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1 Introduction

In conformal field theory, people look at a Riemann surface Σ with boundary ∂Σ, and the set of

maps from Σ into a Riemannian manifold M . The case which will be of interest for us in this

present work is when the genus of the Riemann surface is 0. This corresponds to a punctured

sphere. We suppose that there are one input loop and n output loop. The map from Σ into M

are chosen at random, with the formal probability law:

dµ(ψ) = 1/Z exp[−I(ψ)]dD(ψ) (1)

where dD is the formal Lebesgue measure, I(ψ) the energy of the map and Z a normalizing

constant called the partition function destinated to get a probability law. Segal [46] has given

a series of axioms which should be satisfied by this theory. In particular, conformal field theory

predicts the existence of an Hilbert space Ξ associated to each loop space such that the surface

Σ realizes a map from Ξ⊗n into Ξ, if we consider the case of the (n + 1)-punctured sphere.

Hom(Ξ⊗n,Ξ) is the archetype of an operad. Namely, if we consider n elements of Hom(Ξ⊗ni ,Ξ)

and an element of Hom(Ξ⊗n,Ξ), we deduce by composition an element of Hom(Ξ⊗
∑

ni ,Ξ). This

composition operation will correspond to the operation of glueing n 1 + ni punctured spheres in

a sphere with (1 +
∑
ni) punctured points. For the literature about this statement, we refer to

[22], [24], [21], [49]. For material about operads, we refer to the proceedings of Loday, Stasheff

and Voronov ([39]).

The problem of the measure dµ is that it is purely hypothetical: in the case when the manifold

M is replaced by R, it is a Gaussian measure, which gives random distributions (See [42], [48],

[19]). But it is difficult to say what are distributions that live on a manifolds.

Our statement is the following:

-)Define a measure over the space of spheres with 1 + n punctured points.

-)Define an Hilbert space Ξ associated to each loop space given the punctured points on the

sphere.

-)Define associated to the sphere with 1+n punctured points an element of Hom(Ξ⊗n,Ξ), such

that the application is compatible with the action of sewing spheres along their boundary.

For that, we use the theory of infinite dimensional process, especially the theory of Brownian

motion over a loop group of Airault-Malliavin [1] and Brzezniak-Elworthy [7]. Let us recall that

the theory of infinite dimensional processes over infinite dimensional manifolds has a lot of aspects.

The first who have studied Brownian motion over infinite dimensional manifolds is Kuo [27]. The

Russian school has its own version [4], [11], [5]. The theory of Dirichlet forms allows to study

Ornstein-Uhlenbeck processes over some loop spaces [12], [2]. Our study is related to the theory

of Airault-Malliavin, but in order to produce random cylinders, Airault-Malliavin consider a 1+1

dimensional theory: the first 1 is related to the dimension of the propagation time of the dynamics

and the second 1 is involved with the internal time of the theory (The loop space). Our theory is

1+2 dimensional, because the internal time of the theory is 2 dimensional.

1+2 dimensional theories were already studied by Léandre in [31] in order to study the Wess-

Zumino-Novikov-Witten model on the torus, in [32] in order to study Brownian cylinders attached
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to branes and in [35] in order to study one of the concretisation of Segal’s axiom by using Ck

random fields. In [30] and in [31], stochastic line bundles are used. In [29], we give a general

construction of 1 + n dimensional theory, and we perform a theory of large deviation, in order to

compute the action of the theory. In [33], we study stochastic cohomology of the space of random

spheres, related to operads (For the aspect of operads related to n-fold loop space, we refer to

the proceeding of Loday-Stasheff-Voronov [39]). The problem in [35] is that there is no Markov

property of the random field, such that we cannot realize an operad by sewing punctured spheres.

Our goal is to construct a 1+2 dimensional Wess-Zumino-Novikov-Witten model on the punc-

tured sphere, which is Markovian on the boundary on the sphere. This Markov property allow us

to realize an operad, by sewing random spheres along their boundary. For the material of sewing

surfaces, by using the formal measure of physicist, we refer to the surveys of Gawedzki ([19], [16],

[17]).

We thank the warm hospitality of Maphysto, department of Mathematics, of the University of

Aarhus, where this work was done.

2 Punctured random spheres and markov property

In order to construct a sphere with 1 + n punctured points, we define first a sphere with 1 + 2

punctured points (a pant), and we sew the pants along their boundary.

We consider a compact connected Lie group G of dimension d, equipped with its bi-invariant

metric. We can imbedd it isometrically in a special orthogonal group.

We consider the Hilbert space H of maps from S1× [0, 1] into the real line R endowed with the

following Hilbert structure:

‖h‖2
S1×[0,1] =

∫
S1×[0,1]

|h(S)|2dS+∫
S1×[0,1]

|∂/∂sh(S)|2dS +

∫
S1×[0,1]

|∂/∂th(S)|2dS+

∫
S1×[0,1]

|∂2/∂s∂th(S)|2dS
(2)

where S = (s, t) belongs to S1 × [0, 1] We can consider the free loop space of maps from S1 into

R with the Hilbert structure:

‖h‖2
S1 =

∫ 1

0

|h(s)|2ds+

∫ 1

0

|h′(s)|2ds (3)

We can find an element e(s) of this Hilbert space such that

h(0) =< h, e > (4)

where e(s) = λ exp[−s] + µ exp[s] for 0 ≤ s ≤ 1 such that e(0) = e(1) but e′(0) 6= e′(1).

We add in (2) the Neumann boundary condition:

∂/∂th(s, 0) = ∂/∂th(s, 1) = 0 (5)
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Let us recall that the Green kernel over [0, 1] associated to the Hilbert space of functions from

[0, 1] into R with Neumann boundary condition, associated to the Hilbert structure:∫ 1

0

|h(t)|2dt+

∫ 1

0

|h′(t)|2dt (6)

satisfies to

et(t
′) = (µ−t exp[−t′] + λ−t exp[t′])1t′≤t + (µ+

t exp[−t′] + λ+
t exp[t′])1t′>t (7)

where µ−t , λ
−
t , µ

+
t , λ

+
t depend smoothly on t. The Green kernel associated to the Hilbert structure

(2) are the product of the one dimensional Green kernel es(s
′)et(t

′) = Es,t(s
′, t′).

We would like to consider the same Hilbert space with the constraint h(s1, 1) = h(s2, 1) = 0 for

two given times s1 < s2 (We can choose another condition, but we choose the simplest condition

for the sake of simplicity). When we add this condition, we get another Hilbert space H1 which

is a finite codimensional subspace of the initial Hilbert space H.

We can find an orthonormal basis of the orthogonal complement of H1 constituted from two

maps h1(s, t) and h2(s, t) which are smooth in (s, t). Let us consider the Brownian motion with

values in H. It is a 3 dimensional Gaussian process Bu(s, t) where u denotes the propagation

time and (s, t) the internal time. The covariance between B.(s, t) and B.(s
′, t′) is Es,t(s

′, t′). The

Brownian motion with values in H1 can be seen as

B1,u(s, t) = α1Bu(s, t) + β1B1
uh

1(s, t) + γ1B2
uh

2(s, t) (8)

where (α1, β1, γ1) are deterministic constants and B1
u and B2

u are two R-valued independent Brown-

ian motion. In the sequel, we will choose this procedure in order to construct the Brownian motion

B1,u(S) with values in H1.

Let us consider the time t = 1 where the loop splits in two loops given by s1 and s2. We get

after this splitting two circles. We consider the Hilbert space H2 of maps from S1 × [0, 1] into R

submitted to the boundary conditions h(s, 0) = h(s, 1) = 0 with the Hilbert structure:∫
S1×[0,1]

|∂2/∂s∂th(S)|2dS +

∫
S1×[0,1]

|∂/∂th(S)|2dS (9)

In fact we should introduce some normalizing constant due to the fact that we do not consider

the normalized Lebesgue measure over each circles given by splitting the circle into 2 circles. The

Green kernel associated to this problem is the product of the Green kernel associated to (3) and

the Green kernel associated to the Hilbert space of functions from [0, 1] into R equal to 0 in t = 0

and t = 1 associated to the Hilbert structure
∫ 1

0
|h′(t)|2dt. The Green kernel associated to this

Hilbert space are of the type

e2t (t
′) = att

′1t≥t′ + bt(t
′ − 1)1t<t′ (10)

where at and bt are smooth. Therefore the Green kernel, E2
s,t(s

′, t′), associated to the Hilbert space

H2 satisfy to

E2
s,t(s

′, t′) = es(s
′)e2t (t

′) (11)
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We consider an analogous Hilbert space H3 with the Hilbert structure (9) and the boundary

condition h(s, 0) = 0 (without the boundary condition h(s, 1) = 0). The Green kernel in t are of

the type

e3t (t
′) = att ∧ t′ (12)

and the global Green kernel satisfy to

E3
s,t(s

′, t′) = es(s
′)e3t (t

′) (13)

Over each Hilbert space, we consider the Brownian motion Bi,.(., .). Let Σ be a pant (The

elementary surface). Its boundary is constituted of circles, and we get tubes near the output

boundary S1 × [0, 1/2] and tube near the input boundary S1 × [1/2, 1]. Near the boundary,

we consider the Brownian motion with values in H3, by taking care that the starting condition

h(s, 0) = 0 is inside Σ for an output boundary and this condition is outside Σ for an input

boundary. We choose 3 independent Brownian motion B3
. (.) over H3. We multiply these Brownian

motions by a deterministic function g(t) equal to 0 only at 0 and 1 such that g(1/2)B3
. (., 1/2)

corresponds to a normalized circle of length 1. Outside these boundary tubes, we consider over

the cylinder with constraint h(s1, 1) = h(s2, 1) = 0, a Brownian motion with values in H1, chosen

independently of the others Brownian motions, but which intersect the input boundary tube on

the cylinder S1 × [1 − ε, 1]: we multiply by a smooth function g(t) > 0 which is 0 only in 1 − ε.

When the loop s → h(s, t) splits in two loops, we get two loops: we add the Brownian motion

with values in H2 over each (Two independent one modulo some normalizing constants), and we

get two cylinders which intersect the exit tube S1 × [0, 1/2] over the tube S1 × [0, ε]. We mutiply

these Brownian motion by a smooth function g(t) > 0, and which is 0 on ε.

