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Abstract:  A mechanism is described which can create a chemical potential gradient from a 

single heat reservoir.  The mechanism is equivalent to a Maxwellian valve. Heat supplies the 

energy through thermal fluctuations to form the gradient contrary to the second law.  A 

quantitative analysis of the system is given. 
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Introduction 

 

 Maxwell [1] drew attention to the possibility that the second law could be limited in its 

application by introducing a “neat-fingered being” , later to be called a demon, to control a flow of gas 

molecules and create a chemical potential gradient at the expense of heat. However, Maxwell finally 

dismissed the idea that the control was to have intelligence and insisted that it should be viewed as a 

valve [2]. This conjecture remains with its original force because to provide a refutation, an 

examination must be made of all relevant processes and structures and a proof showing that the 



Entropy 2004, 6  

 

 

88

examination is complete. To discard the concept of the Maxwellian valve is no mere task and often 

such attempts are either circular [3] or are too specific [4]. 

 Nature has provided many examples of membrane carriers where the major function is the 

creation of gradients of chemical potential across cell walls. One such example is known as the 

sodium-potassium ATPase, an enzyme that carries sodium ions out of the cell and potassium ions into 

the cell and the mechanism is driven by the hydrolysis of ATP.  We can draw on models of the ATPase 

to make a theoretical construct of an enzyme that acts as a Maxwellian valve. To accomplish this, the 

chemical energy of the hydrolysis is replaced by thermal energy from a single heat reservoir. 

 The system (Figure 1) of a Maxwellian valve has been described in a preliminary sketch [5]. It 

concerns the flux of a solute (S) through a heat conducting membrane via an embedded enzyme 

molecule that rotates around an axis (x) normal to the membrane surface. The solute is adsorbed onto 

the enzyme from either one of the solutions bathing the membrane and after a conformational change 

of the enzyme, the solute is released to the other solution. The two solutions have the same 

temperature. The adsorbed solute can traverse the membrane in both directions and the nature of the 

adsorption bond remains constant and independent of location of the adsorption site. However, the 

rotation of the enzyme in one of its configurations (Q) affects the free energy of adsorption and it will 

be shown that this leads to a net unidirectional flux of the solute. The flow occurs even in the absence 

of a gradient of chemical potential between the solutions and is thereby a mechanism for perpetual 

motion of the second kind.  Onsager [6] saw the possibility of microscopic irreversibility within 

conservative systems where mechanical forces such as centrifugal, Coriolis and external magnetic 

forces play an important role. That is, in situations where the forces are odd functions of the velocity.   

 Thus, the total system to be analysed can be described briefly as follows. Two solutions of a 

solute S are separated by a membrane that contains an enzyme. The enzyme exists in two 

conformations, P and Q, both of which can adsorb a molecule of solute to become SP and SQ 

respectively. 

   Q  +  S   �   SQ    

   P   +  S   �   SP 

Also conformational transitions exist between P and Q and between SP and SQ. 

             P   �   Q 

            SP  �   SQ 
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 The four reactions form a cycle (Fig. 1) in which a solute molecule is transferred from one 

solution to the other. We shall assume, as is normal in chemical kinetics, that each reaction is 

independent of the past history of the process. That is, the available events occur randomly. A large 

number of events may occur before one cycle is completed and cycles can be clockwise or 

anticlockwise.   
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FIGURE 1. Four states of an enzyme are shown. Two of the states, P and Q, are conformers of the 

enzyme and the two other states are the same conformers SP and SQ respectively on which a solute 

molecule of S is adsorbed. The enzyme is embedded in a membrane with its x-axis perpendicular to the 

membrane. The adsorption sites on P and SP lie on one side of the membrane and those of Q and SQ 

lie on the other. The sites, occupied or empty, pass through the membrane intact during conformational 

changes. Q has a different moment of inertia from the other states. 

 
Structures 

 

 The enzyme (Fig. 1) has an axis of rotation defined as the x-axis and the y-z plane passes 

through the enzyme and is orthogonal to the x-axis.  Furthermore, the membrane lies in the y-z plane.  

The locations of the adsorption site play an important role in the design.  In all states, the adsorption 

site is in the surface of the enzyme.  On P and PS the adsorption site lies on the x-axis at a positive 
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 value of x. On Q and QS the adsorption site is on the opposite side at a negative value of x and lies at 

a distance ‘r’  from the axis.  [S+] and [S-] are the concentrations of S in the two bathing solutions with 

their subscripts indicating their locations according to x. 

