ���)F�
�� $ G���� � � i

2

@L
@F��

��

(33)

the Bianchi identities and �eld equations associated with the Lagrangian (28) can be written as

@� eF�
�� = 0 (34)

@� eG��� = 0 (35)

or equivalently

@�ImF��
�� = 0 (36)

@�ImG���� = 0 : (37)

This suggests that we introduce the 2nV column vector

V �
 
?F
?G

!
(38)

and that we consider general linear transformations on such a vector 
?F
?G

!0

=

 
A B

C D

! 
?F
?G

!
(39)

For any matrix S =

 
A B

C D

!
2 GL(2nV ; IR) the new vector V0 of magnetic and electric �eld{

strengths satis�es the same equations (35) as the old one. In a condensed notation we can

write

@V = 0 () @V0 = 0 (40)

Separating the self{dual and anti{self{dual parts

F =
�F+ + F�� ; G =

�G+ + G�� (41)

and taking into account that we have

G+ = NF+ G� = NF� (42)

the duality rotation of eq. (39) can be rewritten as 
F+

G+
!0

=

 
A B

C D

! 
F+

NF+

!
;

 
F�

G�
!0

=

 
A B

C D

! 
F�

NF�

!
: (43)
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Now, let us note that, since �I are the scalar partners of A�, when a duality rotation is performed

on the vector �eld strengths and their duals, also the scalars get transformed correspondingly,

through the action of some di�eomorphism on the scalar manifold Mscal. In particular, also

the kinetic matrix N (�), that in supersymmetric theories is a function of scalars, transforms

under a duality rotation. That is, a duality transformation � acts in the following way on the

supersymmetric system:

� :

8><>:
� ! �0 = �(�)

N (�) ! N 0 (�(�))

V ! V 0� = S�V
�

(44)

Thus, the transformation laws of the equations of motion and of N , and so also the matrix S�,
will be induced by a di�eomorphism of the scalar �elds.

Focusing in particular on the third relation in (44), that explicitly reads: 
F�0

G�0
!
=

 
A�F� +B�G�
C�F� +D�G�

!
(45)

let us note that it contains the magnetic �eld strength G�� , which is de�ned as a variation of the

kinetic lagrangian. Under the transformations (44) the lagrangian transforms in the following

way:

L0 = i
h
(A� +B�N )

�

�
(A� +B�N )

�

�
N 0

��(�)F+�F+�

� �
A� +B�N

� �

�

�
A� +B�N

��
�
N 0

��(�)F��F��
i
; (46)

Equations (44) must be consistent with the de�nition of G� as a variation of the lagrangian (46):

G 0+� = (C� +D�N )
��
F+� � � i

2

@L0
@F 0+� = (A� +B�N )

�

�
N 0

��F+� (47)

that implies:

N 0
��(�

0) =
�
(C� +D�N ) � (A� +B�N )

�1�
��

; (48)

Recalling now that the matrix N is symmetric, and that this property must be true also in the

duality transformed system, it follows that the matrix S� must satisfy a constraint that allow to

�x the duality groups.

Indeed, imposing that N and N 0 be both symmetric matrices, gives the constraint:

S 2 Sp(2nV ; IR) � GL(2nV ; IR): (49)

This observation has important implications on the scalar manifoldMscal. Indeed, all the above

discussion implies that on the scalar manifold the following homomorphism is de�ned:

Diff(Mscal)! Sp(2n; IR) (50)
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In particular, the presence on the manifold of a function of scalars transforming with a fractional

linear transformation under a duality rotation (that is a di�eomorphism) on scalars, induces the

existence on Mscal of a linear structure (inherited from vectors). In particular, as we will see

in section 3.2, for the N = 2 four dimensional theory this implies that the scalar manifold be a

special manifold, that is a K�ahler{Hodge manifold endowed with a at symplectic bundle.

As it is necessary for a duality rotation, the transformation (44), that is a duality symmetry on

the system �eld-equations/Bianchi-identities, cannot be extended to a symmetry of the lagrangian.

The scalar lagrangian Lscal is left invariant under the action of the isometry group of the metric

gIJ , but the vector part is in general not invariant. Indeed, the transformed lagrangian under the

action of S 2 Sp(2nV ; IR) can be rewritten:

Im
�F��G��

� ! Im
�F 0��G 0��

�
= Im

�F��G�� + 2(CTB) �
� F��G�� +

+ (CTA)��F��F�� + (DTB)��G��G��
�

(51)

It is evident from (51) that only the transformations with B = C = 0 are symmetries.

If C 6= 0, B = 0 the lagrangian varies for a topological term:

(CTA)��F�
��

?F�j�� (52)

corresponding to a rede�nition of the function ���; such a transformation leaves classical physics

invariant, being a total derivative, but it is relevant in the quantum theory. It is a symmetry of

the partition function only if �� = 1
2
(CTA) is an integer multiple of 2�, and this implies that

S 2 Sp(2nV ; ZZ) � Sp(2nV ; IR).

For B 6= 0 neither the action nor the perturbative partition function are invariant. Let us observe

that, for B 6= 0, the transformation law of the kinetic matrix N = � � i contains the transfor-

mation N ! � 1
N that is it exchanges the weak and strong coupling regimes of the theory. One

can then think a supersymmetric quantum �eld theory being described by a collection of local

lagrangians, each de�ned in a local patch. They are all equivalent once one de�nes for each of

them what is electric and what is magnetic. Duality transformations map this set of lagrangians

one into the other. At this point we observe that the supergravity bosonic lagrangian (25) is

exactly of the form considered in this section as far as the matter content is concerned, so that we

may apply the above considerations about duality rotations to the supergravity case. In particu-

lar, the U-duality acts in all theories with N � 2 supercharges, where the vector supermultiplets

contain both vectors and scalars. For N = 1 supergravity, instead, vectors and scalars are still

present but they are not related by supersymmetry, and as a consequence they are not related

by U-duality rotations, so that the previous formalism does not apply. In the next section we

will discuss in a geometrical framework the structure of the supergravity theories for N � 2. In
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particular, we will give the expression for the kinetic vector matrix N�� in terms of the Sp(2nV )

coset representatives embedding the U-duality group for theories whose �-model is a coset space,

namely N > 2. Furthermore we will show that the N = 2 case can be treated in a completely

analogous way even if the �-model of the scalars is not in general a coset space.

3.2 Duality symmetries and central charges in four dimensions

Let us restrict our attention to N -extended supersymmetric theories coupled to the gravitational

�eld, that is to supergravity theories, whose bosonic action has been given in (25). For any theory

we analyze the group theoretical structure and �nd the expression of the central charges, and

the properties they obey. We will see that in each theory all �elds are in some representation

of the isometry group U of scalar �elds or of its maximal compact subgroup H. This is just a

consequence of the Gaillard-Zumino duality acting on the 2-forms and their duals, discussed in

the preceding section, so that a restriction to the integers of U is the duality group.

As we have already mentioned, all D = 4 supergravity theories contain scalar �elds whose

kinetic Lagrangian is described by �{models of the form U=H, with the exception of D = 4,

N = 1; 2. We begin to examine the theories with N > 2, and then we will generalize the results

to the N = 2 case (The N = 1 case, as explained before, is of no concern to us.).

Here U is a non compact group acting as an isometry group on the scalar manifold while H, the

isotropy subgroup, is of the form:

H = HAut 
Hmatter (53)

HAut being the automorphism group of the supersymmetry algebra while Hmatter is related to the

matter multiplets. (Of course Hmatter = 11 in all cases where supersymmetric matter doesn't exist,

namely N > 4). The coset manifolds U=H and the automorphism groups for various supergravity

theories for any D and N can be found in the literature (see for instance [16], [17], [18], [19]).

As it was discussed in the previous section, the group U acts linearly on the �eld strengths F�
��

appearing in the gravitational and matter multiplets. Here and in the following the index � runs

over the dimensions of some representation of the duality group U. The true duality symmetry

(U{duality), acting on integral quantized electric and magnetics charges, is the restriction of the

continuous group U to the integers [13]. The moduli space of these theories is U(ZZ)nU=H.

All the properties of the given supergravity theories are completely �xed in terms of the geom-

etry of U=H, namely in terms of the coset representatives L satisfying the relation:

L(�0) = gL(�)h(g;�) (54)

where g 2 U, h 2 H and �0 = �0(�), � being the coordinates of U=H. Note that the scalar �elds

in U=H can be assigned, in the linearized theory, to linear representations RH of the local isotropy
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group H so that dim RH = dim U � dim H (in the full theory, RH is the representation which

the vielbein of U=H belongs to).

As explained in the following, the kinetic matrix N�� for the 2{forms F� is �xed in terms of L

and the physical �eld strengths of the interacting theories are "dressed" with scalar �elds in terms

of the coset representatives. This allows us to write down the central charges associated to the

vectors in the gravitational multiplet in a neat way in terms of the geometrical structure of the

moduli space. In an analogous way also the vectors of the matter multiplets give rise to charges

which, as we will see, are closely related to the central charges.

To any �eld{strength F� we may associate a magnetic charge g� and an electric charge e�

given respectively by:

g� =

Z
S2
F� e� =

Z
S2
G� (55)

These charges however are not the physical charges of the interacting theory; the latter ones can

be computed by looking at the transformation laws of the fermion �elds, where the physical �eld{

strengths appear dressed with the scalar �elds [19],[20]. Let us �rst introduce the central charges:

they are associated to the dressed 2{form TAB appearing in the supersymmetry transformation

law of the gravitino 1-form. We have indeed:

Æ A = r�A + �TABj��
a���BVa + � � � (56)

Here r is the covariant derivative in terms of the space{time spin connection and the composite

connection of the automorphism group HAut, � is a coeÆcient �xed by supersymmetry, V a is the

space{time vielbein, A = 1; � � � ; N is the index acted on by the automorphism group. Here and

in the following the dots denote trilinear fermion terms which are characteristic of any supersym-

metric theory but do not play any role in the following discussion. The �eld-strength TAB will be

constructed by dressing the bare �eld-strengths F� with the coset representative L(�) of U=H,

� denoting a set of coordinates of U=H.

Note that the same �eld strength TAB which appears in the gravitino transformation laws is

also present in the dilatino transformation laws in the following way:

Æ�ABC = PABCD;`@��
`��D + �T[ABj��

���C] + � � � (57)

In an analogous way, when vector multiplets are present, the matter vector �eld strengths appear-

ing in the transformation laws of the gaugino �elds are dressed with the scalars:

Æ�IA = iPIAB;i@��
i��B + TIj��

���A + � � � (58)

where PABCD = PABCD;`d�
` and P I

AB = P I
AB;id�

i are the vielbein of the scalar manifolds spanned

by the scalar �elds of the gravitational and vector multiplets respectively (more precise de�nitions

are given below), and � and  are constants �xed by supersymmetry.
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In order to give the explicit dependence on scalars of TAB, T
I , it is necessary to recall from the

previous subsection that, according to the Gaillard{Zumino construction, the isometry group U

of the scalar manifold acts on the vector (F��;G�� ) (or its complex conjugate) as a subgroup of

Sp(2nV ; IR) (nV is the number of vector �elds) with duality transformations interchanging electric

and magnetic �eld{strengths:

S
 
F��

G��

!
=

 
F��

G��

!0

(59)

according to the discussion in the previous subsection.