After performing all these glueing operations, we get an infinite dimensional Gaussian process

parametrized by [0, 1]× Σ u→ Btot,u(.), Which is an infinite dimensional Brownian motion with

values in a suitable Hilbert space of functions on Σ which satisfies to the following properties:

-)For all S ∈ Σ, u→ Btot,u(S) is a Gaussian martingale.

-)(u, S) → Btot,u(S) is almost surely Hölder, and if <,> denotes the right bracket of the

martingale theory, we get for u ≤ 1

< Btot,.(S), Btot,.(S
′) >≤ Cd(S, S ′)1/2 (14)

over each elementary parts of the pant Σ where the construction is done. Moreover, over the pant

Σ, (u, S) → Btot,u(S) is almost surely continuous.

c)Over each boundary of the pant, u→ Btot,u(S) are independent.

In order to curve these Gaussian processes, we use the theory of Brownian motion over a loop

group of Airault-Malliavin [1] and Brzezniak-Elworthy [7].

Let ei be a basis of the Lie algebra of G. Lert Bi
tot,.(.) be d independent copies of Btot,..(S). We

write duBtot,u(S) =
∑
eiduB

i
tot,u(S). We consider the equation in Stratonovitch sense:

dugu(S) = gu(S)duBtot,u(S) (15)

starting from e, the unit element in the group G..
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We get (See [29], [31]) for proof in a closed context.

Theorem 2.1: Over each elementary part of the pant where the leading Brownian motion is

constructed, the random field S → g1(S) is almost surely 1/2− ε Hölder. Moreover, the random

field on Σ: S → g1(S) is almost surely continous, and its restriction on each circle on the boundary

are independent.

In order to get a general (1 + n) punctured sphere, we sew successively pants, which are

independent, except on the boundary, with a glueing condition. This glueing condition is, when

we sew an exit loop of a pant to an input loop of another pant, we choose the same Brownian

motion on H3. We can do that, because the restriction to S1 × {1/2} are the same. We get by

that a tree or a punctured sphere Σ(1, n). We get:

Theorem 2.2: Over each punctured sphere Σ(1, n), the random field S → g1(S) got after this

sewing procedure is almost surely continuous.

By using this procedure, if we consider a (1 + n) punctured spheres Σ(1, n) and n punctured

spheres Σ(1, ni), we can glue the input loop to each Σ(1, ni) to the output loop of Σ(1, n) and we

get a sphere Σ(1,Σni). We suppose that all the data in this sewing procedure are independents,

except for the Brownian motion in H3 when we sew an output boundary in Σ(1, n) to an input

boundary in Σ(1, ni). Let us suppose that the random fields are sewed on the loops (∂Σ)i.

We get some thing like a Markov property along the sewing boundary:

Theorem 2.3: The random field S → g1(S) over Σ(1,
∑
ni) are conditionally independent

over each Σ(1, ni) and over Σ(1, n) conditionally to each (∂Σ)i.

Proof: We remark that for H3

< B3
. (s, t+ 1/2)−B3

. (s, 1/2), B3
. (s

′, 1/2) >= 0 (16)

and that

< B3
. (s, t+ 1/2)−B3

. (s, 1/2), B3
. (s

′, 1/2− t′)−B3
. (s

′, 1/2) >= 0 (17)

because in the t direction in H3 , we have the covariance of a Brownian motion. This shows that

the process B3
. (., t + 1/2) − B3

. (., t) and B3
. (., 1/2 − t′) − B3

. (., 1/2) are independent. The only

problem in establishing the Markov property lies near the boundary. But if we we write

g1(S) = Id+
∑ ∫

0<u1..<un<1

dBtot,u1(S)..dBtot,un(S) (18)

we get that, after imbedding the group G in a matrix algebra

g1(S)− g1(S
′) =

∑ ∫
0<u1<..<un<1

(dBtot,u1(S)..dBtot,un(S)− dBtot,u1(S
′)....dBtot,un(S ′)) (19)

and we write dBtot,u(S
′) = dBtot,u(S

′) − dBtot,u(S) + dBtot,u(s) and we distribute in (18). Let us

choose two points on the same component of the boundary S1, S2 in the boundary, and two points

S ′ and S” not on the side of the boundary. We get that g1(S
′) − g1(S1) and g1(S”) − g1(S2)

are conditionnally independent when we suppose given the random field g1(S) on the boundary.

Therefore the result.

♦
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3 Line integrals

When we consider the random punctured sphere Σ(1, n), we get vertical loops given by s →
g1(s, t). Since Σ(1, n) is built from elementary pants Σ(1, 2), it is enough to look each vertical

loop s→ g1(s, t) over each elementary pants.

They are of 4 types:

-)The loop near the input boundary (Hilbert space H1 ⊕H2).

-)The loops in the body of the pants (Hilbert space H1).

-)The two loops which are created from a big loop (Hilbert space H1 ⊕H2).

-)The loops near the exit boundary (Hilbert space H2 ⊕H3).

Let us consider a one form ω over G. We would like to define for each type of this loop the

stochastic Stratonovitch integral: ∫ 1

0

< ω(g1(s, t)), dsg1(s, t) > (20)

We extend conveniently the one form ω in a smooth form bounded as well as all its derivatives

over the matrix algebra where the matrix group is imbeddded. The technics are very similar to

the technics of [31], part III.

Let dBu be a Brownian motion with values in the Lie algebra of G. We consider the solution of

the stochastic differential equation which gives the Brownian motion from e in the Lie group G:

dugu = guduBu (21)

The equation of the differential of the differential of the stochastic flow associated to (21) is given

(See [23], [26], [6]) by

duφu = φuduBu (22)

and the inverse of the differential of the the flow is given by an analoguous equation. It can be

identified to gu.

Let us consider a finite dimensional family Bu(α) of Brownian motion in the Lie algebra of G

depending smoothly of a finite dimensional parameter α where α lives in a finite dimensional family

of Brownian motion. We consider the stochastic differential equation depending on a parameter:

dgu(α) = gu(α)duBu(α) (23)

The solution of the equation (15) has a smooth version in the finite dimensional parameter α.

∂/∂αgu(α) is for instance the solution of the linear stochastic differential equation with second

member:

du∂/∂u(α) = ∂/∂αgu(α)duBu(α) + gu(α)du∂/∂αBu(α) (24)

This equation can be solved by the method of variation of the constant. We get:

∂

∂α
gu(α) = φu(α)

∫ u

0

φ−1
v (α)dv

∂

∂α
Bv(α) (25)
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We will write s → Btot,.(s, t) = B.(s), and in order to define stochastic line integrals, we will

follow the method of [30] and [31], but in this case, it is much more simpler, because there is no

conditioning. By using the properties of the Hilbert structure given H1, H2 and H3, the covariance

between B.(s) and B.(s
′) is given by e(s−s′). Let us suppose that 0 ≤ s ≤ s+∆s ≤ t ≤ t+∆t ≤ 1,

and let us compute the covariance of B.(s+ ∆s)−B.(s) and of B.(t+ ∆t)−B.(t). It is given by

e(s+ ∆s− t−∆t)− e(s−t−∆t)− e(s− t+ ∆s) + e(s− t) =

Ce”(s− t)∆t∆s+O(∆t+ ∆s)3
(26)

because e is smooth over [−1, 0] ∼ [0, 1]( We use the periodicity assumption over e(.). The only

singularity in e(.) comes from 0 identified to 1 in the circle).

This shows us that we can diagonalize the four non independent Brownian motions B.(s), B.(s+

∆s), B.(t), B.(t + ∆t). We find 2 couples of independent Brownian motions (w.(1), w.(2)) and

(w.(3), w.(4)) such that:

B.(s) =w.(1)

B.(s+ ∆s) = α(s,∆s)w.(1) + β(s,∆s)w.(2)

B.(t) =w.(3)

B.(t+ ∆t) = α(t,∆t)w.(3) + β(t,∆t)w.(4)

(27)

Moreover t does not belong to [s, s+∆s], such that the covariance of B.(s+∆s)−B.(s) and B.(t)

behaves as ∆s because e(s+ ∆s− t)− e(s− t). = e′(s− t)∆s+O(∆s)2.

Moreover,

α(s,∆s) = C + C∆s+O(∆s)3/2 (28)

β(s,∆s) = C
√

∆s+ C∆s+O(∆s)3/2 (29)

because e(s+∆s−s)−e(0) = e′+(0)∆s = +O(∆s)2 because e has semi-derivatives in 0 and ∆s > 0

and B.(s + ∆s) has a constant variance. From (26), we deduce that < w.(1), w.(4) >= O(
√

∆t),

< w.(3), w.(2) >= O(
√

∆s) and that the correlator < w.(2), w.(4) >= O(
√

∆s∆t). We remark

that ∂
∂
√

∆s
α(s,∆s)∆s=0 = 0.

We imbed G isometrically in a space of linear matrices. It follows from the previous consider-

ations that in law

g.(s+ ∆s) = g.(s) +
√

∆sg1
. (s) + ∆sg2

. (s) + o(∆s)3/2 (30)

where g1
. (s) = φ.(w.(1))

∫ .

0
φu(w.(1))−1 ∂

∂
√

∆s
β(s, 0)dwu(2). We don’t write the analoguous expres-

sion for g2
. (s). There is a double integral in dw.(2) where the simple derivative of β(s,∆) in

√
∆s

appear and a simple integral where the second derivative in
√

∆s of α(s,∆s) and β(s,∆s) appear.

