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__________________________________________________________________________________ 

 
Abstract: Recently, the author suggested a simple and composite equation of state by 

incorporating fundamental thermodynamic properties like heat capacities into her 

earlier concise equation of state for gases based on free volume and molecular 

association / dissociation. This work brings new results for aqueous solutions, based on 

the analogy of the equation of state for gases and solutions over wide ranges of 

pressures (for gases) and concentrations (for solutions). The definitions of entropy and 

heat energy through the equation of state for gases also hold for solutions.  
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__________________________________________________________________________________ 

 
1. Concise equation of state for aqueous solutions  
 

     The recent paper [1] on a concise equation of state for gases incorporating thermodynamic laws and 

entropy, was based on van’t Hoff’s ideal law analogy found valid [2] for higher pressures (for gases) 

and concentrations (for solutions). For aqueous solutions, the following concise equation of state was 

established for strong electrolytes like NaCl(aq) for all concentrations [2],   
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π(VA - Vh)/i = πVf = RT (1) 

 

where π and VA are the osmotic pressure and total volume of water (A) respectively of a solution 

containing one mole (consisting of one molecular weight) of solute at temperature T, R is the molar 

gas constant, Vh is the volume of water held as hydration by one mole of solute, i [= 1 + (ν - 1) α] is 

the van't Hoff factor representing the actual number of moles of solute due to partial dissociation of 

one mole of the electrolyte into να ions and (1 - α) ion pairs, α is the degree of dissociation, ν is the 

number of moles into which one mole of solute dissociates at infinite dilution and Vf is the free 

(subscript f) volume of solvent per mole of solute. For a non-electrolyte like sucrose in water, i = 1. 

The values of π, Vh and i can be evaluated from the available data on osmotic coefficients as described 

in [2].  

    Note that equation (1) is not the ideal law, πV = RT (although similar in mathematical form) but 

with Vf in place of V, the total volume of solution. As π  0, i  ν and πVf  RT (ideal law). The 

equations presented earlier for gases [1], also hold for solutions (with subscript s, and with osmotic 

pressure π in place of pressure P for gases). For an easier comparison with the equations established 

for gases [1], this paper is written in a similar way. 

    

2. Equation of state incorporating heat capacities 
 

   The above equation (1) can be combined with the heat capacity at constant osmotic pressure (Cπf) 

and constant volume (CVf) respectively, defined here on the free volume per mole basis. The ideal heat 

capacity difference is equal to the gas constant. Since the ideal law and equation (1) here are of the 

same form with Vf in place of V, the heat capacity difference is substituted here for R in equation (1) 

to obtain a new composite equation of state based on π, V, T and thermodynamic quantities, 

  

πVf = (Cπf - CVf)T = RT (2) 

 

Small changes dπ, dVf and dT of π, Vf and T in equation (2) are related by, 

 

πdVf  + Vfdπ = (TdCπf + CπfdT) - (TdCVf + CVfdT)  (3a) 

πdVf  + Vfdπ = (Cπf - CVf)dT = RdT    (3b) 

 

where dCπf = d(CVf + R) = dCVf, CVfdT = dEs is the change in internal energy (Es) of the solution, πdVf 

= -dAs = RTdlnVf is the work of expansion (dilution, for solution), denoted as change in Helmholtz 

free energy (As) for the solution, CπfdT = dHs is the change in enthalpy (Hs), and -Vfdπ= -dGs = -

RTdlnπ is the work of compression, denoted as the change in Gibbs free energy (Gs). Thus,  

 

-dAs + dGs = dHs - dEs = RdT (4) 



Entropy 2004, 6  

 

 

130

 

3. Equation of state, heat, entropy and partition function 
 

   On rearranging the terms in equations (3), one finds that  

 

πdVf + CVfdT = CπfdT - Vfdπ = dQs  (5a) 

-dAs + dEs = dHs - dGs = d(TS) = dQs (5b) 

  

where dQs, the amount of heat energy absorbed by the solution, causes a temperature change dT and 

volume change dVf at osmotic pressure π, or osmotic pressure change dπ at volume Vf, as per 

Helmholtz’s definition, Es - As = TS, where S is the entropy. Thus, equations (5) are the energy 

conservation laws in accordance with the 1st law of thermodynamics.  

    From the relation between partition function (f) and molar entropy [3],  

 

S = RlnW = Es/T + Rlnf = (Es - As)/T (6) 

 

where W is the maximum probablitity of existence at the given π, V, T and the last term comes from 

the Helmholtz relation. Note that Es = RT2(dlnf/dT)V and dEs = CVfdT from equations (5), -As = RTlnf 

and -dAs = RTdlnf = RTdlnVf. The partition function is [1] 

 

f = Vf/VdB = RT/πVdB  (7) 

 

where VdB = (ΛdB)
3, ΛdB = (h/p) is the de Broglie wavelength [4], h is the Planck constant and p is the 

linear momentum of the solute. 

     Thus, from equations (5), Qs, the heat energy, can be defined as in the case of gases [1] (for the first 

time) as, 

 

Qs = Es - As = Hs - Gs = TS = RTlnW = πVflnW (8) 

         

     This shows that the solution at any given π, V, T has a heat energy, Qs and it is related to the 

internal energy Es, enthalpy Hs, the free energies As and Gs and entropy S as shown by equation (8). At 

T = 0, Q = 0 (and S is chosen as zero at T = 0, as per the 3rd law). Since the above quantities have 

standard values (Eo, Ho, Ao, Go and So) at STP, the standard value of Qo = Eo – Ao = Ho – Go = ToSo at 

STP. In the case of NaCl(aq), So = 115.48 J.mol-1K-1 at 25 oC  as per the data in [5]. This allows one to 

obtain Qo as ToSo = 34.43 kJ.mol-1. The difference in Qs in any two states, ∆Qs = Q - Qo = ∆E - ∆A = 

∆H - ∆G = ∆(TS).   

 

4. Equation of state, entropy and reversibility  
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      In a reversible process consisting of isothermal expansion (dVf) at temperature T1 accompanied by 

a heat change dQπ = πd(VflnW) = T1dS (see equation (8)) followed by isothermal compression (dπ) at 

T2 accompanied by a heat change dQVf = Vfd(πlnW) = T2dS, (as in a Carnot cycle), the net change 

dQπ - dQVf • 0, but    

                  

dQπ/T1 - dQVf/T2 = dS - dS = 0 (9) 

 

Thus the ratio dQ/T is of significance for a reversible process [and it gave rise to the notion of entropy 

as dQ/T = S (instead of dS!) and that S – S = 0 for a reversible process (2nd law of thermodynamics). 

Note the inconsistency that S is also sometimes defined as δQ/T or qrev/T].       

    It is to be noted that dQ is the sum of two terms:  

  

dQ = TdS + SdT (10) 

                    

The free energy terms in equations (5) depend on dS and dT as follows: 

 

-dAs = πdVf = dQ - CVfdT = TdS + (S - CVf)dT (11a) 

dGs = Vfdπ = CπfdT - dQ = (Cπf - S)dT – TdS (11b) 

 

For an isothermal process, dT = 0 and dAT = dGT = -TdS = dQT.  

     Thus, entropy, heat capacities and the thermodynamic laws are integral parts of the new equation of 

state, equation (2). 
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