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Abstract: We show that for an additive one-dimensional cellular automata  on space of 
all doubly infinitive sequences with values in a finite set  S = {0, 1, 2, ..., r-1}, determined 

by an additive automaton rule f(x

∞f

n-k, ..., xn+k) = (mod r), and a -invariant uniform 

Bernoulli measure µ, the measure-theoretic entropy of the additive one-dimensional cellular 
automata  with respect to µ is equal to h

∑
−=

+
ki

knx

∞f

k

f

∞f

∞f µ ( ) = 2klog r, where k ≥ 1, r-1∈S. We also 
show that the uniform Bernoulli measure is a measure of maximal entropy for additive one-
dimensional cellular automata . ∞
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Introduction 

Although the additive cellular automata theory and the entropy of this additive cellular  automata 
have grown up somewhat independently, there are strong connections between entropy theory and 
cellular automata theory.  

We give an introduction to additive cellular automata theory and then discuss the entropy of this 
additive cellular automata. In [1] it was given an algorithm for computing the topological entropy of 
positively expansive cellular automata. For a definition and some properties of additive one-
dimensional cellular automata we refer to [2] (see also [1-6]). The study of the endomorphisms and the 
automorphisms (i.e. continuous shift commuting maps, invertible or non-invertible) of the full shift 
and its subshifts was initialed by Hedlund and coworkers in [3].  
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Shereshevsky has shown in [4] that if the automaton map is bipermutative then the associated CA-
action is strongly mixing and it determines in every direction a Bernoulli transformation with respect 
to the uniform Bernoulli measure.  

In [6] Ward has used (n, ε)-separated sets to calculate the topological entropy of cellular automata. 
The definition of additive cellular automata that we have given here differs from the definition  given 
in [6]. Detailed information about cellular automata may be found in Wolfram's paper [7].  

In order to state our result,  we first recall a formulation of our problem. We can also calculate the 
topological entropy of additive cellular automata . We show that there is a maximal measure for 
additive cellular automata. 

∞f

The organization of the paper is as follows: In section 2 we establish the basic formulation of 
problem to state our main Lemma. In section 3 we state our main theorem and 
prove it. Section 4 contains some remarks. In section 5 there is a conclusion. 
 
Formulation of the Problem and Definitions 

Let S ={0, 1, 2, ..., r-1} be a finite alphabet and Ω = SZ be the space of doubly infinite sequence 
x= , x∞

−∞=nnx )( n ∈S. The shift σ : Ω→ Ω defined by (σx)i = xi+1 is a homeomorphism of compact metric 

space Ω. Assume that a function  f(x-k, ..., xk) with values in S is given. This function generates a 
cellular automata of  Ω by the formula: ∞f

∞f x = , y∞
−∞=nny )( n = f (xn-k, ..., xn+k). 

Cellular automata  is continuous and commutes with left shift (see [3]). ∞f
Definition 1. (see [2]) f is additive if and only if it can be written as 

f(xn-k, ..., xn+k) = (mod r), ∑
−=

+

k

ki
ini xλ

where λi ∈ S. From now on, we will say that a cellular automata is additive if the local rule on which it 
is based is additive. 

Let us consider particular case when  f(xn-k, ..., xn+k) = (mod r). Given integer  s ≤ t and a 

block (i

∑
−=

+

k

ki
inx

s ,..., it) ∈S(t-s+1). We define the cylinder set 
s[is, ..., it ]t = {x∈ Ω: xj=ij, s ≤ j ≤ t }. 

Let ξ(s, t) denote the partition of  Ω into the cylinder sets of the form s[is, ..., it ]t, where (is ,..., it) 
runs over St-s+1. 

Lemma. Suppose that f(xn-k, ..., xn+k)= (mod r) and ξ(-k, k) is a partition of Ω, where k ≥ 2, 

then the partition ξ(-k, k) is a generator for additive cellular automata . 

∑
−=

+

k

ki
inx

∞f
Proof. Let ξ(-k, k) ={ -k[i-k, ..., ik ]k  : i-k, ..., ik ∈ S} be a partition of Ω. Evidently the partition ξ 

consist of r2k+1 elements with same measure r-(2k+1). If we take the local rule  

f(xn-k, ..., xn+k) = (mod r), then it is easy to describe ( )∑
−=

+

k

ki
inx ∞f

-1(ξ). Let us consider a centered 

cylinder set C = -k[i-k, ..., ik ]k.  
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Then it can be written 
( )∞f

-1(C) = {{y∈ Ω: y-2k = j-2k, ..., y2k = j2k}: j-2k, ..., j2k ∈S}, 
where 
y-2k + ... + y0  = i-k (mod r) 
... 
... 
y-k + ... + yk = i0 (mod r) 
 .... 
 .... 
y0 + ... + y2k = ik (mod r). 
The partition ξ∨( )∞f

-1( ξ ) consists of as following elements; 
{y∈ Ω: y-2k = j-2k, ..., y2k = j2k}. 