 

Moments of Inertia 

 

 In each of the four reaction pathways in the cycle, there is an associated change in free energy 

and this can be divided into chemical and physical components, the latter being the contribution from 

the energy of rotation around the x-axis. As the argument presented here does not require complete 

generality, simplifications can be made. We choose to select the condition that three of the structures 

have the same moment of inertia with reference to the x-axis. SP and SQ can be given the same 

moment of inertia (= I) since the distribution of mass in the two conformers is not constrained by any 

condition given above.  Now P and SP are identical except for the adsorbate, S. However, S provides 

no contribution to the moment of inertia of SP since it is attached to P on the axis of rotation. Even if S 

contained elements far from the axis, its attachment through a single bond directed along the axis 

would not allow any torque to be expressed between S and P through the bond1. Thus, P has the same 

moment of inertia as SP (= I). If the mass of S is ‘m’  then the moment of inertia of SQ differs from the 

moment of inertia of Q by the amount IS where 

 
    I mrS ==== 1

2
2       (1) 

 

Free Energy Differences 

 

 In this section, we will assume that the second law is valid for the above system and that the 

initial conditions can be arranged so that each pair of adjacent states is in equilibrium. A consequence 

of this assumption is that [S+] and [S-] will be equal and should remain so with time. Also without 

affecting the argument we can make the simplifying assumption that the free energy difference between 

                                                           
1 A simple electrostatic bond with a strength independent of the orientation of the solute to the site would be an ideal 

arrangement where the adsorbate is free to rotate around any line through its centre of gravity. 
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P and Q is zero when the two conformers have no angular velocity around the axis of rotation. (The 

free energies in the absence of rotation depend on the intramolecular bonds of the conformers and the 

interactions of the conformers with the membrane and the bathing fluids). There is no previously 

imposed condition that would invalidate this assumption. 

 Thus, it follows from (1) that in general, the difference in free energy between P and Q is given 

by the rotational component alone. 

   ∆∆∆∆GPQ
0 ==== 1

2
2NIS ωωωω  

 where N is Avogadro’s number and ωωωω is the angular velocity of the Brownian motion. 

The equilibrium between P and Q can also be expressed in chemical thermodynamical terms as 

   ∆∆∆∆GPQ
0 ==== −−−−NkT K PQln  

where KPQ is the equilibrium constant, k is the Boltzmann constant and T is the absolute temperature. 

With the subscripted k as a rate constants, we obtain from the preceding two equations 

   
k

k
K

I

kT
PQ

QP
PQ

S==== ==== −−−−exp( )
ωωωω 2

2
    (2) 

 
 Since the chemical nature of the adsorption bond is the same for P and Q, it follows that the free 

energy difference between SP and SQ is also zero. Furthermore, since the moments of inertia of SP and 

SQ are identical, their free energy difference is independent of rotation velocity. 

           ∆∆∆∆GSPSQ
0 ==== 0  

Therefore  
    kSPQ = kSQP     (3) 

 
 The standard free energy of adsorption at the adsorption site on P is given by 

             ∆∆∆∆ ∆∆∆∆G GPSP
0

ads
0==== ==== −−−−NkT K adsln  

where Kads has no rotational component 

     
k

k
K K

SP
P S

P

SP
PSP ads==== ==== ====

++++

[ ]
[ ][ ]

    (4) 

 
The standard free energy of adsorption at the adsorption site on Q has a rotational component. 

            ∆∆∆∆ ∆∆∆∆G GQSQ
0

ads
0==== ++++ ==== −−−− ++++1

2
2 1

2
2I N kT K IS ads Sωωωω ωωωω{ ln }  

      ==== −−−−NkT K QSQln  



Entropy 2004, 6  

 

 

92

     ∴∴∴∴ ==== −−−− ====
−−−−

K K
I

kT

SQ

Q SQSQ ads
Sexp( )

[ ]

[ ][ ]

ωωωω 2

2
 

 

     ∴∴∴∴ ==== −−−−
k

k
K

I

kT
Q

SQ
ads

Sexp( )
ωωωω 2

2
  (5)  

 
A simple interpretation of equations (2) and (5) draws on the fact that the centrifugal force increases 

the probabilities of the transformations SQ to Q and Q to P. In the remaining section of the cycle 

involving SP, the centrifugal force has no influence. This is the foundation of the irreversibility about 

which Onsager  [6] surmised. 