(.) is the time of the differential equation (15). Moreover, in law:

g.(t+ ∆t) = g.(t) +
√

∆tg1
. (t) + ∆tg2

. (t) +O(∆t)3/2 (31)

Let f and h be 2 smooth functions over the matrix space. We suppose they are bounded as well

as their derivatives of all orders. We have the estimate which follows from the properties listed
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after (27), (28) (29):

E[f(gu(s))g
1
u(s)h(gv(t))g

1
v(t)] = C(s, t)

√
∆s∆t+O(

√
∆s+

√
∆t)3/2 (32)

where C(s, t) is continuous. Namely, we conditionate by w.(2) and w.(4). There are terms which

are w.(1) and w.(3) measurables in the expression we want to estimate. When we conditionate

by w.(2) and w.(4), the expressions which are got belong to all the Sobolev spaces of Malliavin

Calculus in w.(2) and w.(4). We can apply Clark-Ocone fortmula ([43]) to these expressions. We

deduce since < w.(3), w.(2) >= O(
√

∆s)and < w.(1), w.(4) >= O(
√

∆t) that the Itô integral

which appears in the Clark-Ocone formula are in O(
√

∆s)dw.(2) and in O(
√

∆t)dw.(4). These

leads to expressions of the type,

O(
√

∆s)

∫
[0,1]3

α(s1, s2, s3)dws1(2)dws2(2)dws3(4) (33)

where we used either Itô integral or Stratonovitch integral. We convert it in Skorokhod integral

(whose expectation is 0) and we find a counterterm in O(∆s) (We can suppose that ∆s = ∆t as

we will do in the sequel). For that we used the following result: let f a smooth functional with

bounded derivatives of all orders in a finite number of gu(s) or in gu(t). Let F the associated

Wiener cylindrical functional. Let F̃ = E[F |w.(2), w.(4)]. It is a smooth functional in the sense of

Malliavin Calculus in w.(2), w.(4) and its derivatives DkF̃ (t1, .., tk) have an estimate in O(
√

∆s)k

We consider a smooth 1-form ωv in the spaces of matrices with bounded derivatives of all orders

which depends smoothly from a finite dimensional parameter v. We suppose that the derivatives

in the parameter v are bounded.

We consider 2N , N being a big integer, and the dyadic subdivision of [0,1] associated to 2N .

We call it si with si < si+1 such that si+1 − si = 2−N . If s ∈ [si, si+1], we call

gN
u (s) = gu(si) +

s− si

si+1 − si

(gu(si+1)− gu(si)) (34)

s→ gN
1 (s) is piecewise differentiable. We consider the random variable:

AN
v =

∫ 1

0

< ω(gN
1 (s), dsg

N
1 (s) > (35)

Let us give the following decomposition of AN
v :

AN
v =

∑ ∫ si+1

si

< ω(gN
1 (s))−ω(gN

1 (si)), dsg
N
s (s) >

+
∑ ∫ si+1

si

< ω(gN
1 (si), dsg

N
s (s) >=AN

v (<,>) + AN
v (δ)

(36)

The Itô term is AN
v (δ) and the Stratonovitch counterterm is AN

v (<,>). The Itô term can be

divided into two pieces: the first one is when in (30) we take the term in g1
. (s) and the second

one is when we take in (31) the term in g2
. (s). We get the decomposition, of the Itô term in
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AN
v (δ1) + AN

V (δ2). The term which diverges ”a priori” is AN
v (δ1). But we can use (32), and show

that when N →∞,

E[AN
v (δ1)

2] →
∫

S1×S1

C(s, t)dsdt+

∫
S1

C(s)ds (37)

where C(s, t) is continuous.

Moreover, the second part in the Itô term checks clearly:

E[AN
v (δ2)

2] →
∫

S1×S1

C1(s, t)dsdt+

∫
S1

C1(s)ds (38)

Since the counterterm which is due to the Stratonovitch correction is a ”a priori” less diverging,

we can see in an analoguous way that:

E[AN
v (<,>)2] →

∫
S1×S1

C2(s, t)dsdt+

∫
S1

C2(s)ds (39)

These remarks justify but not prove the following proposition:

Proposition 3.1: When N →∞, the sequence of random variables AN
v tends in L2 to a limit

random variable called
∫

S1 < ωv(g1(s)), dsg1(s) >= Av. Moreover, there exists a smooth version

of the line integral Av in v.

Proof: Let us forget for the moment the parameter v. Let us write:

AN =
∑

i

∫
[si,si+1]

< ω(gN
1 (s)), dsg

N
1 (s) >=

∑
(BN

i + CN
i ) (40)

where BN
i is the Bracket term

BN
i =

∫
[si,si+1]

< ω(gN
1 (s))− ω(gN

1 (si)), dsg
N
1 (s) > (41)

and CN
i is the Itô term:

CN
i =< ω(g1(si)),∆sg1(si) > (42)

We write

CN
i = DN

i + EN
i +O(2−3N/2) (43)

where

DN
i =

√
si+1 − si < ω(g1(si)), g

1
1(si) > (44)

and

EN
i = (si+1 − si) < ω(g1(si)), g

2
1(si) > (45)

First step: convergence of
∑
EN

i .

In g2
1(si) whose writing is derived from (24) by taking another derivative, there is a linear integral

which comes from the second derivative of α(si + ∆si), from a second derivative in β(s,∆s) in√
∆s and a double integral which comes from taking only one derivative in β(s,∆s). The term in

the linear integral can be treated in the following way: we get
∑
EN

i,1. If M > N

(
∑

EN
i,1 −

∑
EM

j,1)
2 = (

∑
i

(
∑

[sj ,sj+1]⊆[si,si+1]

EN
i,1 − EM

j,1))
2 (46)
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In order to compute
∑

[sj ,sj+1]⊆[si,si+1]E
N
i,1 − EM

j,1, we write si+1 − si =
∑
sj+1 − sj such that we

can write the sum to estimate∑
[sj ,sj+1]⊆[si,si+1]

(sj+1 − sj)(< ω(g1(si), g̃1(si) > − < ω(g1(sj)), g̃1(sj) >) (47)

g̃1(si) is the term in the simple integral where we take the second derivatives in
√

∆s of α(s,∆s) and

β(s,∆s). The terms which are integrated depend continuously from s. Therefore the contribution

where we take two derivatives of α(s,∆s) vanish. It remains to consider the contribution where

we take two derivatives of β(s,∆s). We can replace the terms considered by∑
i

∑
[sj ,sj+1]⊆[si,si+1]

< ω(g1(si)), g1(si) > − < ω(g1(sj)), g1(sj) > (48)

where we have replaced the term in two derivatives by
√

∆sjB.(sj + ∆sj) − B.(sj). We write

B.(s+ ∆si)−B.(si) =
∑
B.(sj + ∆sj)−B.(sj) and we see that < B.(sj + ∆sj)−B.(sj), B.(sj′ +

∆sj′) − B.(sj′) >= O(∆sj∆sj′) if j 6= j′ and equal to O(∆sj)) if j = j′. This shows that the L2

norm of ∑
[sj ,sj+1]⊆[si,si+1]

(< ω(g1(si)), g1(si) > − < ω(g1(sj)), g1(sj) >) (49)

behaves as O(1/N)∆sj because ω(g1(s)) depends continuously of s and after using the desinte-

gration argument used after (32).

The problem arises when we take the double integral. In order to study the behaviour of

its sum, we can replace w.(2) in (27) by B.(si + ∆si) − B.(si) and take the double stochastic

integral which is associated by taking the derivative of the flow φu(si) associted to the equation

dgu(si) = gu(si)dBu(si). Namely, we consider a double integral of the type∫
0<u<v<1

√
∆siφ

−1
u dwu(2)

√
∆siφ

−1
v dwv(2) (50)

which behaves modulo an error term in O(∆si)
3/2 as∫

0<u<v<1

φ−1
u ∆si

Bu(si)φ
−1
v ∆si

Bv(si) (51)

For the convergence of EN
i , we can assimilate (si+1−si)g

2
u(si) with the double integral αu(si) after

performing these replacements. Let N ′ > N and sj be the dyadic subdivision which is associated.

We sum over [sj, sj+1] ⊆ [si, si+1]. We get:

< ω(gt(si)), αt(si)) > −
∑

j

< ω(gt(sj)), αt(sj) >=∑
j

(< ω(gt(si))− ω(gt(sj)), αt(sj) >+ < ω(gt(si)), αt(si)−
∑

j

αt(sj)) >

= δN
i + εNi

(52)
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The sum of the first term tends to 0 in L2. The difficult term is to estimate the term in εNi . In

the double integral which compose αt(si), we write

B.(si + ∆si)−B.(si) =
∑

[sj ,sj+1]⊆[si,si+1]

B.(sj + ∆sj)−B.(sj) (53)

We distribute the integrands. Over each dB.(si + ∆si) − dB.(si), there is in the double integral

a term which B.(si) measurable, which is adapted and which depends on a continuous way of

si. Since it depends on a continuous way from si, we can replace it when we distibute by the

corresponding term in sj in αt(si). After distributing in αt(si)−
∑
αt(sj), the diagonal term are

substracting, and it remains to study the process

δN
t =

∑
i

< ω(gt(si)),∑
[sj ,sj+1]⊆[si,si+1],[sj′ ,sj′+1]⊆[si,si+1]j 6=j′

∫
0<u<v<t

ru(sj)du∆sj
Bu(sj)rv(sj′)dv∆sj′Bv(sj′) >

(54)

We decompose the semi martingale δN
t into a finite variational part which converges by using

(26) to 0 and a martingale part MN
t . Namely, we can convert the double Stratonovitch integral

which appears in (54) in an Itô integral. The boring term arises when we replace the double

Stratonovitch integral by an Itô integral in (54). We would like to show that this martingale tends

to 0. For that, we compute its quadratic variation. We get a sum over all quadruple [sj1 , sj1+1],

[sj2 , sj2+1], [sj3 , sj3+1] and [sj4 , sj4+1].

-First case: let us suppose that all the elements of the quadruple are different. The contri-

bution of each quadruple is in 2−4N ′
by the properties listed after (27), (28), (29) which express

that the covariance of B.(sj + ∆sj)−B.(sj) and of B.(sj′+1)−B.(sj′) in term of ∆sj∆sj′ and the

covariance of (B.(sj + ∆sj)−B.(sj) and of B.(t) in ∆sj if t does not belong to [sj, sj+1]. Namely,

if the intervals [sj1 , sj1+1], [sj2 , sj2+1] do not intersect and if sj3 and sj4 do not belong to these

intervals, we have only to show by using the Itô formula that

E[

∫
o<u<v

ru(sj1)du∆sj1
Bu(sj1)

∫
o<u<v

ru(ssj2
)du∆sj2

Bu(sj2)rv(sJ3)rv(sj4)]

= O(∆sj1∆sj2)

(55)

because the right Bracket between ∆sj3
B(sj3 and ∆sj4

B(sj4) is in O(∆sj3∆sj4) We take the con-

ditional expectation of rv(sj3) and rv(sj4) along the Gaussian space spanned by B.(sj1), B.(sj2),

∆sj1
B(sj1) and ∆sj2

B.(sj2). We can suppose that rv(sj3) and rv(sj3) are measurable over this

Gaussian space. But rv is solution of the stochastic differential equation giving the flow of the

Brownian motion over the Lie group, and is therefore a stochastic integral. We use the following

rules for calculating different conditional expectation for the solution of this flow. We consider

the solution of the stochastic differential equation starting from the identity:

dAt = At(dBt + dB̃t) (56)
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where Bt and B̃t are two independent Brownian motions. We can write At = WtVt where dVt =

VtdBt and dWt = WtVtdB̃tV
−1
t . after using this remark in order to calculate the conditional

expectation, we desintegrate along ∆sj1
B.(sj1) and ∆sj2

B.(sj2) as in (32), and we conclude by

using the consideration following (27), (28), (29).