If L(�) is the coset representative of U in some representation, S represents the embedded coset

representative belonging to Sp(2nV ; IR) and in each theory, A;B;C;D can be constructed in terms

of L(�). Using a complex basis in the vector space of Sp(2nV ), we may rewrite the symplectic

matrix as a pseudo-unitary symplectic matrix of the following form:

U =
1p
2

 
f + ih f + ih

f � ih f � ih

!
= A�1SA (60)

where:

f =
1p
2
(A� iB)

h =
1p
2
(C � iD)

A =

 
1 1

�i i

!
(61)

We will denote the Sp(2nV ) group in the pseudo-unitary basis as Usp(nV ; nV ). The requirement

that U 2 Usp(nV ; nV ) must satisfy is:

U tCU = C ; Ct = �C (U symplectic) (62)

U y�U = � ; � =

 
11nV �nV 0

0 �11nV �nV

!
(U pseudo-unitary) (63)

which implies, on the sub-blocks f and h:(
i(f yh� hyf) = 11

(f th� htf) = 0
(64)

The nV � nV subblocks of U are submatrices f; h which can be decomposed with respect to the

isotropy group HAut �Hmatter as:

f = (f�AB; f
�
I )

h = (h�AB; h�I) (65)
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where AB are indices in the antisymmetric representation of HAut = SU(N) � U(1) and I is an

index of the fundamental representation of Hmatter. Upper SU(N) indices label objects in the

complex conjugate representation of SU(N): (f�AB)
� = f�AB etc.

Note that we can consider (f�AB; h�AB) and (f�I ; h�I) as symplectic sections of a Sp(2nV ; IR)

bundle over U=H. We will see in the following that this bundle is actually at. The real embedding

given by S is appropriate for duality transformations of F� and their duals G�, according to

equations (43), while the complex embedding in the matrix U is appropriate in writing down the

fermion transformation laws and supercovariant �eld{strengths. The kinetic matrix N , according

to Gaillard{Zumino [15], can be written in terms of the sub-blocks f , h, and turns out to be:

N = hf�1; N = N t (66)

transforming projectively under Sp(2nV ; IR) duality rotations as already shown in the previous

section. By using (64)and (66) we �nd that

(f t)�1 = i(N �N )f (67)

that is

fAB� � (f�1)AB� = i(N �N )��f
�

AB (68)

fI� � (f�1)I� = i(N �N )��f
�

I (69)

It can be shown [19] that the dressed graviphotons and matter self{dual �eld{strengths appearing

in the transformation law of gravitino (56), dilatino (57) and gaugino (58) can be constructed as

a symplectic invariant using the f and h matrices, as follows:

T�AB = i(f
�1
)AB�F

�� = f�AB(N �N )��F
�� = h�ABF

�� � f�ABG��
T�I = i(f

�1
)I�F

�� = f�I (N �N )��F
�� = h�IF

�� � f�I G��
T
+AB

= (T�AB)
�

T
+I

= (T�I )
� (70)

(For N > 4, supersymmetry does not allow matter multiplets and f�I = TI = 0). To construct

the dressed charges one integrates TAB = T+
AB + T�AB and (for N = 3; 4) TI = T+

I + T�I on a large

2-sphere. For this purpose we note that

T+
AB = h�ABF

+� � f�ABG+� = 0 (71)

T+
I = h�IF

+� � f�I G+� = 0 (72)
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as a consequence of eqs. (66), (43). Therefore we can introduce the \dressed" charges:

ZAB(�0) =

Z
S2
TAB =

Z
S2
(T+

AB + T�AB) =

Z
S2
T�AB = h�ABg

� � f�ABe� (73)

ZI(�0) =

Z
S2
TI =

Z
S2
(T+

I + T�I ) =

Z
S2
T�I = h�Ig

� � f�I e� (N � 4) (74)

where:

e� =

Z
S2
G�; g� =

Z
S2
F� (75)

and the sections (f�; h�) on the right hand side now depend on the v.e.v.'s �0 � �(r =1) of the

scalar �elds �I . We see that the central and matter charges are given in this case by symplectic

invariants and that the presence of dyons in D = 4 is related to the symplectic embedding.

The scalar �eld dependent combinations of �elds strengths appearing in the fermion supersym-

metry transformation rules have a profound meaning and play a key role in the physics of BPS

black{holes. The combination TAB�� is named the graviphoton �eld strength and its integral over

a 2{sphere at in�nity gives the value of the central charge ZAB of the N = 2 supersymmetry

algebra. The combination T I
�� is named the matter �eld strength. Evaluating its integral on a

2{sphere at in�nity one obtains the so called matter charges ZI .

We are now able to derive some di�erential relations among the central and matter charges using

the Maurer{Cartan equations obeyed by the scalars through the embedded coset representative

U . Indeed, let � = U�1dU be the Usp(nV ; nV ) Lie algebra left invariant one form satisfying:

d� + � ^ � = 0 (76)

In terms of (f; h) � has the following form:

� � U�1dU =

 
i(f ydh� hydf) i(f ydh� hydf)

�i(f tdh� htdf) �i(f tdh� htdf)

!
�
 

(H) P
P 


(H)

!
(77)

where the nV � nV subblocks 
(H) and P embed the H connection and the vielbein of U=H

respectively . This identi�cation follows from the Cartan decomposition of the Usp(nV ; nV ) Lie

algebra. Explicitly, if we de�ne the HAut�Hmatter{covariant derivative of a vector V = (VAB; VI)

as:

rV = dV � V !; ! =

 
!ABCD 0

0 !IJ

!
(78)

we have:


(H) = i[f y(rh + h!)� hy(rf + f!)] = !11 (79)
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where we have used:

rh = Nrf ; h = N f (80)

and the fundamental identity (64). Furthermore, using the same relations, the embedded vielbein

P can be written as follows:

P = �i(f trh� htrf) = if t(N �N )rf (81)

>From (60) and (77), we obtain the (nV � nV ) matrix equation:

r(!)(f + ih) = (f + ih)P
r(!)(f � ih) = (f � ih)P (82)

together with their complex conjugates. Using further the de�nition (65) we have:

r(!)f�AB = f
�

I P
I
AB +

1

2
f
�CD

PABCD

r(!)f�I =
1

2
f
�AB

PABI + f
�J
PJI (83)

where we have decomposed the embedded vielbein P as follows:

P =

 
PABCD PABJ

PICD PIJ

!
(84)

the subblocks being related to the vielbein of U=H, P = L�1r(H)L, written in terms of the indices

of HAut�Hmatter. In particular, the component PABCD is completely antisymmetric in its indices.

Note that, since f belongs to the unitary matrix U , we have: (f�AB; f
�
I )

? = (f
�AB

; f
�I
). Obviously,

the same di�erential relations that we wrote for f hold true for the dual matrix h as well.

Using the de�nition of the charges (73), (74) we then get the following di�erential relations

among charges:

r(!)ZAB = ZIP
I
AB +

1

2
Z
CD
PABCD

r(!)ZI =
1

2
Z
AB
PABI + ZJP

J
I (85)

Depending on the coset manifold, some of the subblocks of (84) can be actually zero. For

example in N = 3 the vielbein of U=H =
SU(3;n)

SU(3)�SU(n)�U(1) [21] is PIAB (AB antisymmetric),

I = 1; � � � ; n;A;B = 1; 2; 3 and it turns out that PABCD = PIJ = 0.

In N = 4, U=H =
SU(1;1)

U(1)
� O(6;n)

O(6)�O(n) [22], and we have PABCD = �ABCDP , PIJ = PÆIJ , where

P is the K�ahlerian vielbein of
SU(1;1)

U(1)
, (A; � � � ; D SU(4) indices and I; J O(n) indices) and PIAB

is the vielbein of
O(6;n)

O(6)�O(n) .
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For N > 4 (no matter indices) we have that P coincides with the vielbein PABCD of the relevant

U=H.

For the purpose of comparison of the previous formalism with the N = 2 supergravity case,

where the �-model is in general not a coset, it is interesting to note that, if the connection 
(H)

and the vielbein P are regarded as data of U=H, then the Maurer{Cartan equations (83) can be

interpreted as an integrable system of di�erential equations for a section V = (VAB; VI; V
AB
; V

I
)

of the symplectic �ber bundle constructed over U=H. Namely the integrable system:

r

0BBB@
VAB

VI

V
AB

V
I

1CCCA =

0BBB@
0 0 1

2
PABCD PABJ

0 0 1
2
PICD PIJ

1
2
PABCD PABJ 0 0
1
2
P ICD P IJ 0 0

1CCCA
0BBB@
VCD

VJ

V
CD

V
J

1CCCA (86)

has 2n solutions given by V = (f�AB; f
�
I); (h�AB; h�I ), � = 1; � � � ; n. The integrability condition

(76) means that � is a at connection of the symplectic bundle. In terms of the geometry of U=H

this in turn implies that the IH{curvature (and hence, since the manifold is a symmetric space, also

the Riemannian curvature) is constant, being proportional to the wedge product of two vielbein.

Besides the di�erential relations (85), the charges also satisfy sum rules.

The sum rule has the following form:

1

2
ZABZ

AB
+ ZIZ

I
= �1

2
P tM(N )P (87)

where M(N ) and P are:

M =

 
11 �ReN
0 11

! 
ImN 0

0 ImN�1

! 
11 0

�ReN 11

!
(88)

P =

 
g�

e�

!
(89)

In order to obtain this result we just need to observe that from the fundamental identities (64)

and from the de�nition of the kinetic matrix given in (66) it follows:

ff y = �i �N �N ��1 (90)

hhy = �i
�
N�1 �N�1

��1
� �iN �N �N ��1N (91)

hf y = N ff y (92)

fhy = ff yN : (93)



Entropy 2002 , 4, 86

3.2.1 The N = 2 theory

The formalism we have developed so far for the D = 4, N > 2 theories is completely determined

by the embedding of the coset representative of U=H in Sp(2n; IR) and by the embedded Maurer{

Cartan equations (83). We want now to show that this formalism, and in particular the identities

(64), the di�erential relations among charges (85) and the sum rules (87) of N = 2 matter-coupled

supergravity [23],[24] can be obtained in a way completely analogous to the coset space �-model

cases discussed in the previous subsection. This follows essentially from the fact that, though the

scalar manifoldMN=2 of the N = 2 theory is not in general a coset manifold, nevertheless it has

a symplectic structure identical to the N > 2 theories, as a consequence of the Gaillard{Zumino

duality.

In the case of N = 2 supergravity the requirements imposed by supersymmetry on the scalar

manifold Mscalar of the theory is that it should be the following direct product: Mscalar =

MSK 
 MQ where MSK is a special K�ahler manifold of complex dimension n and MQ a qua-

ternionic manifold of real dimension 4nH . Note that n and nH are respectively the number

of vector multiplets and hypermultiplets contained in the theory. The direct product structure

imposed by supersymmetry precisely reects the fact that the quaternionic and special K�ahler

scalars belong to di�erent supermultiplets. In the construction of BPS black{holes it turns out

that the hyperscalars are spectators playing no dynamical role. Hence we do not discuss here the

hypermultiplets any further and we con�ne our attention to an N = 2 supergravity where the

graviton multiplet, containing, besides the graviton g��, also a graviphoton A0
�, is coupled to n

vector multiplets. Such a theory has an action of type (25) where the number of gauge �elds is

nV = 1 + n and the number of scalar �elds is m = 2n. Correspondingly the indices have the

following ranges

�;�;�; : : : = 0; 1; : : : ; n

I; J;K; : : : = 1; : : : ; 2n

(94)

To make the action (25) fully explicit, we need to discuss the geometry of the vector multiplets

scalars, namely special K�ahler geometry. We refer to [25] for a detailed analysis. A special K�ahler

manifold is a K�ahler-Hodge manifold endowed with an extra symplectic structure. A K�ahler

manifoldM is a Hodge manifold if and only if there exists a U(1) bundle L �! M such that its

�rst Chern class equals the cohomology class of the K�ahler 2-form K:

c1(L) = [K ] (95)

In local terms this means that there is a holomorphic section W (z) such that we can write

K = i gi| dz
i ^ dzj

?

(96)
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where zi are n holomorphic coordinates on MSK and gi| its metric.

In this case the U(1) K�ahler connection is given by

Q = � i

2

�
@iKdzi � @{Kdz{

�
(97)

where K is the K�ahler potential, so that K = dQ.
Let now �(z; z) be a section of the U(1) bundle. By de�nition its covariant derivative is

r� = (d+ ipQ)� (98)

or, in components,

ri� = (@i +
1
2
p@iK)� ; r{� = (@{ � 1

2
p@{K)� (99)

A covariantly holomorphic section is de�ned by the equation: r{� = 0. Setting:

e� = e�pK=2� : (100)

we get:

ri
e� = (@i + p@iK)e� ; ri�

e� = @i� e� (101)

so that under this map covariantly holomorphic sections � become truly holomorphic sections.