 
Kinetic Equations 
 
 
Following in the manner of Onsager [6], we obtain a net clockwise reaction rate given by 

 

                                       [ ]
{ [ ] [ ]}

Enzyme
k k k k S k k k k SSQP SP PQ Q SPQ SQ QP P∆∆∆∆ −−−− ++++−−−−   (6) 

 
where [Enzyme ] is the total concentration of the enzyme carrier in moles per unit area of membrane 

and 

 

1                   1                    1                  1

-kp[S+]-kPQ       kQP                        kSP                        0

 kPQ            -kQ[S-]- kQP              0                 kSQ

 kp[S+]             0                         -kSPQ-kSP           kSPQ

∆  =

 

 

The four rows of ∆ are obtained from the matrix of equations based on the total concentration of 

enzyme 

   [Enzyme ] = [P]  +  [Q]  +  [SP]  +  [SQ] 

and on d[P]/dt, d[Q]/dt and d[SP]/dt being zero for the steady state (or the assumed equilibrium). 

 Onsager, in discussing cyclic processes, drew attention to the thermodynamic importance of 

expression (6) noting that it would be zero when the processes had reached equilibrium. This of course 

was a conclusion he reached in his discussion on reversible reactions. Although in the same paper, 
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Onsager introduced some concepts of microscopic irreversibility, he did not discuss these advances 

with regard to cyclic processes nor did he show how they might have been conceived within the 

framework of chemical reactions.  

 By the substitution of the results of equations (2)-(5) in (6) we obtain the net anti-clockwise 

flux, J. 

          J  =    [ ]
{exp( )[ ] [ ]}

Enzyme
k k k k K

I

kT
S SSPQ SP QP SQ ads

S

∆∆∆∆
−−−− −−−−−−−− ++++

ωωωω 2

  (7) 

 

All factors of (7) are non-zero when [S+]=[S-]. Thus the above system generates from solute 

equilibrium a non-zero chemical potential gradient which tends to a maximum given by 

                 
[ ]

[ ]
exp( )

S

S

I

kT
S++++

−−−−
==== −−−−

ωωωω 2

 

The resulting gradient is available for work at the expense of the heat of the system. 

 Because the above scheme develops a net non-zero flux given by (7), the system can not be in 

equilibrium, which contradicts our assumption. Namely that the second law was valid and that the 

system could exist at equilibrium with [S+] = [S-]. As the additional simplifying assumptions affect 

only the complexity of the equations and not the non-equilibrium status of the system, one can only 

conclude that the universality of the second law has been refuted in this particular case. 

 

A model without conformational changes 

 

 Consider a simple pore in a membrane through which (say) cations can pass and which is free 

to rotate around its own axis by Brownian motion. If the pore on one side of the membrane extends 

into the bathing solution and has its entrance and exit for cations in the side of the pore rather than at 

the end, then cations would be subjected to a centrifugal force at this orifice (Fig. 2). This indeed 

would be the case if there were an adsorption site at the orifice where the cation had a significant 

resident time. The passage of cations would, from the same reasoning as given above, create a 

membrane voltage where the bathing solution ‘A’  would become the more positive. 

 This pore model may be more practicable than the proposed carrier model. Firstly, the rate of 

transfer of cations is much faster than can be generated by the more sluggish conformational changes 
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of the carrier model. Secondly, to keep the adsorption site intact during the conformational changes of 

the carrier, the carrier would need to be a much larger structure than the pore and consequently, the 

moment of inertia of the pore would be much smaller than that of the carrier. Because Brownian 

  

Membrane

B A
 

FIGURE 2. Apore in a membrane which facilitates cation transport. The pore extends into solution 

‘A’  and cations are required to exit and enter from ‘A’  via an orifice in the side of the pore. The pore 

rotates by Brownian motion.  

 

rotational velocities are inversely dependent on the moments of inertia, the rotational contribution to 

the free energy difference of the cation  between the solution and the orifice would be greater than that 

found between the solution and the adsorption site of the carrier. Thirdly, the structure of the pore is 

more elementary than that of the carrier and its construction from existing examples less challenging. 

This particular pore must rank as one of the simplest of Maxwellian valves. 
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