They are at most 22N24(N ′−N) such possibilities. The total contribution is 2−2N which tends to

0 when N →∞.

-)Second case: there are 3 different intervals [sj, sj+1]. This can come from a concatenation

of two times dv for u < v in the stochastic integral (54) after converting it in a double Itô integral

or a concatenation of the same term du in the stochastic integral (54). The contribution of each

term is 2−3N ′
by doing as in the first case.. They are at most 2N2N ′−N)22(N ′−N) = 23N ′

2−2N such

possibilities. The total contribution behaves in 2−2N which tends to 0 when N →∞.

-)Third case: there are 2 different intervals [sj, sj+1]. The contribution of each element which

appears is in 2−2N ′
by doing as in the first case. There are at most 2N22(N ′−N) such terms. The

total contribution is in 2−N which converges to 0 when N →∞.

This shows us that
∑
EN

i is a Cauchy sequence in L2.

Second Step: convergence of the Itô term
∑
DN

i .

We write

αN
i = DN

i −
∑

[sj ,sj+1]⊆[si,si+1]

DN ′

j (57)

and we would like to show that
∑
αN

i → 0 in L2.

They are two terms to study:

-)The contribution of E[αN
i α

N
i′ ] for i 6= i′. By (32),∑

i6=i′

E[αN
i α

N
i′ ] → 2

∫
S1×S1

C2(s, t)dsdt− 2

∫
S1×S1

C2(s, t)dsdt = 0 (58)

-) The contribution of
∑

iE[(αN
i )2]. By using the consideration of the first step, we can write

modulo a term which vanish that

αN
i =< ω(g1(si)),∆si

gi(si) > −
∑

[sj ,sj+1]

< ω(g1(sj)),∆sj
g1(sj) >

=
∑

[sj ,sj+1]⊆[si,si+1]

< ω(g1(si))− ω(g1(sj)),∆sj
g1(sj) >=

∑
j

βN
j

(59)

To study its convergence, we write:

B.(si) =w.(1)

B.(sj) = α(si, sj)w.(1) + β(si, sj)w.(2)

B.(sj = ∆sj) = α(si, sj,∆sj)w.(1) + β(si, sj,∆sj)w.(2) + γ(si, sj,∆sj)w.(3)

B.(sj′) = α(si, sj′)w.(1) + β(si, sj′)w.(4)

B.(sj′ + ∆sj′) = α(si, sj′ ,∆sj′)w.(1) + β(si, sj′ ,∆sj′)w.(4) + γ(si, sj′ ,∆sj′)w.(5)

(60)

We have γ(s, t,∆t) = C(s, t)
√

∆t + O(∆t), β(s, t,∆t) − β(s, t) = C(s, t)∆t + O(∆t)3/2 and

α(s, t,∆t) − α(s, t) = C ′(s, t)∆t + O(∆t)3/2. We deduce that < w.(5), w.(3) >= o(∆sj), <
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w.(5), w.(2) >= O(
√

∆sj) and < w.(5), w.(1) >= O(
√

∆sj). In a similar way, we have <

w.(3), w.(1) >= O(
√

∆sj), < w.(3), w.(4) >= O(∆sj) (We used the fact that ∆sj = ∆sj′). With

this decomposition, we write the analoguous of (30) and (3 1) for g.(sj +∆sj) by doing the condi-

tional expectation along the Gaussian processes w.(5), w.(4), w.(2), w.(3) and for g.(sj′ +∆sj′). We

find if j 6= j′ E[βN
j β

N
j′ ] = o(I/N)2−2N ′

and in the other cases E[|βN
j |2] = o(1/N)2−N ′

. Therefore,

E[|CN
i ]2] = o(1/N)2−N and

∑
iE[|CN

i |2] → 0.

Third step: study of the convergence of
∑
BN

i .

We write

ω(gN
1 (s))− ω(g1(si)) =

s− si√
si+1 − si

g1
1(si)α(g1(si)) +O(s− si) (61)

and

dsg
N
1 (s) =

ds√
si+1 − si

g1
1(si) + dsg2

1(si) + dsO(si+1 − si) (62)

The more singular singular tem in BN
i is

αN
i =

∫ si+1

si

s− si

si+1 − si
< g1

1(si), α(g1(si), g
1
1(si) > ds =

(si+1 − si) < g1
1(si)α(g1(si)), g

1
1(si) >

(63)

There is in the previous contribution a quadratic expression in g1
1(si). These expressions can be

treated exactly as in the first step of the convergence of
∑
EN

i , by writing < g1
1(si), g

1
1(si) > as a

double integral and relpacing (si+1 − si) < g1
1(si), g

1
1(si) > by a double stochastic integral where

we have removed
√

∆siw.(1) by ∆si
B.(si). The sum of the others terms tends clearly to 0.

In order to show that
∫

S1 < ωv(g1(s)), dsg1(s) > has a smooth version, we show that the system

of derivatives of AN
v in v converges in L2. We conclude by using the embedding Sobolev theorem

as in [23].

♦
We consider a more intrinsic approximation of the line integral. We use if g1(si, t), g1(si+1, t)

are close,

FN(s, g1(si, t), g1(si+1, t)) = exp[
s− si

si+1 − si

log(g1(si+1, t)g1(si, t)
−1)]g(si, t) (64)

conveniently extended over the set of all matrices. We put:

g̃N
1 (s, t) = FN(s, g1(si, t), g1(si+1, t)) (65)

We consider ÃN
v as in (35) with this new approximation. If we look the asymptotic expansion of

FN , we see that the more singular term in dsg̃
N
1 (s, t) and dsg

N
1 (s, t) coincides. This justify the

following theorem:

Theorem 3.2: ÃN
v tends in L2 for the Ck topology over each compact of the parameter set to

the Stratonovitch integral
∫

S1 < ωv(g(s, t)), dsg(s, t) > which has a smooth version in v.

Remark: We don’t know if the Stratonovitch integrals of Theorem III.2 and of Proposition

III.1 coincide. In the sequel, we will use the version of Theorem III.1, because it is a geometrical

version.

Remark: Instead of integrating over a circle, we can integrate over a segment.
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4 Integral of a two form

We decompose the pant Σ(1, 2) in elementary cylinders S1×[0, 1] = D. Let B.(s, t) = Btot,.(s, t) be

the Brownian motion parametrized by these elementary cylinders. Each correlators check all the

properties listed in the part IV of [31] such that each correlator is smooth outside the diagonals

and its derivative has half limits on the diagonals, such that we can apply the technics of the

part IV of [31]. The requested properties which come from the properties of the correlator are for

elementary cylinders which constitute the pant:

Property H1

< B.(s+ ∆s, t)−B.(s, t), B.(u, v) >= O(∆s) (66)

if u does not belong to ]s, s+ ∆s[ and the symmetric property.

Property H2

< B.(s+ ∆s), t)−B.(s, t), B.(u, v + ∆v)−B.(u, v) >= O(∆s∆v) (67)

if u does not belong to ]s, s+ ∆s[ and t does not belong to ]v, v + ∆v[.

Property H3

< B.(s+ ∆s, t)−B.(s, t), B.(s
′ + ∆s′, u)−B.(s

′, u) = O(∆s∆s′) (68)

if ]s′, s′ + ∆s′[∩]s, s+ ∆s[= ∅ and the symmetric property.

Property H4: If t′ ≥ t,

< B.(s+ ∆s, t′)−B.(s, t
′), B.(s+ ∆s, t)−B.(s, t) >= C(t, t′)∆s (69)

where C(t, t′) is continuous, the same being true for the symmetric case.

We imbedd G into a matrix algebra isometrically. Let g(s, t) be the random field parametrized

by the torus with values in G. Let 2N be an integer, and si be the associated dyadic subdivision

of S1 and tj be the associated dyadic subdivision of a copy of [0, 1]. We consider the polygonal

approximation of g(s, t), if (s, t) ∈ [si, si+1]× [tj, tj+1] = Ti,j.

gN(s, t) = g(si, tj) +
s− si

si+1 − si

(g(si+1, tj)−g(si, tj)) +
t− tj
tj+1 − tj

(g(si, tj+1)− g(si, tj))

+
t− tj
tj+1 − tj

s− si

si+1 − si

(g(si+1, tj+1)− g(si, tj+1)− g(si+1, tj) + g(si, tj))

= g(si, tj) + αN
1 (s) + αN

2 (t) + αN
3 (s, t)

(70)

Let us consider a two form ω over G, conveniently extended in a two form ω over the matrix

algebra bounded with bounded derivatives of all orders. We suppose that the two form depends

on a finite dimensional parameter v. We consider

AN
v =

∫
D

(gN)∗ωv =

∫
S1×[0,1]

< ωv(g
N(s, t)), dsg

N(s, t), dtg
N(s, t) > (71)
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Let us denote by ∆tjg(si, tj) the quantity g(si, tj+1)−g(si, tj), by ∆si
g(si, tj) the quantity g(si+1, tj)−

g(si, tj) where we have imbedded the group G in a linear space. If i 6= i′, j 6= j′, we will see later

that

E[∆si
g(si, tj)∆tjg(si, tj)∆si′

g(si′ , tj′)∆tj′g(si′ , tj′)] = O(∆si∆tj∆si′∆tj′) (72)

where we take a quadratic expression homogeneous in each term in each increment. The most

diverging term in the quantity AN
v is∑

i,j

< ωv(g(si, tj)),∆si
g(si, tj),∆tjg(si, tj) > (73)

When the length of the subdivision tends to zero, the L2-norm of this expression tends to∫
D×D

C(s, t, s′, t′)dsds′dtdt′+

∫
S1×D

C(s, t, t′)dsdtdt′

+

∫
D×[0,1]

C(s, s′, t)dsds′dt+

∫
D

C(s, t)dsdt
(74)

This justifies without to prove the following proposition:

Proposition 4.1: When N → ∞, the traditional integral AN
v tends for the Ck topology over

each compact of the parameter space in L2 to the stochastic integral in Stratonovich sense:∫
D

g∗ωv =

∫
S1×[0,1]

< ω(g(s, t)), dsg(s, t), dtg(s, t) > (75)

where the stochastic integral
∫

D
g∗ωv has a smooth version in v.