There are several equivalent ways of de�ning what a special K�ahler manifold is. An intrinsic de�-

nition is the following. A special K�ahler manifold can be given by constructing a 2n+2-dimensional

symplectic bundle over the K�ahler{Hodge manifold whose generic sections (with weight p = 1)

V = (f�; h�) � = 0; : : : ; n ; (102)

are covariantly holomorphic

r{V = (@{ � 1

2
@{K)V = 0 (103)

and satisfy the further condition

i < V; V >= i(f
�
h� � h�f

�) = 1 ; (104)

where < ; > denotes a symplectic inner product with metric chosen to be

 
0 �11
11 0

!
.

De�ning Ui = DiV = (f�i ; h�i), and introducing a symmetric three-tensor Cijk by

DiUj = iCijkg
kkUk ; (105)
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the set of di�erential equations

DiV = Ui

DiUj = iCijkg
kkUk

DiU| = gi|V

DiV = 0 (106)

de�nes a symplectic connection. Requiring that the di�erential system (106) is integrable is equiv-

alent to require that the symplectic connection is at. Since the integrability condition of (106)

gives constraints on the base K�ahler{Hodge manifold, we de�ne special-K�ahler a manifold whose

associated symplectic connection is at. At the end of this section we will give the restrictions on

the manifold imposed by the atness of the connection.

It must be noted that, for special K�ahler manifolds, the K�ahler potential can be computed as

a symplectic invariant from eq. (104). Indeed, introducing also the holomorphic sections


 = e�K=2V = e�K=2(f�; h�) = (X�; F�)

@{
 = 0 (107)

eq. (104) gives

K = � ln i < 
;
 >= � ln i(X
�
F� �X�F�) : (108)

If we introduce the complex symmetric (n+1)� (n+1) matrix N�� de�ned through the relations

h� = N��f
� ; hi?� = N��f

�
i? ; (109)

then we have:

< V; V > =
�N �N �

��
f�f

�
= �i ! K = � ln[i(X

� �N �N �
��
X�)] (110)

gi| = �i < Ui; U| >= �2f�i ImN��f
�
| ; (111)

Cijk = < DiUj; Uk >= 2iImN��f
�
i rjf

�
k : (112)

The matrix N�� turns out to be the matrix appearing in the kinetic lagrangian of the vectors in

N = 2 supergravity. Under coordinate transformations, the sections 
 transform as

e
 = e�fS(z)S
 ; (113)

where S =

 
A B

C D

!
is an element of Sp(2nV ; IR) and the factor e�fS(z) is a U(1) K�ahler trans-

formation. We also note that, from the de�nition of N , eq. (109):

eN ( eX; eF ) = (C +DN (X;F ))(A+BN (X;F ))�1 ; (114)
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Let us now set nV = n + 1 and de�ne the nV � nV matrices:

f�� �
�
f�; f

�i
�
; h�� �

�
h�; h

i

�

�
(115)

where f
�i � f

�

|g
|i, h

i

� � h�|g
|i , the set of algebraic relations of special geometry can be written

in matrix form as: (
i(f yh� hyf) = 11

(f th� htf) = 0
(116)

Recalling equations (64) we see that the previous relations imply that the matrix U :

U =
1p
2

 
f + ih f + ih

f � ih f � ih

!
(117)

is a pseudo-unitary symplectic matrix. In fact if we set f� ! f��AB � f�AB and atten the

world-indices of (f�i ; f
�

{ ) (or (hi; h{)) with the K�ahlerian vielbein P I
i ; P

I

{ :

(f�I ; f
�

I ) = (f�i P
i
I ; f

�

{ P
{

I); P I
i P

J

| �IJ = gi| (118)

where �IJ is the at K�ahlerian metric and P i
I = (P�1)Ii, the relations (116) are just a particular

case of equations (64) since, for N = 2, HAut = SU(2) � U(1), so that f�AB is actually an SU(2)

singlet.

Let us now consider the analogous of the embedded Maurer{Cartan equations of U=H. We

introduce, as before, the matrix one{form � = U�1dU satisfying the relation d�+ � ^ � = 0. We

further introduce the covariant derivative of the symplectic section (f�; f
�

I ; f
�
; f�I ) with respect

to the U(1){K�ahler connection Q and the spin connection !IJ of MN=2:

r(f�; f�I ; f
�
; f�I ) =

d(f�; f
�

I ; f
�; f

�

I ) + (f�; f
�

J ; f
�
; f�J )

0BBB@
�iQ 0 0 0

0 iQÆI
J
+ !I

J
0 0

0 0 iQ 0

0 0 0 �iQÆIJ + !IJ

1CCCA (119)

the K�ahler weight of (f�; f
�

I ) and (f
�
; f

�

I ) being p = 1 and p = �1 respectively. Using the same
decomposition as in equation (77) and eq.s (78), (79) we have in the N = 2 case:

� =

 

 P
P 


!
;


 = ! =

 
�iQ 0

0 iQÆIJ + !IJ

!
(120)
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For the subblock P we obtain:

P = �i(f trh� htrf) = if t(N �N )rf =

 
0 PI
P J P J

I

!
(121)

where P
J � �JIPI is the (1; 0){form K�ahlerian vielbein while P J

I
� i
�
f t(N �N )rf�J

I
is a one{

form which in general cannot be expressed in terms of the vielbein P I , since the manifold is in

general not a coset, and therefore represents a new geometrical quantity onMN=2. Note that we

get zero in the �rst entry of equation (121) by virtue of the fact that the identity (116) implies

f�(N �N )��f
�
i = 0 and that f� is covariantly holomorphic. If 
 and P are considered as data

on MN=2 then we may interpret � = U�1dU as an integrable system of di�erential equations,

namely:

r(V; U I ; V ; UI) = (V; UJ ; V ; UJ)

0BBB@
0 0 0 P I

0 0 P
J

P
J

I

0 PI 0 0

P J P J
I

0 0

1CCCA (122)

where the at K�ahler indices I; I; � � � are raised and lowered with the at K�ahler metric �IJ . Note

that the equation (122) coincides with the set of relations (106) if we trade world indices i; { with

at indices I; I, provided we also identify:

P
J

I = P
J

Ikdz
k = P J;iP

j
I Cijkdz

k: (123)

Then, the integrability condition d�+�^� = 0 is equivalent to the atness of the special K�ahler

symplectic connection and it gives the following three constraints on the K�ahler base manifold:

d(iQ) + P I ^ P I = 0! @|@iK = P I
;iP I;| = gi| (124)

(d! + ! ^ !)J
I

= PI ^ P
J � idQÆJ

I
� P

J

L ^ PL
I

(125)

rP J
I

= 0 (126)

P J ^ P J
I
= 0 (127)

Equation (124) implies that MN=2 is a K�ahler{Hodge manifold. Equation (125), written with

holomorphic and antiholomorphic curved indices, gives:

R{jkl = g{lgjk + gklg{j � C {kmCjlng
mn (128)

which is the usual constraint on the Riemann tensor of the special geometry. The further special

geometry constraints on the three tensor Cijk are then consequences of equations (126), (127),
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which imply:

r[lCi]jk = 0

rlCijk = 0 (129)

In particular, the �rst of eq. (129) also implies that Cijk is a completely symmetric tensor.

In summary, we have seen that the N = 2 theory and the higher N theories have essentially

the same symplectic structure, the only di�erence being that since the scalar manifold of N = 2 is

not in general a coset manifold the symplectic structure allows the presence of a new geometrical

quantity which physically corresponds to the anomalous magnetic moments of the N = 2 theory. It

goes without saying that, whenMN=2 is itself a coset manifold [26], then the anomalous magnetic

moments Cijk must be expressible in terms of the vielbein of U=H.

To complete the analogy between the N = 2 theory and the higher N theories in D = 4, we also

give for completeness the supersymmetry transformation laws, the central and matter charges, the

di�erential relations among them and the sum rules.

The transformation laws for the chiral gravitino  A and gaugino �iA �elds are:

Æ A� = D� �A + �ABT��
��B + � � � (130)

Æ�iA = i@�z
i��A +

i

2
T|��

��gi|�AB�B + � � � (131)

where:

T � h�F
� � f�G� (132)

T{ � h�{F
� � f

�

{ G� (133)

are respectively the graviphoton and the matter-vectors, zi (i = 1; � � � ; n) are the complex scalar

�elds and the position of the SU(2) automorphism index A (A,B=1,2) is related to chirality

(namely ( A; �
iA) are chiral, ( A; �{A) antichiral). In principle only the (anti) self dual part of F

and G should appear in the transformation laws of the (anti)chiral fermi �elds; however, exactly

as in eqs. (71),(72) for N > 2 theories, from equations (106) it follows that :

T+ = h�F
+� � f�G+� = 0 (134)

so that T = T� (and T = T
+
). Note that both the graviphoton and the matter vectors are

symplectic invariant according to the fact that the fermions do not transform under the duality

group (except for a possible R-symmetry phase). To de�ne the physical charges let us note that

in presence of electric and magnetic sources we can write:Z
S2
F� = g�;

Z
S2
G� = e�: (135)
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The central charges and the matter charges are now de�ned as the integrals over a S2 of the

physical graviphoton and matter vectors:

Z =

Z
S2
T =

Z
S2
(h�F

� � f�G�) = (h�(z; z)g
� � f�(z; z)e�) (136)

where zi; z{ denote the v.e.v. of the moduli �elds in a given background. Owing to eq. (106) we

get immediately:

Zi = riZ (137)

As a consequence of the symplectic structure, one can derive two sum rules for Z and Zi:

jZj2 + jZij2 � jZj2 + Zig
i|Z| = �1

2
P tMP (138)

where:

M =

 
11 �ReN
0 11

! 
ImN 0

0 ImN�1

! 
11 0

�ReN 11

!
(139)

and:

P =
�
g�; e�

�
(140)

Equation (139) is obtained by using exactly the same procedure as in (88).

4 N = 2 BPS black holes: general discussion

Recently [27],[28], S. Ferrara and R. Kallosh gave a general rule for �nding the values of �xed

scalars, and then the Bekenstein{Hawking entropy, in N = 2 theories through an extremum

principle. It states that the �xed scalars �fix are the ones (among all the possible values taken

by scalar �elds) that extremize the ADM mass of the black hole in moduli space:

�fix :
@MADM (�)

@�i

��
�fix

= 0 (141)

Correspondingly, the Bekenstein{Hawking entropy is given in terms of that extremum among the

possible ADM masses (given by all possible boundary conditions that one can impose on scalars

at spatial in�nity), identi�ed with the Bertotti{Robinson mass MBR:

MBR � MADM(�fix) = extrfMADM(�(1))g (142)

The extremum principle (141) can be explained for the N = 2 theory [27],[28] by means of the

special geometry relations on the Killing spinor equations near the horizon.
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Indeed, the Killing spinor equations expressing the existence of unbroken supersymmetries is

obtained, for the gauginos in the N = 2 case [25], setting equal to zero the r.h.s. of equation (131)

that is, using at indices:

Æ�IA = PI;i@�z
i�"AB�

B + TIj��
���A + � � � = 0: (143)

Approaching the black-hole horizon, the scalars zi reach their �xed values so that

@�z
i = 0 (144)

and equation (143) is satis�ed for

TI = 0 (145)

that is, using integrated quantities:

ZI = ZiP
i
I =

Z
S21

TI = h�I(z(1))g� � f�I (z(1))e� = 0: (146)

That is, the Killing spinor equation imposes the vanishing of the matter charges near the horizon.