Similarly, it is easy to show that partition  ξ ∨ ( )∞f
-1( ξ )∨ ... ∨ ( )∞f

-(n-1)( ξ ) consists of as 
following elements; 

{z∈ Ω: z-nk = i-nk, ..., znk = ink }, 

where i-nk, ..., ink ∈S. Then it is evident that ξ is a generator, that is, . εξ =−
∞

∞

=
∨ )()(

0

i

i
f

Example. Let S = { 0, 1} and . Then we can write  2) (mod x=)x ..., ,f(x
2

-2i
i22- ∑

=

( )∞f
-1(-2[01101] 2)= -4[111100100]4 ∪ -4[111010101]4 ∪ -4[110110110]4 

                              ∪-4[101110000]4 ∪ -4[011111100]4 ∪ -4[110000111]4 
                               ∪-4[011001101]4 ∪ -4[001101000]4 ∪ -4[000111010]4 

                              ∪-4[101000001]4 ∪ -4[010101110]4 ∪ -4[001011001]4 

                               ∪-4[010011111]4 ∪ -4[100100010]4 ∪ -4[100010011]4 
                                                       ∪-4[000001011]4. 

It is evidently ( )∞f
-1 (-2[01101] 2) ∩ ξ consists of only one cylinder set.  

Now we calculate the measure of the first preimage of centered cylinder set C = -k[ i-k, ..., ik]k under 
additive cellular automata . ∞f

µ(( )∞f
-1( C)) = r2kµ{x∈ Ω: x-2k = i-2k, ..., x2k = i2k, i-2k, ..., i2k∈S} 

                                                     = r2kr-(4k+1) = r-(2k+1). 
Similarly, we can calculate the measure of the second preimage of centered cylinder set                 

C = -k[ i-k, ..., ik]k under additive cellular automata . It is easy to see that the second preimage of  C 
has amount r

∞f
4k as centered cylinder sets  

{x∈ Ω: x-3k = i-3k, ..., x3k = i3k, i-3k, ..., i3k ∈S}. 
Then we have 

µ(( )∞f
-2( C)) = r4kµ{x∈ Ω: x-3k = i-3k, ..., x3k = i3k, i-3k, ..., i3k∈S} 

                                                     = r4kr-(6k+1) = r-(2k+1). 
If we continue this operation, in a similar way, we can determine the measure of the (n-1)st 

preimages of the centered cylinder set C = -k[ i-k, ..., ik]k. It is also easy to see that the (n-1)st preimage 
of the centered block C has amount r2(n-1)k as centered cylinder sets 
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{x∈ Ω: x-nk = i-nk, ..., xnk = ink, i-nk, ..., ink ∈S}. 
We can calculate the measure 

 µ(( )∞f
-(n-1)(C)) = r2(n-1)kµ{x∈Ω: x-nk = i-nk, ..., xnk = ink, i-nk, ..., ink∈S} 

                                                     = r2(n-1)k r-(2nk+1) = r-(2k+1). 
It is obvious that the additive one-dimensional cellular automata is a uniform Bernoulli measure-

preserving transformation. 
∞f

 
The Measure Entropy of the Additive One-Dimensional Cellular Automata f∞ 

In this section we introduce the measure entropy of the additive cellular automata defined above. 
Now we can state the main result. 

Theorem.  Let µ be the uniform Bernoulli measure on Ω with p( i ) = 
r
1 , for each i =0,1,...,r-1 and 

f(xn-k, ..., xn+k) = (mod r). Then measure-theoretic entropy of the additive one-dimensional 

cellular automata  with respect to µ is equal to 2klog r. 

∑
−=

+

k

ki
inx

∞f
Proof. Now we can calculate the measure entropy of the additive cellular  automata  by using 

the Kolmogorov-Sinai Theorem [5], namely, 
∞f

hµ ( ) = h∞f µ ( , ξ ) , ∞f
and ξ is a generator from Lemma. It is easy to see that if 

ξ = { -k[ i-k, ..., ik]k : i-k, ..., ik∈S}, 
then we have 

H(ξ)  = -r(2k+1) µ (-k[ i-k, ..., ik]k )log µ(-k[ i-k, ..., ik]k ) 
                                                   = -r(2k+1) r-(2k+1)log r-(2k+1) 

                                                   =  (2k+1)log r, 
hence 

ξ∨ ( )∞f
-1(ξ) = {{x∈ Ω: x-2k = i-2k, ..., x2k = i2k}, i-2k, ..., i2k∈S}. 