Proof: We suppose first that there is no auxiliary parameter. We can write:

AN =

∫
D

< ω(gN(s, t)), dsα
N
1 (s), dtα

N
2 (t) >

+

∫
D

< ω(gN(s, t)), dsα
N
1 (s), dtα

N
3 (s, t) >

+

∫
D

< ω(gN(s, t)), dsα
N
3 (s, t), dtα

N
2 (t) >

+

∫
D

< ω(gN(s, t)), dsα
N
3 (s, t), dtα

N
3 (s, t) >= AN

1 + AN
2 + AN

3 + AN
4

(76)

STEP I: convergence of AN
1 . We repeat the considerations of the part III for s→ B.(s, tj) and

t→ B.(si, t). If we fix tj, we get by (30) an asymptotic expansion in order 3. We get expressions

in the asymptotic expansion in g1;.
. (si, tj), g

2;.
. (si; tj) and g3;.(si, tj). If we fix si, we go in (30) to

an asymptotic expansion at order 3. We get derivatives in law g.;1
. (si, tj), g

.;2(si, tj) and g.;3
. (si, tj).

We get:

AN
1 =

∑
i,j

< ω(g(si, tj)), g(si+1, tj)− g(si, tj),g(si, tj+1)− g(si, tj) >

+
∑
i,j

∫
Ti,j

< ω(gN(s, t))− ω(g(si, tj)), dsα
N
1 (s),dtα

N
2 (t) >= BN

1 +BN
2

(77)
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BN
1 is the Itô term, which is apparently the most diverging when N →∞. BN

2 is the Stratonovitch

counterterm.

Step I.1: convergence of the Itô term BN
1 .

We write as in (30)

g(si+1, tj)− g(si, tj) =
√
si+1 − sig

1;.(si, tj)+

(si+1 − si)g
2;.(si, tj) + (si+1 − si)

3/2g3;.(si, tj) +O(si+1 − si)
2

(78)

and we write as in (30)

g(si, tj+1)− g(si, tj) =
√
tj+1 − tjg

.;1(si, tj)

+(tj+1 − tj)g
.;2(si, tj) + (tj+1 − tj)

3/2g.;3(si, tj) +O(si+1 − si)
2

(79)

This will lead to stochastic integrals in
√
si+1 − sig

1;.(si, tj) and in
√
tj+1 − tjg

.;1(si, tj) which

apparently do not converge and to integrals in (si+1− si)g
2;.(si, tj) as in (tj+1− tj)g.;2(si, tj) which

will lead to classical integrals. We deduce the following decomposition of the Itô term BN
1 :

BN
1 = CN

1 + CN
2 + CN

3 + CN
4 + CN

5 + error (80)

-)CN
1 is the double stochastic integral in the time direction s and in the time direction t:

CN
1 =

∑
i,j

√
∆si

√
∆tj < ω(g(si, tj)), g

1;.(si, tj), g
.;1(si, tj) > (81)

-)CN
2 is a stochastic integral in the direction s and a classical integral in the direction t:

CN
2 =

∑
i,j

√
∆si∆tj < ω(g(si, tj)), g

1..(si; tj), g
.;2(si; tj) > (82)

-)CN
3 is a vanishing term:

CN
3 =

∑
i,j

√
∆si∆t

3/2
j < ω(g(si, tj)), g

1;.(si, tj), g
.;3(si, tj) >

+
∑
i,j

(∆si)
3/2

√
∆tj < ω(g(si, tj)), g

3;.(si, tj), g
.;1(si, tj) >

(83)

-)CN
4 is a classical integral in the time direction s and a stochastic integral in the time direction

t:

CN
4 =

∑
i,j

∆si

√
∆tj < ω(g(si, tj)), g

2;.(si, tj), g
.;1(si, tj) > (84)

-)CN
5 is a classical integral in the time direction s and in the time direction t.

CN
5 =

∑
i,j

∆si∆tj < ω(g(si, tj)), g
2;.(si, tj), g

.;2(si, tj) > (85)

CN
1 is the more ”a priori” divergent term when N tends to ∞ and CN

5 will lead to a double

classical integral on the torus.
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Step I.1.1: For integers N , N ′ such that N ′ > N , we consider CN
1 =

∑
i,j C

N
i,j,1.

We consider a bigger integer N ′ than N and we consider

DN ′

i,j,1 = CN
i,j,1 −

∑
Ti′,j′⊆Ti,j

CN ′

i′,j′,1 (86)

Let us consider first the case where 0 ≤ s+∆s ≤ s′ ≤ s′+∆s′ ≤ 1 and 0 ≤ t+∆t ≤ t′ ≤ t′+∆t′ ≤ 1.

We get if f and g are smooth functions with bounded derivatives of all orders:

E[f(g(s, t))h(g(s′, t′))g1;.(s, t)g.;1(s, t)g1;.(s′, t′)g.;1(s′, t′)] =

C(s, t, s′, t′)
√

∆s
√

∆t
√

∆s
√

∆t′ + error
(87)

In order to see that, we begin by diagonalizing B.(s, t) and B.(s
′, t′).

B.(s, t) = w.(1) (88)

We write:

B.(s+ ∆s, t) = α(s, t,∆s)w.(1)+β(s, t,∆s)w.(3)

B.(s, t+ ∆t) = α(s, t,∆t)w.(1) + β(s, t,∆t)w.(4)
(89)

and the analoguous formulas for B.(s
′ + ∆s′, t′) and B.(s

′, t′ + ∆t′) with some other new auxiliary

Brownian motions w.(5) and w.(6). Moreover

α(s, t,∆s) = C + C
√

∆s+ C∆s3/2 +O(∆s)2 (90)

and

β(s, t,∆s) = C
√

∆s+ C∆s+ C(∆s)3/2 +O(∆s)2 (91)

the same asymptotic results being true when we reverse the role of s, t.

The main result is the following:

< B.(s+ ∆s, t)−B.(s, t), B.(u, v) >= O(∆s) (92)

if u does not belong to ]s, s + ∆s[, the same equality being true if we reverse the role of s and t.

We use the fact that the Green kernel associated to the two dimensional problem is the product

of the Green kernels associated to the one dimensional problem by the remark following (6).

Moreover

< B.(s+ ∆s, t)−B.(s, t), B.(u, v + ∆v)−B.(u, v) >= O(∆s∆v) (93)

It is equal namely to

e(s+ ∆s− u)e(t− v −∆v)− e(s− u)(t−v −∆v) + e(s+ ∆s− u)e(t− v)−
e(su)e(t− v) = (e(s+ ∆s− u)− e(s− u))(e(t− v −∆v)− e(tv))

(94)

if u does not belong to ]s, s+ ∆s[ and t does not belong to ]v, v + ∆v[. Moreover,

< B.(s+ ∆s, t)−B.(s, t), B.(s
′ + ∆s′, u)−B.(s

′, u) >= O(∆s∆s′) (95)
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if ]s′, s′ + ∆s′[∩]s, s + ∆s[= ∅ by analoguous reasons, and using the fact that the Green kernel

associated to B.(s, t) is the products of the one dimensional Green kernels.

In order to simplify the exposure, we writte ∆t = ∆t′ = ∆s = ∆s′. We conditionate B.(s, t)

and B.(s
′, t′) by w.(3),, w.(4), w.(5), w.(6). We use the formula (56) in order to compute this

conditionating for g(s, t) and g(s′, t′), and after the Clark-Ocone formula (See [43]) in order to

compute the conditional of h(g(s, t)) as an Itô integral in w.(3), w.(4), w.(5) and w.(5) with term

bounded by
√

∆s by (92). We get to take the expectation of the product of four Itô integral

or 5 or 6. We can estimate its expectation by using the Itô formula and (93), (94) by applying

iteratively the Itô formula and the Clark-Ocone formula. We reduce iteratively the length of the

iterated integral we have to compute. The same result holds by the same arguments for:

E[f(g(s, t′))h(g(s′, t))g1;.(s, t′)g.;1(s, t′)g1;.(s′, t)g.;1(s′, t)]

= C(s, t, s′, t′)
√

∆s
√

∆t
√

∆s′
√

∆t′ + error
(96)

if we suppose that ∆s = ∆s′ = ∆t = ∆t′.

We deduce from the previous considerations that:

E[
∑

i6=:i′;j 6=j′

DN ′

i,j,1D
N ′

i′,j′,1] → 2

∫
D2

C(s, t, s′, t′)dsdtds′dt′ − 2

∫
D2

C(s, t, s′, t′)dsdtds′dt′ = 0 (97)

Let us now study the behaviour of

E[
∑
i,j 6=j′

DN ′

i,j,1D
N ′

i,j′,1] (98)

when N ′ →∞.

By the previous considerations, the contributions of the Tk,l strictly interior to Ti,j and of the

Tk′,l′ strictly interior to Ti,j′ vanish. Therefore, it is enough to study the contribution of

C1,N ′

i,j,1 =
√

∆si

√
∆tj, < ω(g(si, tj),g

1;.(si, tj), g
.;1(si; tj) >

−
∑

i′

√
∆si′

√
∆tj < ω(g(si′ , tj)), g

1;.(si′ , tj), g
.;1(si′ , tj) >

(99)

for [si′ , si′+1] ⊆ [si, si+1]. We would like to show that E[
∑

i,j 6=j′ C
1,N ′

i,j,1 C
1,N ′

i,j′,1] tends to 0 when

N ′ → ∞. We will see later (See Step I.1.2 , Step I.1.3 and Step I.1.4) that we can replace√
∆sig

1;.(si, tj) by ∆si
g(si, tj) and

√
∆tjg(si, tj) by ∆tjg(si, tj). it is enough therefore to consider

the behaviour of

C2,N ′

i,j,1 =< ω(g(si, tj)),∆si
g(si, tj),∆tjg(si, tj) >

−
∑

i′

< ω(g(si′ , tj)),∆si′
g(si′ , tj),∆tjg(si′ , tj) >

(100)

and to show that E[
∑

i,j 6=j′ C
2,N ′

i,j,1 C
2,N ′

i,j′,1] tends to 0.