Now, eq. (146) shows that the matter charges ZI are linear in the scalar functions f�I (z(1)),

h�I(z(1)) so that, remembering eq. (137), we then have, near the horizon:

ZI = rIZ = 0 (147)

where Z is the central charge appearing in the N = 2 supersymmetry algebra, so that:

@ijZj = 0 (148)

which, for an extremal black hole (jZj =MADM ), coincides with eq. (141) giving the �xed scalars

�fix � zfix. We see that the entropy of the black{hole is related to the central charge, namely to

the integral of the graviphoton �eld strength evaluated for very special values of the scalar �elds

zi. These special values, the �xed scalars zifix, are functions solely of the electric and magnetic

charges fq�; p�g of the black hole and are attained by the scalars zi(r) at the black-hole horizon

r = 0.

Let us discuss the explicit solution of the Killing spinor equation and the general properties of

BPS saturated black{holes in the context of N = 2 supergravity. As our analysis will reveal, these

properties are completely encoded in the special K�ahler geometric structure of the mother theory.

To illustrate in more detail what happens, let us consider a black-hole ansatz3 for the metric:

ds2 = e2U(r) dt2 � e�2U(r) d~x2 ;
�
r2 = ~x2

�
(149)

3This ansatz is dictated by the general p-brane solution of supergravity bosonic equations in any dimensions

[8].
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and for the vector �eld strengths:

F� =
p�

2r3
�abcx

adxb ^ dxc � `�(r)

r3
e2Udt ^ ~x � d~x: (150)

It is convenient to rephrase the same ansatz in the complex formalism well-adapted to the N = 2

theory. To this e�ect we begin by constructing a 2{form which is anti{self{dual in the background

of the metric (149) and whose integral on the 2{sphere at in�nity S2
1 is normalized to 2�. A short

calculation yields:

E� = i
e2U(r)

r3
dt ^ ~x � d~x+ 1

2

xa

r3
dxb ^ dxc�abc

2 � =

Z
S21

E� (151)

from which one obtains:

E�
�� 

�� = 2 i
e2U(r)

r3
ax

a 0
1

2
[1 + 5] (152)

which will prove of great help in the unfolding of the supersymmetry transformation rules.

Next, introducing the following complex combination of the magnetic charge p� and of the

radial function `�(r) de�ned by eq. (150):

t�(r) = 2�(p� + i`�(r)) (153)

we can rewrite the ansatz (150) as:

F�j� =
t�

4�
E�

(154)

and we retrieve the original formulae from:

F� = 2ReF�j� = p�

2r3
�abcx

adxb ^ dxc � `�(r)

r3
e2Udt ^ ~x � d~xeF� = �2ImF�j� = � `�(r)

2r3
�abcx

adxb ^ dxc � p�

r3
e2Udt ^ ~x � d~x: (155)

Before proceeding further it is convenient to de�ne the electric and magnetic charges of the black

hole as it is appropriate in any electromagnetic theory. Recalling the general form of the �eld

equations and of the Bianchi identities as given in (35) we see that the �eld strengths F�� and

G�� are both closed 2-forms, since their duals are divergenceless. Hence, for Gauss theorem, their

integral on a closed space{like 2{sphere does not depend on the radius of the sphere. These
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integrals are the electric and magnetic charges of the hole that, in a quantum theory, we expect

to be quantized. We set:

q� � 1

4�

Z
S21

G�j�� dx
� ^ dx� (156)

p� � 1

4�

Z
S21

F�
�� dx

� ^ dx� (157)

If rather than the integral of G� we were to calculate the integral of eF�, which is not a closed

form, we would obtain a function of the radius:

4�`�(r) = �
Z
S2r

eF� = 2Im t�: (158)

Consider now the Killing spinor equations obtained from the supersymmetry transformations rules

(130), (131):

0 = r� �A + �AB T
�
�� 

��B (159)

0 = ir� z
i ��A +G�i

��
���B�

AB (160)

where the killing spinor �A(r) is of the form of a single radial function times a constant spinor

satisfying:

�A(r) = ef(r)�A �A = constant

0�A = �i�AB�B (161)

We observe that the condition (161) halves the number of supercharges preserved by the solution.

Inserting eq.s (132),(133),(161) into eq.s(159), (160) and using the result (152), with a little work

we obtain the �rst order di�erential equations:

dzi

dr
= �

�
eU(r)

4�r2

�
gij

?

f
�

j?(N �N )��t
� =

�
�
eU(r)

4�r2

�
gij

?rj?Z(z; z; p; q) (162)

dU

dr
= �

�
eU(r)

r2

�
(M�p

� � L�q�) = �
�
eU(r)

r2

�
Z(z; z; p; q) (163)

where N��(z; z) is the kinetic matrix of special geometry de�ned by eq.(66), the vector V =�
L�(z; z);M�(z; z)

�
is the covariantly holomorphic section of the symplectic bundle entering the

de�nition of a Special K�ahler manifold,

Z(z; z; p; q) � �M�p
� � L�q�

�
(164)
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is the local realization on the scalar manifold SM of the central charge of the N = 2 superalgebra,

Zi(z; z; p; q) � gij
?rj?Z(z; z; p; q) (165)

are the central charges associated with the matter vectors, the so{called matter central charges.

To obtain eqs. (162),(163) we made use of the properties :

0 = hj?j�t
?� � f

�

j?N��t
?�

0 = M�t
?� � L�N��t

?� (166)

which are a direct consequence of the de�nition (66) of the kinetic matrix. The electric charges

`�(r) de�ned in (158) are moduli dependent charges which are functions of the radial direction

through the moduli zi. On the other hand, the moduli independent electric charges q� in eqs.

(163),(162) are those de�ned by eq.(156) which, together with p� ful�l a Dirac quantization

condition. Their de�nition allows them to be expressed in terms of of t�(r) as follows:

q� =
1

2�
Re(N (z(r); z(r))t(r))� (167)

Equation (167) may be inverted in order to �nd the moduli dependence of `�(r). The independence

of q� on r is a consequence of one of the Maxwell's equations:

@a

�p�g eGa0j�(r)
�
= 0) @rRe(N (z(r); z(r))t(r))� = 0 (168)

In this way we have reduced the condition that the black-hole should be a BPS saturated state to

a pair of �rst order di�erential equations for the metric scale factor U(r) and for the scalar �elds

zi(r). To obtain explicit solutions one should specify the special K�ahler manifold one is working

with, namely the speci�c Lagrangian model. There are, however, some very general and interesting

conclusions that can be drawn in a model{independent way. They are just consequences of the

fact that these BPS conditions are �rst order di�erential equations. Because of that there are �xed

points (see the papers [29, 27, 30]) namely values either of the metric or of the scalar �elds which,

once attained in the evolution parameter r (= the radial distance ) persist inde�nitely. The �xed

point values are just the zeros of the right hand side in either of the coupled eq.s (163) and (162).

The �xed point for the metric equation is r = 1, which corresponds to its asymptotic atness.

The �xed point for the moduli is r = 0. So, independently from the initial data at r = 1 that

determine the details of the evolution, the scalar �elds ow into their �xed point values at r = 0,

which, as we will show, turns out to be a horizon. Indeed in the vicinity of r = 0 also the metric

takes the universal form of an AdS2 � S2, Bertotti Robinson metric.

Let us see this more closely.
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To begin with we consider the equations determining the �xed point values for the moduli and

the universal form attained by the metric at the moduli �xed point:

0 = �gij? f�j? (ImN )�� t
�(0) (169)

dU

dr
�= �

�
eU(r)

r2

�
Z (zfix; zfix; p; q) (170)

Multiplying eq.(169) by f�i using the identity (111) and the de�nition (164) of the central charge

we conclude that at the �xed point the following condition is true:

0 = �1

2

t�

4�
� Zfix L

�

fix

8�
(171)

In terms of the previously de�ned electric and magnetic charges (see eq.s (156),(157), (167))

eq.(171) can be rewritten as:

p� = i
�
Zfix L

�

fix � Zfix L
�
fix

�
(172)

q� = i
�
ZfixM

fix

� � ZfixM
fix
�

�
(173)

Zfix = M
fix
� p� � L�

fix q� (174)

which can be regarded as algebraic equations determining the value of the scalar �elds at the �xed

point as functions of the electric and magnetic charges p�; q�:

L�
fix = L�(p; q) �! Zfix = Z(p; q) = const (175)

In the vicinity of the �xed point the di�erential equation for the metric becomes:

� dU

dr
=
Z(p; q)

r2
eU(r) (176)

which has the approximate solution:

exp[U(r)]
r!0�! const +

Z(p; q)

r
(177)

Hence, near r = 0 the metric (149) becomes of the Bertotti Robinson type (see eq.(8) ) with

Bertotti Robinson mass given by:

m2
BR = jZ(p; q)j2 (178)

In the metric (8) the surface r = 0 is light{like and corresponds to a horizon since it is the locus

where the Killing vector generating time translations @
@t
, which is time{like at spatial in�nity

r =1, becomes light{like. The horizon r = 0 has a �nite area given by:

AreaH =

Z
r=0

p
g�� g�� d� d� = 4�m2

BR (179)
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Hence, independently from the details of the considered model, the BPS saturated black{holes in

an N=2 theory have a Bekenstein{Hawking entropy given by the following horizon area:

AreaH

4�
= jZ(p; q)j2 (180)

the value of the central charge being determined by eq.s (174). Such equations can also be seen as

the variational equations for the minimization of the horizon area as given by (180), if the central

charge is regarded as a function of both the scalar �elds and the charges:

AreaH(z; z) = 4� jZ(z; z; p; q)j2
ÆAreaH

Æz
= 0 �! z = zfix (181)

4.1 Extension to the N > 2 case

Let us now observe that the extremum principle just described, although shown to be true for

N = 2 four dimensional black holes, has however a more general validity, being true for all N -

extended supergravities in four dimensions (where the Bekenstein{Hawking entropy for black holes

is in general di�erent from zero) [19].

Indeed, the general discussion of section 3.2 has shown that the coset structure of extended

supergravities in four dimensions (withN > 2) induces the existence, in every theory, of di�erential

relations among central and matter charges that generalize eq. (147) given in equation (85).

Furthermore, the Killing spinor equations for gauginos and dilatinos, analogous to eq. (85), are

obtained by setting equal to zero the r.h.s of equations (57), (58). Correspondingly, at the �xed

point @��
i = 0 one gets again some conditions that allow to �nd the value of �xed scalars and

hence of the Bekenstein{Hawking entropy.

The �rst condition, from the gaugino transformation law, is as before:

TI = 0! ZI = 0 (182)

Moreover there is a further condition, from the dilatino equation:

T[AB�C] = 0! Z[AB�C] = 0 (183)

Inserting these relations in eq. (85) one has that �xed scalars are found by solving:

Z[AB�C] = 0 (184)

ZI = 0)rZAB =
1

2
PABCDZ

CD
(185)
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>From a case by case analysis of equations (184), (185) the explicit form of �xed scalars and then

of the entropy is easily obtained for each theory.

Let us now look �rst at equation (184). We work in the normal frame, where the central charge

matrix ZAB is written in terms of its skew diagonal eigenvalues (we analyze the N = 8 case, that

includes all lower N theories):

Z
(N)

AB =

0BBB@
Z1� 0 0 0

0 Z2� 0 0

0 0 Z3� 0

0 0 0 Z4�

1CCCA ; Zi� =

 
0 Zi

�Zi 0

!
(186)

If only two Killing spinors, say �1; �2 are di�erent from zero, then eq. (184) implies that the three

central charge eigenvalues Z2; Z3; Z4 must be zero, the only non vanishing eigenvalue being Z1,

and we are left with an N = 2 unbroken theory. On the other hand, if one more Killing spinor,

say �3, is di�erent from zero, then from eq. (183) we get that all the central charge eigenvalues are

zero, so that this becomes the same Minkowski vacuum background that describes spatial in�nity.

Let us then consider the case Z12 6= 0, ZAB = 0 for A;B 6= 1; 2. Equation (185) now reduces to

rZ12 = 0, which gives the �xed scalars as an extremum of (ZABZ
AB

)
1
2 � jZ12j.