So 
  H(ξ∨ ( )∞f

-1(ξ)) = -r(4k+1) µ (-2k[ i-2k, ..., i2k]2k )log µ(-2k[ i-2k, ..., i2k]2k ) 
                                                       = -r(4k+1) r-(4k+1)log r-(4k+1) =  (4k+1)log r. 

If we continue, then we have the following results: 
ξ ∨ ( )∞f

-1(ξ) ∨ ... ∨  ( )∞f
-(n-1)(ξ) = {{x∈ Ω: x-nk = i-nk, ..., xnk = ink}, i-nk, ..., ink∈S}. 

Finally, it is not hard show that 
 H(ξ ∨ ( )∞f

-1(ξ) ∨ ... ∨  ( )∞f
-(n-1)(ξ)) = -r2nk+1 µ (-nk[ i-nk, ..., ink]nk )log µ(-nk[ i-nk, ..., ink]nk ) 

                                                                       = -r2nk+1 r-(2nk+1)log r-(2nk+1) =  (2nk+1)log r. 
So we have 

hµ ( ) = ∞f r
n

nkfH
n n

i
n

in
log12lim))((1lim

1

0

+
=∨

∞→

−
∞

−

=∞→
ξ = 2klog r. 
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Measures with Maximal Entropy 

The metric on Ω is defined by ∑
∞

−∞=

−=
i

ii
i yxdyx ),(2),(ρ ,  where d is a metric on S and Ω is a 

compact metric space. 
Definition 2. Let  be any uniformly continuous map of a metric space (Ω, ρ). A set E ⊂ Ω is 

said to be (n, ε)-separated under  if for every pair   x ≠ y in E there is a       
∞f

∞f
m∈{0, 1, ..., n-1} with the property that  ρ( ( )∞f

m(x), )∞f
m(y)) > ε. For each compact set    K⊂ Ω, let  

sK (n, ε) = max {|E| : E ⊂ K  is  (n, ε)-separated under }, ∞f

hK( ,ε) = ∞f ),,(log1suplim εns
n K

n ∞→
 

and 
hK( ) = ( , ε) ∞f Khlim

0→ε ∞f

finally, define the topological entropy of  to be h∞f

∞f

top( ) = ( ). See [1,6] for the topological 

entropy of an additive cellular automata . 

∞f K
K

hsup ∞f

Corollary ([6, Corollary]). An additive cellular automata : Ω →Ω  with local rule  ∞f
f (x-u, ..., x0, ..., xk) = ( a-ux-u + ... + a0x0 + ... + akxk) (mod r), 

where a-u, ..., a0, ..., ak ∈ S and a-u, ak ≠0, has topological entropy 

htop( ) =  ∞f








≤≤
≥+
≥−≥

,log
,,log)(

,log

0
0
0

kifru
ukifrku

ukifrk

u- 
 

 

In this paper we assume that a-u = ... = a0 = ... = ak =1. 
Definition 3. The measure µ is maximal in the sense that the measure-theoretic entropy of with 

respect to µ coincides with the topological entropy h
∞f

top( ). ∞f

Remark 1. Let µ be a uniform Bernoulli measure on Ω with  p( i ) = 
r
1 , for each i=0, 1, ..., r-1, and 

f(xn-k, ..., xn+k) = (mod r). Because  measure entropy of  additive cellular automata  with 

respect to µ is equal to 

∑
−=

+

k

ki
inx ∞f

2klog r = hµ ( ) = h∞f top( ), ∞f
the additive cellular automata has a maximal measure. 

Remark 2. There are  different functions f :(x
12

)(
+krr n-k, ..., xn+k) → S. The function  

f(xn-k, ..., xn+k) = (mod r) ∑
−=

+

k

ki
inx

defines the cellular automata  with maximal entropy among such functions. ∞f
 
Conclusion 

This paper contains the following results: 
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• We have found a generating partition for the additive one-dimensional cellular automata  
(Lemma). 

∞f

• We have calculated the measure-theoretic entropy of the additive one-dimensional cellular 
automata  (Theorem). ∞f

• We have compared the measure-theoretic entropy and the topological entropy of the  additive 
one-dimensional cellular automata. We have seen that the uniform Bernoulli measure is a 
measure of maximal entropy for additive one-dimensional cellular automata.  

In view of Remark 1, an interesting open question is whether there exists a measure of maximal 
entropy for D-dimensional (D ≥ 2) additive cellular automata over the ring Zr (r ≥ 2). 
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