But ∑
∆si′

g(si′ , tj) = ∆si
g(si, tj) (101)
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Therefore

C2,N ′

i,j,1 =
∑

< ω(g(si, tj))− ω(g(si′ , tj)),∆si′
g(si′ , tj),∆tjg(si, tj) >

+
∑

< ω(g(si′ , tj),∆si′
g(si′ , tj),∆tjg(si, tj)−∆tjg(si′ , tj) >= C3,N ′

i,j,1 + C4,N ′

i,j,1

(102)

By using the technics of the next steps, we can replace ∆si′
g(si′ , tj) by

√
∆si′g

1;.(si′ , tj) and

∆tjg(si′ , tj) by
√

∆tjg
.;1(si′ , tj) and ∆tjg(si′ , tj) by

√
∆tjg

.;1(si′ , tj) and ∆tjg(si, tj) by
√

∆tjg
.;1(si, tj).

We get two quantities C5,N ′

i,j,1 and C6,N ′

i,j,1

We compute
∑

i,j 6=j′ E[(C5,N ′

i,j,1 C
5,N ′

i,j′,1)]. There are two contributions. The first one is when we

consider twice the same si′ . There are 4 types of increments which appear (si, tj), (si′ , tj), (si, tj′

and (s′i, tjj
′). We take the conditional expectation along ∆si′

B.(si′), tj), ∆tjB.(si, tj), ∆si′
B(si′ , tj′)

and ∆tj′B.(si, tj′) or more precisely along the Brownian motion which arise from the diagonalisa-

tion (89) of the Brownian motions B.(si, tj), B.(si′ , tj), B.(si, tj′) and B.(si′ , tj′). The Stratonovitch

integrals g1;.(s, t) and g.;1(s, t) are in fact Itô integrals. Moreover we can compute the conditional

law of g(si, tj), g(si′ , tj), g(si, tj′) g(si′ , tj′) by using (56) and the Clark -Ocone formula to express

the quantities which appear in this way as stochastic integral which are martingales and whose

bracket with the others tems can be estimated by (89). There is a product of Martingale Itô

integrals, whose expectation can be estimated by using succesivly the Itô formula and the Clark

Ocone formula. We conclude by using (4.27), (4.28) and (4.30). We get that the contribution when

there is one coincidence leads to a term in O(1/N)∆si′∆tj∆tj′ . When there is no coincidence,

we condition by ∆si′
B.(si′ , tj), ∆tjB.(si, tj), ∆si”

B.(si”, tj) and ∆tjB.(si, tj′), or more precisely by

the Brownian motions arising from the diagonalisation (89). We proceed as before, and we get a

contribution in o(1/N)∆si′
∆si”

∆tj∆tj′ Therefore E[
∑

i,j 6=j′ C
5,N ′

i,j,1 C
5,N ′

i,j′,1] → 0.

By the same type of trick and performing the conditional expectation along the increment

∆sB.(s, t) and ∆tB.(s, t) or more precisley by conditioning along the Brownian motions which

appears in the diagonalisation (89) in C6,N ′

i,j,1 C
6+,N ′

i,j′,1 and after using the Clark-Ocone formula, we

see that the quantity
∑

i,j 6=j′ E[C6,N ′

i,j,1 C
6,N ′

i,j′,1] → 0. The same holds for E[
∑

i,j 6=j′ C
5,N ′

i,j,1 C
6,N ′

i,j′,1].

Let us study the behaviour of E[
∑

i,j(D
N ′
i,j,1)

2]. By the considerations which will follow in the

next step, it is enough to study the behaviour of

< ω(g(si, tj)),
∑

∆si′
g(si′ , tj),

∑
∆tj′g(si, tj′) >

−
∑

< ω(g(si′ , tj′),∆si′
g(si′ , tj′),∆tj′g(si′ , tj′) >=

{
∑
i′,j′

< ω(g(si, tj)),∆si′
g(si′ , tj′),∆tj′g(si, tj′) >

−
∑
i′,j′

< ω(g(si, tj)),∆si′
g(si′ , tj′),∆tj′g(si′ , tj′) >}

+
∑

< ω(g(si′ , tj′)− ω(g(si, tj)),∆si′
g(si′ , tj′),∆tj′g(si′ , tj′) = G̃N ′

i,j,1 +G3,N ′

i,j,1

(103)
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where we do the summation over [si′ , si′+1] ⊆ [si, si+1] and [tj′ , tj′+1] ⊆ [tj, tj+1]. In G̃N ′
i,j,1, we write:

∆si′
g(si′ , tj)∆tj′ (g(si, tj′)−∆si′

g(si′ , tj′)∆tj′g(si′ , tj′)

= (∆si
g(si, tj)−∆si

g(si,tj′))∆tj′g(si, tj′)

+∆si′
g(si′ , tj′)(∆tj′g(si, tj′)−∆tj′g(si′ , tj′))

(104)

and we deduce a decomposition of G̃N ′
i,j,1 into G1,N ′

i,j,1 +G2,N ′

i,j,1 In G1,N ′

i,j,1 , G2,N ′

i,j,1 and G2,N ′

i,j,1 , we can replace

∆si′
g(i′ , tj), ∆tj′g(si, tj′) by

√
∆si′g

1;.(si′ , tj). We can replace
√

∆tj′g.;1g(si, tj′) and ∆si′
g(si′ , tj′)

by
√

∆si′g
1;.(si′ , tj′) and ∆tj′g(si′ , tj′) by

√
∆tj′g.;1(si′ , tj′) by

√
∆tj′g.;1(si′ , tj′). We get G3,N ′

i,j,1 and

G4,N ′

i,j,1 .

We have 6 terms to estimate: E[
∑

i,j(G
1,N ′

i,j,1 )2], E[
∑

i,j(G
2,N ′

i,j,1 )2], E[
∑

i,j(G
3,N ′

i,j,1 )2], E[
∑

i,j G
1,N ′

i,j G2,N ′

i,j ],

E[
∑

i,j G
1,N ′

i,j,1G
3,N ′

i,j,1 ], E[
∑
G2,N ′

i,j,1G
3,N ′

i,j,1 ]. We can do the multiplication term by term in each product

which appear. In each term, we distribute another time. There are 4 terms where two expressions

in g1;. and g.;1 appear. We condition by the set of increments in the leading Brownian motion

which appears in these expressions, or more precisely of the terms which appear after the diago-

nalisation (89) in ∆sB(s, t) and ∆tB(s, t). We use (57) and the Clark-Ocone formula (See [43]).

We use (89), and (93). When we develop, there is the possibility that we get exactly 4 times

si′ , si”, tj′ and tj”, which lead to a contribution in O(1/N)
∑

i′ 6=i”,j′ 6=j” ∆si′∆si”∆tj′∆tj”. There

is a contribution when there are 3 different si, tj′ , tj” or si′ , si”, tj which lead to a contribution in∑
i,j′ 6=j”O(1/N)∆si∆tj′∆tj” or

∑
i′ 6=i”,j O(1/N)∆si′∆si”∆tj and a contribution where we get only

two times si and tj which leads to a contribution in
∑

i,j O(1/N)∆si∆tj. Therefore,
∑

i,j G
3,N ′

i,j,1

tends to 0 in L2.

By the same argument,
∑

i,j G
1,N ′

i,j,1 and
∑2,N ′

i,j tend to 0 in L2. By using this type of argument,

we can get the requested limits.

Step I.1.2 Study of the convergence of the terms CN
2 and CN

4 where we mix stochastic integral

and classical integral.

This term is simpler to treat than the double stochastic integral, which is most diverging, which

appears. But it leads to some complications, because in g.;2(s, t), there are some double stochastic

integral in the dynamical time u which appears. We write

CN
2 =

∑
i,j

CN
i,j,2 (105)

We consider a bigger integer N ′ and we write:

DN ′

i,j,2 = CN
i,j,2 −

∑
Ti′,j′⊆Ti,j

CN ′

i′,j′,2 (106)

We have the following behaviour:

E[f(g(s, t))h(g(s′, t′))g1;.(s, t)g.;2(s, t)g1;.(s′, t′)g.;2(s′, t′)] =

C(s, t, s′, t′)
√

∆s
√

∆s+ error
(107)
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If ∆s = ∆t and if 0 ≤ s ≤ s + ∆s ≤ s′ ≤ s′ + ∆s′ ≤ 1 and 0 ≤ t ≤ t + ∆t ≤ t′ ≤ t′ + ∆t′ ≤ 1.

C(s, t, s′, t′) is continuous. Namely, g.;2(s, t) and g.;2(s′, t′) are given by double stochastic integrals

in the term w.(3) or w.(4) which appear in (89). It is the far most complicated term, the terms

in simple stochastic integrals can be treated as before. We condition after by the increments

∆tB.(s, t), ∆t′B.(s
′, t′), ∆sB.(s, t) and ∆s′B.(s

′, t′) or more precisely by the terms which arise

from the diagonalisation in (89). We write the double Stratonovitch integral which appears in

g.;2(s, t) or g.;2(s′, t′) as double Itô integral and a simple integral. After using the Clark-Ocone

formula, the expectation of the product of at most 8 term and at least 2 Itô integrals hasto be

computed. We use Itô formula successivly and Clark-Ocone formula successivly in order to get

our estimate.