4.2 The geodesic potential

The results of the previous section can be retrieved in an alternative way, that has the advantage of

being covariant, not referring explicitly to the horizon properties for �nding the entropy [31],[32].

Let us consider the �eld equations for the metric components eU (see eq. (149)) and for the scalar

�elds �i, written in terms of the evolution parameter � = 1
�
= 1

r�rH
4:8><>:

d2U
d�2

= 2V (�; e; g)e2U

D2�i

D�2
= 1

2

@V (�;e;g)

@�i e2U�
dU
d�

�2
+Gij

d�i

d�
d�j

d�
� V (�; e; g)e2U = 0

(187)

Here Gij is the metric of the sigma-model described by scalars while V (�; e; g) is a function of

scalars and of the electric and magnetic charges of the theory de�ned by:

V = �1

2
P tM(N )P (188)

4The equations in (187) are valid for extremal black holes. For non extremal ones similar relations hold, where

however in the third eq. in (187) there is one further contribution proportional to the surface gravity � (that is to

the black-hole temperature, which is zero only for extremal con�gurations).
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where P is the symplectic vector P = (g�; e�) of quantized electric and magnetic charges and

M(N ) is a symplectic 2nV � 2nV matrix, whose nV � nV blocks are given in terms of an nV �nV
matrix N��(�)

M(N ) =

 
11 �ReN
0 11

! 
ImN 0

0 ImN�1

! 
11 0

�ReN 11

!
(189)

The real and imaginary components of the matrix N appear in the vector kinetic terms of the

supergravity lagrangian describing the black hole:

L = �1

2
R +

1

2
Gij@��

i@mu�j � 1

4
ReN��F

�
��F

��j� +
1

4
ImN��F

�
��F

���j� + fermions (190)

Let us note that the �eld equations (187) can be extracted from the e�ective 1{dimensional

lagrangian:

Leff =

�
dU

d�

�2

+Gij

d�i

d�

d�j

d�
+ V (�; e; g)e2U : (191)

From equation (191) we see that the properties of extreme black holes are completely encoded in

the metric of the scalar manifold Gij and on the scalar e�ective potential V , known as geodesic

potential [31],[32]. In particular it was shown in [31],[32] that the area of the event horizon is

proportional to the value of V at the horizon:

A

4�
= V (�h; e; g) (192)

where �h denotes the value taken by scalar �elds at the horizon. To see this, let us consider the

set of equations (187): it is possible to show that the �eld equations for the scalars give, near the

horizon, the solution:

�i =

�
2�

A

�
@V

@�i
log� + �i

h: (193)

From eq. (193) we see that the request that the horizon is a �xed point (d�
i

d�
= 0) implies that the

geodesic potential is extremized in moduli space:

�h :
d�i

d�
= 0 $ @V

@�i
j�h

= 0: (194)

Furthermore, let us consider the third of (187). Near the horizon, introducing the results (194),

it becomes: �
dU

d�

�2

� V (�h(e; g); e; g)e
2U (195)
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from which it follows, for the metric components near the horizon:

e2U � 1

� 2V (�h)
=

�2

V (�h)
; (196)

that is:

ds2hor =
�2

V (�h)
dt2 � V (�h)

�2

�
d�2 + �2d


�
: (197)

By comparing eq. (197) with eq. (8) we see that V (�h) =M2
BR and therefore, remembering (10),

we get the result (192).

To summarize, we have just found that the area of the event horizon (and hence the Bekenstein{

Hawking entropy of the black hole) is given by the geodesic potential evaluated at the horizon,

and we also gave a tool for �nding this value: the geodesic potential gets an extremum at the

horizon.

However, the geodesic potential V (�; e; g) de�ned in eq.s (188) and (189) has a particular

meaning in supergravity theories, that allows to �nd its extremum in an easy way. Indeed, an

expression exactly coinciding with (188) has been found in section 3 in an apparently di�erent

context, as the result of a sum rule among central and matter charges in supergravity theories

(88). So, in every supergravity theory, the geodesic potential has the general form:

V � �1

2
P tM(N )P =

1

2
ZABZ

AB
+ ZIZ

I
(198)

Then, to �nd the extremum of V we can apply the di�erential relations among central and matter

charges found in Section 3, that in general read:

rZAB = ZIP
I
AB +

1

2
Z
CD
PABCD

rZI =
1

2
Z
AB
PABI + Z

J
PJI (199)

where the matrices PABCD, PABI , PIJ are the subblocks of the vielbein of the scalar manifolds

U=H [19], already de�ned in Section 3:

P � L�1rL =

 
PABCD PABI

PIAB PIJ

!
(200)

written in terms of the indices of H = HAut �Hmatter.
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Applying eq.s (199) to the geodesic potential, we �nd that the extremum is given by:

dV =
1

2
rZABZ

AB
+rZIZ

I
+ c:c: =

=
1

2

�
1

2
Z
CD
PABCD + ZIP

I
AB

�
Z
AB

+

�
1

2
Z
AB
PABI + Z

J
PJI

�
Z
I
+ c:c: = 0 (201)

that is dV = 0 for:

ZI = 0 ; Z
AB
Z
CD
PABCD = 0 (202)

Let us note that the conditions (202), de�ning the extremum of the geodesic potential and so

the �xed scalars, have the same content, and are therefore completely equivalent, to the former

relations found in the previous subsection from the Killing spinor conditions. However, with this

latter procedure it is not necessary to specify explicitly horizon parameters (like the metric and

the �xed values of scalars at that point), V being a well de�ned quantity over all the space{time.

As an exempli�cation of the method, let us analyze in detail the D = 4, N = 4 pure super-

gravity. The �eld content is given by the gravitational multiplet, that is by the graviton g��,

four gravitini  �A, A = 1; � � � ; 4 2 SU(4), six vectors A
[AB]
� , four dilatini �[ABC] and a complex

scalar � = a + ie' parametrizing the coset manifold U=H = SU(1; 1)=U(1). The symplectic

Sp(12){sections (f�AB; h�AB) (� � [AB] = 1; � � � ; 6) over the scalar manifold are given by:

f�AB = e�'=2Æ�AB

h�AB = �e�'=2Æ�AB (203)

so that:

N�� = (h � f�1)�� = �Æ�� (204)

The central charge matrix is then given by:

ZAB = h�ABg
� � f�ABe� = e�'=2(�gAB � eAB) (205)

where:

g� =

Z
F� �

Z
dA� e� =

Z
N��F

� (206)

The geodesic potential is therefore:

V (�; e; g; ) =
1

2
e�'(�gAB � eAB)(�g

AB � eAB)

=
1

2
(a2e�' + e')gABg

AB + e�'eABe
AB � 2ae�'eABg

AB

� 1

2
(g; e)

 
1 0

�a 1

! 
e' 0

0 e�'

! 
1 �a
0 1

! 
g

e

!
(207)
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By extremizing the potential in the moduli space we get:

@V

@a
= 0 ! ah =

eABg
AB

gABgAB

@V

@'
= 0 ! e'h =

p
eABeABgCDgCD � (eABgAB)2

gABgAB
(208)

from which it follows that the entropy is:

SB�H = 4�V (�h; e; g) = 4�
p
eABeABgCDgCD � (eABgAB)2 (209)

As a �nal observation, let us note, following [32], that the extremum reached by the geodesic

potential at the horizon is in particular a minimum, unless the metric of the scalar �elds change

sign, corresponding to some sort of phase transitions, where the e�ective lagrangian description

(190) of the theory breaks down. This can be seen from the properties of the Hessian of the

geodesic potential. It was shown in [32] for the N = 2, D = 4 case that at the critical point

� = �fix � �h, from the special geometry properties it follows:�
@{@jjZj

�
fix

=
1

2
G{jjZjfix (210)

and then, remembering, from the above discussion, that Vfix = jZfixj2:�
@{@jV

�
fix

=
1

2
G{jVfix (211)

From eq. (211) it follows, for the N = 2 theory, that the minimum is unique. In the next section

we will see that a result similar to (211) still hold for higher N theories, but that in general the

Hessian of V has some degenerate directions.

Moreover, in the next subsection we will show one more technique for �nding the entropy, exploit-

ing the fact that it is a `topological quantity' not depending on scalars. This last procedure is

particularly interesting because it refers only to group theoretical properties of the coset manifolds

spanned by scalars, and do not need the knowledge of any details of the black-hole horizon.

4.3 Central charges, U-invariants and entropy

Extremal black-holes preserving one supersymmetry correspond to N -extended multiplets with

MADM = jZ1j > jZ2j � � � > jZ[N=2]j (212)

where Z�, � = 1; � � � ; [N=2], are the proper values of the central charge antisymmetric matrix

written in normal form [33]. The central charges ZAB = �ZBA, A;B = 1; � � � ; N , and matter
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charges ZI , I = 1; � � � ; n are those (moduli-dependent) symplectic invariant combinations of �eld

strenghts and their duals (integrated over a large two-sphere) which appear in the gravitino and

gaugino supersymmetry variations respectively [34],[19],[20]. Note that the total number of vector

�elds is nV = N(N � 1)=2+n (with the exception of N = 6 in which case there is an extra singlet

graviphoton)[16].

As we discussed in the previous section, at the attractor point, where MADM is extremized,

supersymmetry requires that Z�, � > 1, vanish toghether with the matter charges ZI, I = 1; � � � ; n
(n is the number of matter multiplets, which can exist only for N = 3; 4)

This result can be used to show that for \�xed scalars", corresponding to the attractor point,

the scalar \potential" of the geodesic action [35],[31],[32]

V = �1

2
P tM(N )P (213)

is extremized in moduli space. The main purpose of this subsection is to provide particu-

lar expressions which give the entropy formula as a moduli{independent quantity in the en-

tire moduli space and not just at the critical points. Namely, we are looking for quantities

S
�
ZAB(�); Z

AB
(�); ZI(�); Z

I
(�)
�
such that @

@�i
S = 0, �i being the moduli coordinates 5. To this

aim, let us �rst consider invariants I� of the isotropy group H of the scalar manifold U=H, built

with the central and matter charges. We will take all possible H-invariants up to quartic ones for

four dimensional theories (except for the N = 3 case, where the invariants of order higher than

quadratic are not irreducible). Then, let us consider a linear combination S2 =
P

� C�I� of the

H-invariants, with arbitrary coeÆcients C�. Now, let us extremize S in the moduli space @S
@�i = 0,

for some set of fC�g. Since �i 2 U=H, the quantity found in this way (which in all cases turns

out to be unique) is a U -invariant, and is indeed proportional to the Bekenstein{Hawking entropy.

These formulae generalize the quartic E7(�7) invariant of N = 8 supergravity [36] to all other

cases. We will show in the appendix how these invariants can be computed in an almost trivial

fashion by using the (non compact) Cartan elements of U=H. 6

Let us �rst consider the theories N = 3; 4, where matter can be present [21],[37].

The U{duality groups 7 are, in these cases, SU(3; n) and SU(1; 1)�SO(6; n) respectively. The
central and matter charges ZAB; ZI transform in an obvious way under the isotropy groups

H = SU(3)� SU(n)� U(1) (N = 3) (214)

H = SU(4)�O(n)� U(1) (N = 4) (215)

5The Bekenstein-Hawking entropy SBH = A
4
is actually �S in our notation.

6Our analysis is based on general properties of scalar coset manifolds. As a consequence, it can be applied

straightforwardly also to the N = 2 cases, whenever one considers special coset manifolds.
7Here we denote by U-duality group the isometry group U acting on the scalars, although only a restriction of

it to integers is the proper U-duality group [13].
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Under the action of the elements of U=H the charges get mixed with their complex conjugate.

The in�nitesimal transformation can be read from the di�erential relations satis�ed by the charges

(199) [19] .

For N = 3:

PABCD = PIJ = 0; PABI � �ABCP
C
I ZAB � �ABCZ

C (216)

Then the variations are:

ÆZA = �AI Z
I

(217)

ÆZI = �AI ZA (218)

where �AI are in�nitesimal parameters of K = U=H.

The possible quadratic H-invariants are:

I1 = ZAZA

I2 = ZIZ
I

(219)

So, the U-invariant expression is:

S = ZAZA � ZIZ
I

(220)

In other words, riS = @iS = 0, where the covariant derivative is de�ned in ref. [19].

Note that at the attractor point (ZI = 0) it coincides with the moduli-dependent potential

(213) computed at its extremum.

For N = 4

PABCD = �ABCDP; PIJ = �IJP; PABI =
1

2
�IJ�ABCDP

CDJ
(221)

and the transformations of K =
SU(1;1)

U(1)
� O(6;n)

O(6)�O(n) are:

ÆZAB =
1

2
��ABCDZ

CD
+ �ABIZ

I
(222)

ÆZI = ��IJZ
J
+
1

2
�ABIZ

AB
(223)

with �
ABI

= 1
2
�IJ�ABCD�CDJ .

The possible H-invariants are:

I1 = ZABZ
AB

I2 = ZABZ
BC
ZCDZ

DA

I3 = �ABCDZABZCD

I4 = ZIZ
I (224)
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There are three O(6; n) invariants given by S1, S2, S2 where:

S1 =
1

2
ZABZ

AB � ZIZI (225)

S2 =
1

4
�ABCDZABZCD � ZIZI (226)

and the unique SU(1; 1)�O(6; n) invariant S, rS = 0, is given by:

S =
p
(S1)2 � jS2j2 (227)

At the attractor point ZI = 0 and �ABCDZABZCD = 0 so that S reduces to the square of the BPS

mass.

Note that, in absence of matter multiplets, one recovers the expression found in the previous

subsecion by extremizing the geodesic potential.

For N = 5; 6; 8 the U-duality invariant expression S is the square root of a unique invariant

under the corresponding U-duality groups SU(5; 1), O�(12) and E7(�7). The strategy is to �nd a

quartic expression S2 in terms of ZAB such that rS = 0, i.e. S is moduli-independent.

As before, this quantity is a particular combination of the H quartic invariants.

For SU(5; 1) there are only two U(5) quartic invariants. In terms of the matrix A B
A = ZACZ

CB

they are: (TrA)2, Tr(A2), where

TrA = ZABZ
BA

(228)

Tr(A2) = ZABZ
BC
ZCDZ

DA
(229)

As before, the relative coeÆcient is �xed by the transformation properties of ZAB under
SU(5;1)

U(5)

elements of in�nitesimal parameter �C:

ÆZAB =
1

2
�C�CABPQZ

PQ
(230)

It then follows that the required invariant is:

S =
1

2

p
4Tr(A2)� (TrA)2 (231)

For N = 8 the SU(8) invariants are 8:

I1 = (TrA)2 (232)

I2 = Tr(A2) (233)

I3 = Pf Z =
1

244!
�ABCDEFGHZABZCDZEFZGH (234)

8The PfaÆan of an (n�n) (n even) antisymmetric matrix is de�ned as PfZ = 1

2nn!
�A1���AnZA1A2

� � �ZAN�1AN ,

with the property: jPfZj = jdetZj1=2.
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The
E7(�7)

SU(8)
transformations are:

ÆZAB =
1

2
�ABCDZ

CD
(235)

where �ABCD satis�es the reality constraint:

�ABCD =
1

24
�ABCDEFGH�

EFGH
(236)

One �nds the following E7(�7) invariant [36]:

S =
1

2

p
4Tr(A2)� (TrA)2 + 32Re(Pf Z) (237)

The N = 6 case is the more complicated because under U(6) the left-handed spinor of O�(12)

splits into:

32L ! (15; 1) + (15;�1) + (1;�3) + (1; 3) (238)

The transformations of
O�(12)

U(6)
are:

ÆZAB =
1

4
�ABCDEF �

CDZ
EF

+ �ABX (239)

ÆX =
1

2
�ABZ

AB
(240)

where we denote by X the SU(6) singlet.

The quartic U(6) invariants are:

I1 = (TrA)2 (241)

I2 = Tr(A2) (242)

I3 = Re(Pf ZX) =
1

233!
Re(�ABCDEFZABZCDZEFX) (243)

I4 = (TrA)XX (244)

I5 = X2X
2

(245)

The unique O�(12) invariant is:

S =
1

2

p
4I2 � I1 + 32I3 + 4I4 + 4I5 (246)

rS = 0 (247)

Note that at the attractor point Pf Z = 0, X = 0 and S reduces to the square of the BPS mass.
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4.3.1 A simple determination of the U-invariants

In order to determine the quartic U-invariant expressions S2 , rS = 0, of the N > 4 theories, it

is useful to use, as a calculational tool, transformations of the coset which preserve the normal

form of the ZAB matrix. It turns out that these transformations are certain Cartan elements in

K = U=H [38], that is they belong to O(1; 1)p 2 K, with p = 1 for N = 5, p = 3 for N = 6; 8.

These elements act only on the ZAB (in normal form), but they uniquely determine the U-

invariants since they mix the eigenvalues ei (i = 1; � � � ; [N=2]).
For N = 5, SU(5; 1)=U(5) has rank one (see ref. [39]) and the element is:

Æe1 = �e2; Æe2 = �e1 (248)

which is indeed a O(1; 1) transformation with unique invariant

j(e1)2 � (e2)
2j = 1

2

q
8 ((e1)4 + (e2)4)� 4 ((e1)2 + (e2)2)

2
(249)

For N = 6, we have �1 � �12; �2 � �34; �3 � �56 and we obtain the 3 Cartan elements of

O�(12)=U(6), which has rank 3, that is it is a O(1; 1)3 in O�(12)=U(6). Denoting by e the singlet

charge, we have the following O(1; 1)3 transformations:

Æe1 = �2e3 + �3e2 + �1e (250)

Æe2 = �1e3 + �3e1 + �2e (251)

Æe3 = �1e2 + �2e1 + �3e (252)

Æe = �1e1 + �2e2 + �3e3 (253)

these transformations �x uniquely the O�(12) invariant constructed out of the �ve U(6) invariants

displayed in (241-245).

For N = 8 the in�nitesimal parameter is �ABCD and, using the reality condition, we get again

a O(1; 1)3 in E7(�7)=SU(8). Setting �1234 = �5678 � �12, �1256 = �3478 � �13, �1278 = �3456 � �14, we

have the following set of transformations:

Æe1 = �12e2 + �13e3 + �14e4 (254)

Æe2 = �12e1 + �13e4 + �14e3 (255)

Æe3 = �12e4 + �13e1 + �14e2 (256)

Æe4 = �12e3 + �13e2 + �14e1 (257)
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These transformations �x uniquely the relative coeÆcients of the three SU(8) invariants:

I1 = e41 + e42 + e43 + e44 (258)

I2 = (e21 + e22 + e23 + e24)
2 (259)

I3 = e1e2e3e4 (260)

(261)

It is easy to see that the transformations (250-253) and (254-257) correspond to three commut-

ing matrices (with square equal to 11):0BBB@
0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

1CCCA ;

0BBB@
0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

1CCCA ;

0BBB@
0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

1CCCA (262)

which are proper non compact Cartan elements of K. The reason we get the same transformations

for N = 6 and N = 8 is because the extra singlet e of N = 6 can be identi�ed with the fourth

eigenvalue of the central charge of N = 8.

4.3.2 Extrema of the BPS mass and �xed scalars

In this subsection we would like to extend the analysis of the extrema of the black-hole induced

potential

V =
1

2
ZABZ

AB
+ ZIZ

I
(263)

which was performed in ref [32] for the N = 2 case to all N > 2 theories.

We recall that, in the case of N = 2 special geometry with metric gi|, at the �xed scalar critical

point @iV = 0 the Hessian matrix reduces to:

(rir|V )fixed = (@i@|V )fixed = 2gi|Vfixed (264)

(rirjV )fixed = 0 (265)

The Hessian matrix is strictly positive-de�nite if the critical point is not at the singular point of the

vector multiplet moduli-space. This matrix was related to the Weinhold metric earlier introduced

in the geometric approach to thermodynamics and used for the study of critical phenomena [32].

For N -extended supersymmetry, a form of this matrix was also given and shown to be equal to
9:

Vij = (@i@jV )fixed = ZCDZ
AB(

1

2
P
CDPQ

;j PABPQ;i + PCD
I;j P

I
AB;j): (266)

9Generically the indices i; j refer to real coordinates, unless the manifold is K�ahlerian, in which case we use

holomorphic coordinates and formula (266) reduces to the hermitean i| entries of the Hessian matrix.
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It is our purpose to further investigate properties of the Weinhold metric for �xed scalars.

Let us �rst observe that the extremum conditions riV = 0, using the relation between the

covariant derivatives of the central charges, reduce to the conditions:

�ABCDL1���LN�4ZABZCD = 0; ZI = 0 (267)

These equations give the �xed scalars in terms of electric and magnetic charges and also show that

the topological invariants of the previous section reduce to the extremum of the square of the ADM

mass since, when the above conditions are ful�lled, (TrA)2 = 2Tr(A2), where A B
A = ZABZ

BC
.

On the other hand, when these conditions are ful�lled, it is easy to see that the Hessian matrix

is degenerate. To see this, it is suÆcient to go, making an H transformation, to the normal frame

in which these conditions imply Z12 6= 0 with the other charges vanishing. Then we have:

@i@jV jfixed = 4jZ12j2(1
2
P 12ab
j P12ab;i + P 12I

;j P12I;i); a; b 6= 1; 2 (268)

To understand the pattern of degeneracy for allN , we observe that when only one central charge

in not vanishing the theory e�ectively reduces to an N = 2 theory. Then the actual degeneracy

respects N = 2 multiplicity of the scalars degrees of freedom in the sense that the degenerate

directions will correspond to the hypermultiplet content of N > 2 theories when decomposed with

respect to N = 2 supersymmetry.

Note that for N = 3, N = 4, where PABI is present, the Hessian is block diagonal.

For N = 3, referring to eq. (216), since the scalar manifold is K�ahler, PABI is a (1,0)-form

while PABI = PABI is a (0,1)-form.

The scalars appearing in the N = 2 vector multiplet and hypermultiplet content of the vielbein

are P3I for the vector multiplets and PaI (a = 1; 2) for the hypermultiplets. From equation (268),

which for the N = 3 case reads

@|@iV jfixed = 2jZ12j2P3I;|P
3I
;i (269)

we see that the metric has 4n real directions corresponding to n hypermultiplets which are degen-

erate.

For N = 4, referring to (221), P is the SU(1; 1)=U(1) vielbein which gives one matter vector

multiplet scalar while P12I gives n matter vector multiplets. The directions which are hypermul-

tiplets correspond to P1aI ; P2aI (a = 3; 4). Therefore the \metric" Vij is of rank 2n+ 2.

For N > 4, all the scalars are in the gravity multiplet and correspond to PABCD.

The splitting in vector and hypermultiplet scalars proceeds as before. Namely, in the N = 5

case we set PABCD = �ABCDLP
L (A;B;C;D; L = 1; � � � 5). In this case the vector multiplet scalars

are P a (a = 3; 4; 5) while the hypermultiplet scalars are P 1; P 2 (nV = 3, nh = 1).
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For N = 6, we set PABCD = 1
2
�ABCDEFP

EF . The vector multiplet scalars are now described by

P 12; P ab (A;B; ::: = 1; :::; 6; a; b = 3; � � �6), while the hypermultiplet scalars are given in terms of

P 1a; P 2a. Therefore we get nV = 6 + 1 = 7, nh = 4.

This case is di�erent from the others because, besides the hypermultiplets P 1a; P 2a, also the

vector multiplet direction P 12 is degenerate.