We have analoguous formulas we don’t write. Therefore:

E[
∑

i6=i′;j 6=j′

DN ′

i,j,2D
N ′

i′,j′,2] → 2

∫
T 4

C(s, t, s′, t′)dsds′dtdt′

−2

∫
T 4

C(s, t, s′,t′)dsds′dtdt′ = 0

(108)

Let us study now the behaviour of

E[
∑
i,j 6=j′

DN ′

i,j,2D
N ′

i,j′,2] (109)

By the considerations which will follow, it is enough to study

CN ′

i,j,2 = ∆tj < ω(g(si, tj)),∆si
g(si, tj), g

.;2(si, tj) >

−
∑
i′,j′

∆tj′ < ω(g(si′ , tj′),∆si′
g(si′ , tj′), g.,2(si′ , tj′) > (110)

But we can write:

∆si
g(si, tj) =

∑
∆si′

g(si′ , tj) (111)

such that:

CN ′

i,j,2 = ∆tj < ω(g(si, tj)),
∑

∆si′
g(si′ , tj), g

.,2(si, tj) >

−
∑

∆tj′ < ω(g(si′ , tj′)),∆si′
g(si′ , tj′), g.,2(si′ , tj′) >

= {
∑
i′,j′

∆tj′ < ω(g(si, tj)),∆si′
g(si′ , tj), g

.,2(si, tj) >

−∆tj′ < ω(g(si, tj),∆si′
g(si′ , tj′), g.,2(si′ , tj′) >}

+
∑
i′,j′

∆tj′{< ω(g(si, tj))− ω(g(si′ , tj′),∆si
g(si′ , tj′), g.,2(si′ , tj′)) >}

= C1,N ′

i,j,2 + Ci,j,2
2,N ′

(112)

In C1,N ′

i,j,2 and C2,N ′

i,j,2 , we can replace, by the considerations which will follow, ∆si′
(g(si′ , tj′) by the

quantity
√

∆si′g
1,.(si′ , tj′) and ∆si′

(g(si′ , tj) by
√

∆si′g
1,.(si′ , tj). We get expressions C3,N ′

i,j,2 and

C4,N ′

i,j,2 . We distribute the term which appear in
∑

(C4,N ′

i,j,2 C
4,N ′

i,j′,2, there are 4 terms with increments
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√
∆si′g

1;.(si′ , tj′)
√

∆si”g
1;.(si”, tj”) and ∆tj′g.;2(si′ , tj′) and ∆tj”g

.;2(si”, tj”) which appear. We

condition by the Brownian motions which are got after diagonalising the increments of the leadings

Brownian motions which appear in these formulas and we get as before a norm in L2 which tends

to 0.

We have to study 3 terms: E[
∑
i, j 6= j′C3,N ′

i,j,2 C
3,N ′

i,j′,2], E[
∑

i,j 6=j′ C
4,N ′

i,j,2 C
4,N ′

i,j′,2] and the last one

E[
∑

i,j 6=j′ C
3,N ′

i,j,2 C
4,N ′

i,j′,2]. The behaviour of E[
∑

i,j 6=j′ C
3,N ′

i,j,2 C
3,N ′

i,j′,2] is the most complicated to treat.

We write:

C3,N ′

i,j,2 = {
∑
i′,j′

√
∆si′∆tj′ < ω(g(si, tj)),g

1,.(si′ , tj), g
.,2(si, tj) > −∑

i′,j′

√
∆si′∆tj′ < ω(g(si, tj)), g

1;.(si′ , tj′), g.,2(si, tj) >}

+{
∑
i′,j′

√
∆si∆tj′ < ω(g(si, tj)), g

1;.(si′ , tj′),g.;2(si, tj)− g.;2(si′ , tj) >}

+{
∑
i′,j′

√
∆si′∆tj′ < ω(g(si, tj)), g

1;.(si′ , tj′), g.,2(si′ , tj)− g.;2(si′ , tj′) >}

= C5,N ′

i,j,2 + Ci,j,2
6,N ′

+ C7,N ′

i,j,2

(113)

By the previous considerations, we have only to estimate E[
∑

i,j 6=j′ C
5,N
i,j,2C

5,N ′

i,j′,2], E[
∑

i,j 6=j′ C
6,N ′

i,j,2 C
6,N ′

i,j′,2]

and E[
∑

i,j 6=j′ C
7,N ′

i,j,2 C
7,N ′

i,j′,2] as well as the sum where there exist other coincidences of indices

i, i′, j, j′. We have to estimate the analoguous quantities where we mix C5,N ′

i,j,2 and C6,N ′

i,j′,2, the

term where we mix C5,N ′

i,j,2 and C6,N ′

i,j′,2 and C7,N ′

i,j′,2 and the term where we mix C6,N ′

i,j,2 and C7,N ′

i,j′,2. We

will omit to write the details of the convergence of these mixed term to 0. Clearly,

E[
∑
i,j 6j′

C5,N ′

i,j,2 C
5,N ′

i,j′,2] → 0 (114)

Namely, if we do the multiplication of each term in the sum, there are 6 increments which appear

∆si′1
B(si′1

, tj1), ∆si′1
B(si′1

, tj′
1
), ∆tj1

B(si1 , tj1), ∆si′2
B(si′2

, tj2), ∆si′2
B(si′2

, tj′
2
) and ∆tj2

B(si2 , tj2).

Their mutual covariances satisfy to (92), (93) and (95) because j1 6= j2 and because we don’t

have to consider when we do the multiplication term by term to consider the interaction between

∆si′1
(si′1

, tj1) and ∆si′1
B(si′1

, tj′
1
) and the interaction between ∆si′2

B(si′2
, tj′

2
) and ∆si′2

B(si′2
, tj2). We

conclude after conditioning along these increments, or more precisely the Brownian motions which

appear when we use the diagonalization (89). This allows us to show (114).

Moreover,

E[
∑
i,j 6=j′

C6,N ′

i,j,2 C
6,N ′

i,j′,2] → 0 (115)

Namely, when we do the product term by term in (115), there are 6 increments which ap-

pear ∆si′1
B(si′1

, tj′
1
), ∆tj1

B(si1 , tj1), ∆tj1
B(si′1

, tj1), ∆tj1
B(si1 , tj1), ∆si′2

B(si′2
, tj′

2
), and the terms

∆tj2
B(si2 , tj2) ∆tj2

B(si′2
, tj2). We can apply (92), (93) and (95) to these increments because we

don’t have to take the covariance between ∆tj1
B(si1 , tj1) and ∆tj1

B(si′1
, tj1) and the covariance

between ∆tj2
B(si2 , tj2) and ∆tj2

(si′2
, tj2).
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Let us consider the most complicated term C7,N ′

i,j,2 because in g.;2(si′ , tj) and in g.;2(si′ , tj′) in

(114), it is not the same subdivision in tj. But since we consider

E[
∑
i,j 6=j′

C7,N ′

i,j,2 C
7,N ′

i,j′,2] (116)

there are 6 increments to see. They are ∆si′1
B(si′1

, tj′
1
), ∆tj1

B(si′1
, tj1), ∆tj′

1
B(si′1

, tj′
1
), ∆si′2

B(si′2
, tj′

2
),

∆tj2
B(si′2

, tj2) and ∆tj′
2
B(si′2

, tj′
2
) and we don’t have to consider the correlation between ∆tj1

B(si′1
, tj1)

and ∆tj′
1
B(si′1

, tj′
1
) and the correlation ∆tj2

B(si′2
, tj2) and ∆tj′

2
(si′2

, tj′
2
).We can apply (92), (93), (95)

for the correlations we consider, and we can conclude as previously.

By the same reason ∑
i6=i′,j

E[C5,N ′

i,j,2 C
5,N ′

i′,j,2] → 0 (117)

∑
i6=i′,j

E[C6,N ′

i,j,2 C
6,N ′

i′,j,2] → 0 (118)

The same arguments arise when we consider:∑
i6=i′,j

E[C7,N ′

i,j,2 C
7,N ′

i′,j,2] (119)

It remains to treat the case where there are two coincidences, that is to treat the case of∑
E[(C5,N ′

i,j,2 )2],
∑
E[(C6,N ′

i,j,2 )2] and
∑
E[(C7,N ′

i,j,2 )2], after doing the same restriction about the mixed

terms. But as a matter of fact, we can show simply that∑
i,j

E[(C5,N ′

i,j,2 )2] → 0 (120)

We have namely the correlators between the following increments to consider:∆si′1
B(si′1

, tj), ∆s′i1B(si′1
, tj′

1
),

∆tjB(si, tj), ∆si′2
(si′2

, tj) and ∆s′
i2
B(si′2

, tj′
1
). But we have tj′

1
≥ tj and tj′

2
≥ tj. Therefore:

< ∆si′1
B(si′1

, tj′
1
),∆s′

1
B(si′1

, tj >=

e(tj′
1
− tj)(e(−∆si′1

) + e(∆si′1
)− 2e(0)) = C∆si′1

e(tj′
1
− tj)

(121)

because tj′
1
≥ tj and because e has half derivatives in 0. This remark allows us to repeat the

previous considerations as well as to use (92), (93) and (95).

Moreover ∑
E[(C6,N ′

i,j,2 )2] → 0 (122)

We have no difficulty to show that because we don’t have to consider the covariance of a g1;0(si′ , tj)

and a g1;0(si′ , tj′) and because < g1;.(si′ , tj), g
1;.(si”, tj) >= CO(

√
∆si′∆si”

).

The difficult part is to show that
∑
E[(C7,N ′

i,j,2 )2] → 0, because two different subdivision [tj′ , tj′+1]

and [tj, tj+1] appear and because tj′ ∈ [tj, tj+1]. We write the details of this limit, because it is
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the most complicated, the others limits are simpler. We write:

C7,N ′

i,j,2 =
∑ √

δsi′∆tj′ < ω(g(si, tj)), g
1;.(si′ , tj),g

.;2(si′ , tj)− g.;2(si′ , tj′) >

+
∑ √

∆si′∆tj′ < ω(g(si, tj)), g
1;.(si′ , tj′)− g1;.(si′ , tj), g

.;2(si′ , tj) >

−
∑

<
√

∆si′∆tj′ < ω(g(si, tj)), g
1;.(si′ , tj′)− g1;.(si′ , tj), g

.;2(si′ , tj′) >

= C8,N ′

i,j,2 + C9,N ′

i,j,2 + Ci,j,2
10,N ′

(123)

By the previous considerations, the terms E[
∑

(C9,N ′

i,j,2 )2] and E[
∑

(C10,N ′

i,j,2 )2] tend to 0. The main

difficulty is to show that

E[
∑
i,j

(C8,N ′

i,j,2 )2] → 0 (124)

If these results are true, the term where we mix C8,N ′

i,j,2 , C9,N ′

i,j,2 and C10,N ′

i,j,2 can be treated by

Cauchy-Schwartz inequality. We proceed for that as it was done in the previous part. We remark,

by the same considerations as in the first part, that it is enough to replace ∆tjg
.;2(si′ , tj) by a double

stochastic iterated integral
∫

0<u<v<1
αu(si′ , tj)(dBu(si′ , tj+1) −dBu(si′ , tj))αv(si′)(dBv(si′ , tj+1) −

dBv(si′ , tj)) where αu and αv are B(si′ , tj) measurable. By the same argument, we replace

∆tj′g.;2(si′ , tj′) by a double stochastic integral
∫

0<u<v<1
αu(si′ , tj′)(dBu(si′ , tj′+1) − dBu(si′ , tj′))

αv(si′ , tj′)(dBv(si′ , tj′+1)− dBv(si′ , tj′) where αu(si′ , tj′) and αv(si′ , tj′) are B.(si′ , tj′) measurable.