Finally, for N = 8 we have P1abc; P2abc as hypermultiplet scalars and Pabcd as vector multiplet

scalars, which give nV = 15, nh = 10 (note that in this case the vielbein satis�es a reality condition:

PABCD = 1
4!
�ABCDPQRSP

PQRS
). We have in this case 40 degenerate directions.

In conclusion we see that the rank of the matrix Vij is (N � 2)(N � 3) + 2n for all the four

dimensional theories.

5 BPS black holes in N = 8 supergravity

In this section we consider BPS extremal black{holes in the context of N = 8 supergravity.

N = 8 supergravity is the 4{dimensional e�ective lagrangian of both type IIA and type IIB

superstrings compacti�ed on a torus T 6. Alternatively it can be viewed as the 4D e�ective

lagrangian of 11{dimensional M{theory compacti�ed on a torus T 7. For this reason its U{duality

group E7(7)(ZZ), which is de�ned as the discrete part of the isometry group of its scalar manifold:

M(N=8)

scalar =
E7(7)

SU(8)
; (270)

uni�es all superstring dualities relating the various consistent superstring models. The non pertur-

bative BPS states one needs to adjoin to the string states in order to complete linear representations

of the U{duality group are, generically, BPS black{holes.

These latter can be viewed as intersections of several p{brane solutions of the higher dimensional

theory wrapped on the homology cycles of the T 6 (or T 7) torus. Depending on how many p{branes

intersect, the residual supersymmetry can be:

1. 1
2
of the original supersymmetry

2. 1
4
of the original supersymmetry

3. 1
8
of the original supersymmetry

The distinction between these three kinds of BPS solutions can be considered directly in a 4{

dimensional setup and it is related to the structure of the central charge eigenvalues and to the

behaviour of the scalar �elds at the horizon. BPS black{holes with a �nite horizon area are those

for which the scalar �elds are regular at the horizon and reach a �xed value there. These can
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only be the 1=8{type black holes, whose structure is that of N = 2 black{holes embedded into the

N = 8 theory. For 1=2 and 1=4 black{holes the scalar �elds always diverge at the horizon and the

entropy is zero.

The nice point, in this respect, is that we can make a complete classi�cation of all BPS black

holes belonging to the three possible types. Indeed the distinction of the solutions into these three

classes can be addressed a priori and, as we are going to see, corresponds to a classi�cation into

di�erent orbits of the possible 56{dimensional vectors Q = fp�; q�g of magnetic-electric charges
of the hole. Indeed N = 8 supergravity contains 28 gauge �elds A�

� and correspondingly the hole

can carry 28 magnetic p� and 28 electric q� charges. Through the symplectic embedding of the

scalar manifold (270) it follows that the �eld strengths F�
�� plus their duals G�j�� transform in the

fundamental 56 representation of E7(7) and the same is true of their integrals, namely the charges.

The Killing spinor equation that imposes preservation of either 1=2, or 1=4, or 1=8 of the original

supersymmetries enforces two consequences di�erent in the three cases:

1. a di�erent decomposition of the scalar �eld manifold into two sectors:

� a sector of dynamical scalar �elds that evolve in the radial parameter r

� a sector of spectator scalar �elds that do not evolve in r and are constant in the BPS

solution.

2. a di�erent orbit structure for the charge vector Q

Then, up to U{duality transformations, for each case one can write a fully general generating

solution that contains the minimal necessary number of excited dynamical �elds and the minimal

necessary number of non vanishing charges. All other solutions of the same supersymmetry type

can be obtained from the generating one by the action of E7(7){rotations.

Such an analysis is clearly group{theoretical and requires the use of appropriate techniques.

5.1 Summary of N = 8 supergravity.

Let us now summarize the structure of N = 8 supergravity. The action is of the general form (25)

with gIJ being the invariant metric of E7(7)=SU(8) and the kinetic matrix N being determined via

the appropriate symplectic embedding of E7(7) into Sp(56; IR) (see table 1). Hence, according to

the general formalism discussed in section 3 and to eq.(60) we introduce the coset representative

IL of
E7(7)

SU(8)
in the 56 representation of E7(7):

IL =
1p
2

0B@ f + ih f + ih

f � ih f � ih

1CA (271)
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where the submatrices (h; f) are 28 � 28 matrices labeled by antisymmetric pairs �;�; A; B (

�;� = 1; : : : ; 8, A;B = 1; : : : ; 8) the �rst pair transforming under E7(7) and the second one under

SU (8):

(h; f) =
�
h��jAB; f

��
AB

�
(272)

As expected from the general formalism we have IL 2 Usp (28; 28). The vielbein PABCD and the

SU (8) connection 
 B
A of

E7(7)

SU(8)
are computed from the left invariant 1-form IL�1dIL:

IL�1dIL =

0B@ Æ
[A

[C

B]

D]
P
ABCD

PABCD Æ
[C

[A



D]

B]

1CA (273)

where PABCD � PABCD;id�
i (i = 1; : : : ; 70) is completely antisymmetric and satis�es the reality

condition

PABCD =
1

24
�ABCDEFGHP

EFGH
(274)

The bosonic lagrangian of N = 8 supergravity is [40]

L =

Z p�g d4x
�
2R + Im N��j��F

��
�� F ��j�� +

1

6
PABCD;iP

ABCD

j @��
i@��j+

+
1

2
Re N��j��

�����p�gF
��

�� F ��
��

�
(275)

where the curvature two-form is de�ned as

Rab = d!ab � !ac ^ !cb: (276)

and the kinetic matrix N��j�� is given by the usual general formula:

N = hf�1 ! N��j�� = h��jABf
�1 AB

��: (277)

Note that the 56 dimensional (anti)self-dual vector
�
F� ��; G�

��

�
transforms covariantly under

U 2 Sp (56; IR)

U

 
F

G

!
=

 
F 0

G0

!
; U =

 
A B

C D

!
AtC � CtA = 0

BtD �DtB = 0

AtD � CtB = 1 (278)
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The matrix transforming the coset representative IL from the Usp (28; 28) basis, eq.(271), to the

real Sp (56; IR) basis is the Cayley matrix:

ILUsp = CILSpC�1 C =
 
11 i11

11 �i11

!
: (279)

Having established our de�nitions and notations, let us now write down the Killing spinor equa-

tions obtained by equating to zero the SUSY transformation laws of the gravitino  A� and dilatino

�ABC �elds of N = 8 supergravity in a purely bosonic background:

Æ�ABC = 4i PABCDji@��
i��D � 3T

(�)
[ABj��

���C] = 0 (280)

Æ A� = r��A � 1

4
T
(�)
ABj��

����
B = 0 (281)

where r� denotes the derivative covariant both with respect to Lorentz and SU (8) local trans-

formations

r��A = @��A � 1

4
ab !

ab�A � 
 B
A �B (282)

and where T
(�)
AB is the "dressed graviphoton"2�form, de�ned according to the general formulae

(70)

T
(�)
AB =

�
h��AB (�)F

��� � f��AB (�)G
�
��

�
(283)

>From equations (277), (64) we have the following identities that are the particularN = 8 instance

of eq.(71):

T+
AB = 0! T�AB = TAB T

�
AB = 0! T

+

AB = TAB

Following the general procedure indicated by eq.(73) we can de�ne the central charge:

ZAB =

Z
S2
TAB = h��jABp

�� � f��ABq�� (284)

which in our case is an antisymmetric tensor transforming in the 28 irreducible representation of

SU(8). In eq.(284) the integral of the two-form TAB is evaluated on a large two-sphere at in�nity

and the quantized charges (p��; q
��) are de�ned, following the general eq.s (75) by

p�� =

Z
S2
F��

q�� =

Z
S2
N��j�� ? F

��: (285)
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5.2 The Killing spinor equation and its covariance group

In order to translate eq.(280) and (281) into �rst order di�erential equations on the bosonic �elds

of supergravity we consider a con�guration where all the fermionic �elds are zero and a SUSY

parameter that satis�es the following conditions:

�� � �A = iCAB �
B ; A;B = 1; : : : ; nmax

�A = 0 ; A > nmax

(286)

Here �� is a time{like Killing vector for the space{time metric ( in the following we just write

��� = 0) and �A; �
A denote the two chiral projections of a single Majorana spinor: 5 �A = �A ,

5 �
A = ��A. We name such an equation the Killing spinor equation and the investigation of its

group{theoretical structure is the main task we face in order to derive the three possible types of

BPS black{holes, those preserving 1=2 or 1=4 or 1=8 of the original supersymmetry. To appreciate

the distinction among the three types of N = 8 black{hole solutions we need to recall the results of

[41] where a classi�cation was given of the 56{vectors of quantized electric and magnetic charges
~Q characterizing such solutions. The basic argument is provided by the reduction of the central

charge skew{symmetric tensor ZZAB to normal form. The reduction can always be obtained by

means of local SU(8) transformations, but the structure of the skew eigenvalues depends on the

orbit{type of the 56{dimensional charge vector which can be described by means of its stabilizer

subgroup Gstab( ~Q) � E7(7):

g 2 Gstab( ~Q) � E7(7) () g ~Q = ~Q (287)

There are three possibilities:

SUSY Central Charge Stabilizer � Gstab Normalizer � Gnorm

1=2 Z1 = Z2 = Z3 = Z4 E6(6) O(1; 1)

1=4 Z1 = Z2 6= Z3 = Z4 SO(5; 5) SL(2; IR)�O(1; 1)

1=8 Z1 6= Z2 6= Z3 6= Z4 SO(4; 4) SL(2; IR)3

(288)

where the normalizer Gnorm( ~Q) is de�ned as the subgroup of E7(7) that commutes with the stabi-

lizer:

[Gnorm ; Gstab] = 0 (289)
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The main result of [42] is that the most general 1=8 black{hole solution of N = 8 supergravity

is related to the normalizer group SL(2; IR)3. In the subsequent paper [43] the 1=2 and 1=4

cases were completely worked out. Finally in [44] the explicit form of the generating solutions

was discussed for the 1=8 case. In this paper we review the simlest case, corresponding to 1/2

preserved supersymmetry. For the other cases, we refer the reader to references [44],[45].

In all three cases the Killing spinor equation breaks the original SU(8) automorphism group of

the supersymmetry algebra to the subgroup Usp(2nmax)� SU(8� 2nmax)� U(1)

We then have to decompose N = 8 supergravity into multiplets of the lower supersymmetry

N 0 = 2nmax. This is easily understood by recalling that close to the horizon of the black hole

one doubles the supersymmetries holding in the bulk of the solution. Hence the near horizon

supersymmetry is precisely N 0 = 2nmax and the black solution can be interpreted as a soliton that

interpolates between ungauged N = 8 supergravity at in�nity and some form of N 0 supergravity

at the horizon.

5.3 The 1=2 SUSY case

Here we have nmax = 8 and correspondingly the covariance subgroup of the Killing spinor equation

is Usp(8) � SU(8). Indeed condition (286) can be rewritten as follows:

0 �A = iCAB �
B ; A;B = 1; : : : ; 8 (290)

where CAB = �CBA denotes an 8 � 8 antisymmetric matrix satisfying C2 = �11. The group

Usp(8) is the subgroup of unimodular, unitary 8 � 8 matrices that are also symplectic, namely

that preserve the matrix C. Relying on eq. (288) we see that in the present case Gstab = E6(6)

and Gnorm = O(1; 1). Furthermore we have the following decomposition of the 70 irreducible

representation of SU(8) into irreducible representations of Usp(8):

70
Usp(8)�! 42 � 1 � 27 (291)

Furthermore, we also decompose the 56 charge representation of E7(7) with respect to O(1; 1)�
E6(6) obtaining

56
Usp(8)�! (1; 27)� (1; 27)� (2; 1) (292)

In order to single out the content of the �rst order Killing spinor equations we need to decompose

them into irreducible Usp(8) representations. The gravitino equation (281) is an 8 of SU(8) that

remains irreducible under Usp(8) reduction. On the other hand the dilatino equation (280) is a

56 of SU(8) that reduces as follows:

56
Usp(8)�! 48 � 8 (293)
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Hence altogether we have that 3 Killing spinor equations in the representations 8, 80 , 48 con-

straining the scalar �elds parametrizing the three subalgebras 42, 1 and 27. In the sequel we will

work out the consequences of these constraints and �nd which scalars are set to constants, which

are instead evolving and how many charges are di�erent from zero. As we will explicitly see, the

content of the Killing spinor equations after Usp(8) decomposition, is such as to set to a constant

69 scalar �elds: indeed in this case Gnorm = O(1; 1) and Hnorm = 1, so that there is just one

surviving �eld parametrizing Gnorm = O(1; 1). Moreover, the same Killing spinor equations tell us

that the 54 belonging to the two (1; 27) representation of eq. (292) are actually zero, leaving only

two non{vanishing charges transforming as a doublet of O(1; 1). Let us now discuss the explicit

solution. The N = 1=2 SUSY preserving black hole solution of N = 8 supergravity has 4 equal

skew eigenvalues in the normal frame for the central charges. The stabilizer of the normal form is

E6(6) and the normalizer of this latter in E7(7) is O (1; 1):

E7(7) � E6(6) � O (1; 1) (294)

According to our previous discussion, the relevant subgroup of the SU (8) holonomy group is

Usp (8), since the BPS Killing spinor conditions involve supersymmetry parameters �A; �
A sat-

isfying eq.(290). As discussed in the introduction, it is natural to guess that modulo U�duality
transformations the complete solution is given in terms of a single scalar �eld parametrizing

O (1; 1). Indeed, we can now demonstrate that according to the previous discussion there is just

one scalar �eld, parametrizing the normalizer O (1; 1), which appears in the �nal lagrangian, since

the Killing spinor equations imply that 69 out of the 70 scalar �elds are actually constants. In

order to achieve this result, we have to decompose the SU (8) tensors appearing in the equations

(280),(281) with respect to Usp (8) irreducible representations. According to the decompositions

70
Usp(8)
= 42� 27� 1

28
Usp(8)
= 27� 1 (295)

we have

PABCD =
Æ
PABCD +

3

2
C[AB

Æ
PCD] +

1

16
C[ABCCD]P

TAB =
Æ
TAB +

1

8
CABT (296)

where the notation
Æ
tA1:::;An

means that the antisymmetric tensor is Usp (8) irreducible, namely

has vanishing C-traces: CA1A2
Æ
tA1A2:::;An

= 0.

Starting from equation (280) and using equation (290) we easily �nd:

4P;a
a0 � 6Tab

ab = 0 ; (297)
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where we have twice contracted the free Usp(8) indices with the Usp(8) metric CAB. Next, using

the decomposition (296), eq. (280) reduces to

�4
�

Æ
PABCD;a +

3

2

Æ
P [CD;a CAB]

�
CDLa0 � 3

Æ
T [AB Æ

L
C]

ab = 0 : (298)

Now we may alternatively contract equation (298) with CAB or ÆLC obtaining two relations on
Æ
PAB

and
Æ
TAB which imply that they are separately zero:

Æ
PAB=

Æ
TAB= 0 ; (299)

which also imply, taking into account (298)

Æ
PABCD= 0 : (300)

Thus we have reached the conclusion

Æ
PABCDji @��

i��D = 0
Æ
PABji @��

i��B = 0 (301)
Æ
TAB = 0 (302)

implying that 69 out the 70 scalar �elds are actually constant, while the only surviving central

charge is that associated with the singlet two-form T . Since TAB is a complex combination of the

electric and magnetic �eld strengths (283), it is clear that eq. (302) implies the vanishing of 54

of the quantized charges p��; q��, the surviving two charges transforming as a doublet of O(1; 1)

according to eq. (292). The only non-trivial evolution equation relates P and T as follows:�bP@��� � 3

2
iT (�)

�� ��0
�
�A = 0 (303)

where we have set P = bPd� and � is the unique non trivial scalar �eld parametrizing O(1; 1).

In order to make this equation explicit we perform the usual static ans�atze. For the metric we

set the ansatz (149). The scalar �elds are assumed to be radial dependent and for the vector �eld

strengths we assume the ansatz of eq.(154) which adapted to the E7(7) notation reads as follows:

F��� =
1

4�
t�� (r)E(�) (304)

t�� (r) = 2� (g + i` (r))
��

(305)

The anti self dual form E(�) was de�ned in eq. (151). Using (283), (304) we have

T�ab = i t��(r)E�
abC

ABImN��;��f
��
AB : (306)
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A simple gamma matrix manipulation gives further

abE
�
ab = 2i

e2U

r3
xi0i

��1 + 5

2

�
(307)

and we arrive at the �nal equation

d�

dr
= �

p
3

4
`(r)�� ImN��j�� f

��
AB

eU

r2
: (308)

In eq. (308), we have set p�� = 0 since reality of the l.h.s. and of f��AB(see eq. (323)) imply the

vanishing of the magnetic charge. Furthermore, we have normalized the vielbein component of

the Usp(8) singlet as follows bP = 4
p
3 (309)

which corresponds to normalizing the Usp(8) vielbein as

P
(singlet)

ABCD =
1

16
PC[ABCCD] =

p
3

4
C[ABCCD] d� : (310)

This choice agrees with the normalization of the scalar �elds existing in the current literature. Let

us now consider the gravitino equation (281). Computing the spin connention !ab from equation

(149), we �nd

!0i =
dU

dr

xi

r
eU(r)V 0

!ij = 2
dU

dr

xk

r
�k[i V j] eU (311)

where V 0 = eU dt, V i = e�U dxi. Setting �A = ef(r)�A, where �A is a constant chiral spinor, we get�
df

dr

xi

r
ef+UÆBAV

i + 
 B
A;�@i�

�efV i

�1

4

�
2
dU

dr

xi

r
eUef

�
0iV 0 + ijVj

��
ÆBA + ÆBA T

�
ab

abc0Vc

�
�B = 0 (312)

where we have used eqs.(281),(282), (296). This equation has two sectors; setting to zero the

coeÆcient of V 0 or of V iij and tracing over the A;B indices we �nd two identical equations,

namely:
dU

dr
= �1

8
`(r)��

eU

r2
CABImN��;��f

��
AB: (313)

Instead, if we set to zero the coeÆcient of V i, we �nd a di�erential equation for the function f (r),

which is uninteresting for our purposes. Comparing now equations (308) and (313) we immediately

�nd

� = 2
p
3U (314)
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In order to compute the l.h.s. of eq.s (308), (313) and the lagrangian of the 1/2 model, we need

the explicit form of the coset representative IL given in equation (271). This will also enable us

to compute explicitly the r.h.s. of equations (308), (313). In the present case the explicit form of

IL can be retrieved by exponentiating the Usp (8) singlet generator. As stated in equation (273),

the scalar vielbein in the Usp (28; 28) basis is given by the o� diagonal block elements of IL�1dIL,

namely

IP =

 
0 PABCD

PABCD 0

!
: (315)

>From equation (310), we see that the Usp (8) singlet corresponds to the generator

IK =

p
3

4

0B@ 0 C [ABCHL]

C[CDCRS] 0

1CA (316)

and therefore, in order to construct the coset representative of the O (1; 1) subgroup of E7(7), we

need only to exponentiate �IK. Note that IK is a Usp (8) singlet in the 70 representation of SU (8),

but it acts non-trivially in the 28 representation of the quantized charges
�
qAB; p

AB
�
. It follows

that the various powers of IK are proportional to the projection operators onto the irreducible

Usp(8) representations 1 and 27 of the charges:

IP1 =
1

8
CABCRS (317)

IP27 = (ÆABRS �
1

8
CABCRS): (318)

Straightforward exponentiation gives

exp(�IK) = cosh

�
1

2
p
3
�

�
IP27 +

3

2
sinh

�
1

2
p
3
�

�
IP27IKIP27 + (319)

+ cosh

 p
3

2
�

!
IP1 +

1

2
sinh

 p
3

2
�

!
IP1IKIP1 (320)

Since we are interested only in the singlet subspace

IP1 exp[�IK]IP1 = cosh(

p
3

2
�)IP1 +

1

2
sinh(

p
3

2
�)IP1IKIP1 (321)

ILsinglet =
1

8

0B@ cosh(
p
3
2
�)CABCCD sinh(

p
3
2
�)CABCFG

sinh(
p
3
2
�)CCDCLM cosh(

p
3
2
�)CCMC

FG

1CA : (322)
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Comparing (322) with the equation (271), we �nd 10:

f =
1

8
p
2
e
p
3
2
�CABCCD (323)

h = �i 1

8
p
2
e�

p
3
2
�CABCCD (324)

and hence, using N = hf�1, we �nd

NABCD = � i
1

8
e�

p
3�CABCCD (325)

so that we can compute the r.h.s. of (308), (313). Using the relation (314) we �nd a single

equation for the unknown functions U (r), ` (r) = C��`
�� (r)

dU

dr
=

1

8
p
2

` (r)

r2
exp (�2U) (326)

At this point to solve the problem completely we have to consider also the second order �eld equa-

tion obtained from the lagrangian. The bosonic supersymmetric lagrangian of the 1=2 preserving

supersymmetry case is obtained from equation (275) by substituting the values of PABCD and

N��j�� given in equations (310) and (277) into equation (275). We �nd

L = 2R� e�
p
3�F��F

�� +
1

2
@��@

�� (327)

Note that this action has the general form of 0{brane action in D = 4. According to this we

expect a solution where:

U = �1

4
log H(r)

� = �
p
3

2
log H(r)

` = 2r3
d

dr
(H(r))

� 1
2 = k � (H(r))

� 3
2 (328)

where H(r) = 1 + k=r denotes a harmonic function.

The resulting �eld equations are

Einstein equation:

U 00 +
2

r
U 0 � (U)2 =

1

4
(�0)2 (329)

10Note that we are we are writing the coset matrix with the same pairs of indices AB;CD; : : : without distinction

between the pairs �� and AB as was done in sect. (5.1)
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Maxwell equation:
d

dr
(e�

p
3�`(r)) = 0 (330)

Dilaton equation:

�00 +
2

r
�0 = �e�

p
3�+2U`(r)2

1

r4
: (331)

>From Maxwell equations one immediately �nds

` (r) = e
p
3�(r): (332)

Taking into account (314), the second order �eld equation and the �rst order Killing spinor

equation have the common solution

U = �1

4
log H(x)

� = �
p
3

2
log H(x)

` = H(x)�
3
2 (333)

where:

H(x) � 1 +
X
i

ki

~x� ~x0i
(334)

is a harmonic function describing 0{branes located at ~x0` for ` = 1; 2; : : : , each brane carrying a

charge ki. In particular for a single 0{brane we have:

H(x) = 1 +
k

r
(335)

and the solution reduces to the expected form (328).

6 Conclusions

In this paper we have given an account of the deep connection due to supersymmetry among

the central charges of supergravity theory, BPS states and the Bekenstein{Hawking entropy of

extremal black holes. One of the most relevant results concerns the structure of the entropy

formula, which turns out to depend only on the quantized electric and magnetic charges of the

theory. Actually, the entropy is proportional to some group theoretical invariants which can be

constructed out of the duality group of the corresponding supergravity theory.
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An important point, not discussed in this paper, is the fact that four-dimensional black{hole

con�gurations can be interpreted as the four-dimensional appearence of more general con�gura-

tions named \black{p-branes" (namely p dimensional extended objects in D dimensions inter-

polating between at Minkowski space at spatial in�nity and the horizon geometry) in higher D

dimensional supergravities. When the extra D�4 spatial dimensions are compacti�ed, the p-brane
con�guration can be suitably wrapped over some p-dimensional homology cycles of the compact

space, giving rise to a point-like con�guration, namely the four-dimensional black hole. This ap-

proach has been very fruitful and has a wide range of applications, among which we mention the

fact that it allows a statistical interpretation of the black-hole entropy. The reader interested in

the subject is referred to the literature [5],[6],[8],[9].
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