To study the behaviour when N ′ → ∞, we can replace without difficulty in this last expression

αu(si′ , tj′) by αu(si′ , tj). We write:

dB.(si′ , tj+1)− dB.(si′ , tj) =
∑

dB.(si′ , tj′+1)− dB.(si′ , tj′) (125)

and we distribute in the first term of (124). The diagonal terms cancel, and we have to estimate

when N →∞ the behaviour of

C11,N ′

i,j,2 =
∑ √

∆si′ < ω(g(si, tj)), g
1,.(si′ , tj),

∑
tk 6=tk′

∫
0<u<v<1

< α(u)(dBu(si′ , tk+1)− dBu(si′ , tk))α(v)(dBv(si′ , tk′+1)− dBv(si′ , tk′) >

(126)

where we sum over [tk, tk+1] ⊆ [tj, tj+1] and [tk′ , tk′+1] ⊆ [tj, tj+1] for the sharper dyadic subdivision

associated to 2N ′
. Instead of taking the following expression in time 1, let us take it in time r. We

get a process
∑
C11,N ′

i,j,2,r (We replace g(si, tj) by gr(si, tj), g
1;.(si′ , tj) by g1;.

r (si′ , tj) and the double

integral between 0 and 1 by a double integral between 0 and r. Let us consider the finite variational

part V N ′
r =

∑
V N ′

i,j,2,r and the martingale part MN ′
r =

∑
MN ′

i,j,2,r associated to this process.

Let us begin to study the finite variational part of this process V N ′
r . This can come from a

contraction between ω(g(si, tj)) and g1;.(s′i, tj) which leads to a term in
√

∆s′i, which is multiplied

by a term in
√

∆s′i. But the L2 norm of the sum
∑

tk 6=tk′ can be estimated. We decompose first∑
tk 6=tk

in a martingale term and a finite variational term. There is first a contraction between

αv and dBv(s
′
i, tk′+1) − dBv(s

′
i, tk′) which leads to a term in tk′+1 − tk′ The stochastic integral in

u can be estimated. We see the martingale term. By Itô formula ‖
∑

tk 6=tk′

∫ v

0
αu(δBu(s

′
i, tk+1) −

δBu(s
′
i, tk)‖2

L2 can be estimated in
∑

(tk′+1−tk′)(tk”+1−tk”)+
∑

(tk+1−tk) = (tj+1−tj)2+(tj+1−tj).
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Therefore the L2 norm of this term behaves in
√
tj+1 − tj. But since there is (tk′+1 − tk′) in

time u, we have a behaviour of this contribution in ∆si(tj+1 − tj)
3/2 whose sum vanish when

N → ∞. The second term comes from a contraction between dBu(s
′
i, tk+1) − dBu(s

′
i, tk) and

dBv(s
′
i, tk′+1) − dBv(s

′
i, tk′) which leads to a term in (tk+1 − tk)(tk′+1 − tk′) and therefore to a

contribution in (tj+1 − tj)
2. Therefore the total contribution is in ∆si(tj+1 − tj)

2, whose sum

vanish when N →∞, because < g1;.(s′i′, tj), g
1;.(si”, tj) >= O

√
∆si′∆si”

There is a contraction between ω(g(si, tj)) and dBv(s
′
i, tk′+1)−dBv(s

′
i, tk′) which is in (tk′+1−tk′).

This term cancel, because when we take the square of the L2 norm of the sum, it behaves in∑
i′,i” ∆si′

∆si”Ii′,i”, where Ii′,i” where Ii′,i” is a sum of quadruple tk′ , tk”, tk3 , tk4 which behaves in

O(tj+1− tj)3 and a sum
∑

i′ ∆siIi′ where Ii′ has a bound in (tj+1− tj)3/2. The sum of these terms

vanish, when N →∞ (See part III for analoguous considerations).

Let us estimate the martingale term MN ′
i,j,2,r. Let us estimate the L2 norm of MN ′

r . We use Itô

formula. It behaves as
∑

i′,i” ∆si”∆si′Ii,i′ +
∑

i′ ∆si′Ii′ where Ii′,i” has a bound in (tj+1 − tj)
3/2

and Ii′ the same. Therefore the L2 norm of MN ′
r vanish when N →∞.

Step I.1.3: study of the behaviour of the double classical integral CN
5 .

We writte

CN
5 =

∑
CN

i,j,5 =
∑

∆si∆tj < ω(g(si, tj)), g
2;.(si, tj), g

.;2(si, tj) > (127)

We consider N ′ > N and study:

DN ′

i,j,5 = CN
i,j,5 −

∑
Ti′,j′⊆Ti,j

CN ′

i′,j′,5 (128)

We write

DN ′

i,j,5 = C2,N
i,j,5 + C3,N ′

i,j,5 (129)

with

C2,N ′

i,j,5 =
∑

Ti′,j′⊆Ti,j

∆si′∆tj′ < ω(g(si, tj))− ω(g(si′ , tj′), g2;.(si, tj)., g
.;2(si, tj) > (130)

and

C3,N ′

i,j,5 =
∑

Ti′,j′⊆Ti,j

∆si′∆tj′{< ω(g(si′ , tj′), g2;.(si, tj), g
.;2(si, tj) >

− < ω(g(si′ , tj′), g2;.(s′i, t
′
j), g

.;2(si′ , tj′) >

(131)

It is clear that
∑
C2,N ′

i,j,5 → 0 in L2 because g2;2(si, tj) is bounded in L2.

In order to estimate C3,N ′

i,j,5 , we can replace ω(g(si′ , tj′) by ω(g(si, tj)). We can replace ∆si′g
2;.(si′ , tj′)

by a double stochastic integral in the dynamical time u I2;.(si′ , tj′) as it was done in (126) and do

the same transformation for the other g2;. and g.;2 which appear in C3,N ′

i,j,5 such that we have only

to show that
∑4,N ′

i,j,5 → 0 in L2 where

C4,N ′

i,j,5 =< ω(g(si, tj), I
2;.(si,tj), I

.;2(si, tj) > −∑
Ti′,j′⊆Ti,j

< ω(g(si, tj)), I
2;.(si′ , tj′), I .:2(si′ , tj′) > (132)
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We write

d∆si
B.(si, tj) =

∑
si′

d∆si′
B.(si′ , tj) (133)

and

d∆tjB.(si, tj) =
∑
t′j

d∆tj′B.(si, tj′) (134)

and we distribute in I2;.(si, tj) and I .;2(si, tj). We get that the expression I2;.(si, tj) is equal

to the expression
∑

s1
i′ ,s

2
i′∈[si,si+1] I

2;.(s1
i′ , s

2
i′ , tj) and that I .;2 =

∑
t1
j′ ,t

2
j′∈[tj ,tj+1] I

.;2(si, t
1
j′ , t2j′) after

distributing in these stochastic integral. Only the contribution where s1
i′ = s2

i′ and t1j′ = t2j′ do

not vanish when N ′ → ∞, by the same considerations than in (54). These terms are nothing

else, modulo some small error terms than I2;.(si′ , tj) and I .;2(si, tj′). We have only to show that∑
i,j C

5,N ′

i,j,5 → 0 in L2 where

C5,N ′

i,j,5 =
∑

Ti′,j′⊆Ti,j

(< ω(g(si, tj)), I
2;.(si′ , tj′), I .;2(si′ , tj′) >

− < ω(g(si, tj)), , I
2;.(si′ ,tj), I

.;2(si, tj′) >

(135)

But we can show that the L2 norm of I2;.(si′ , tj) − I2;.(si′ , t
′
j) is O(4/N ′)∆si′ because the right

bracket of B.(si′+1, tj)−B.(si′ , tj)−B.(si′+1, tj′) +B(si′ , tj′) is in O((si′+1 − si′)(tj − tj′)).

Step I.1.4: study of the vanishing term CN
3 .

We write CN
3 =

∑N
i,j,3 where the L2 norm of CN

i,j,3 is in O(∆si∆t
3/2
j ). But we have if si 6= si′ ,

by using the previous technics

E[< ω(g(si, tj)), g
1;.(si, tj), g

.;3(si, tj) >< ω(g(si′ , tj′)), g1,.(si′ , tj′), g.,3(si, tj′) >]

= O(
√

∆si

√
∆si′)

(136)

Therefore E[(CN
3 )2] → 0.

Step I.2: convergence of BN
2 .

We write in probability:

ω(gN(s, t))− ω(g(si, tj)) = ∇ω(g(si, tj))(g
N(s, t))− g(si, tj))

+∇2ω(g(si, tj))(g
N(s, t)− g(si, tj))

2 +O(∆t
3/2
j (+O(∆s

3/2
i )

(137)

The residual term converges to 0 by the previous arguments. It remains to treat the main term.

We recall:

gN(s, t)− g(si, tj)

=
s− si

si+1 − si

(g(si+1, tj)− g(si, tj)) +
t− tj
tj+1 − tj

(g(si, tj+1)− g(si, tj))

+
t− tj
tj+1 − tj

s− si

si+1 − si

(g(si+1, tj+1)− g(si, tj+1)− g(si+1, tj) + g(si, tj))

(138)

Moreover ∫ si+1

si

s− si

si+1 − si

ds = si+1 − si (139)
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The integral of the first term of (138) leads to the convergence of the sum of random quanti-

ties of a type analoguous to already considered quantities, which contains some ”brackets” of

the type < ∇ω(g(si, tj)).∆si
g(si, tj),∆si

g(si, tj),∆tjg(si, tj) > which converges by the methods

used before. We can treat by the same method the convergence of < ∇ω(g(si, tj))(g(si, tj+1) −
g(si, tj)),∆si

g(si, tj),∆tjg(sj, tj) > which converge by the same methods as before. The term in
(t−tj)(s−si)

(∆tj∆si
lead to analoguous terms. If we consider the term where the square of gN(s, t)−g(si, tj)

appear, there is a term where the quantity < ∇2ω(g(si, tj)); ∆si
g(si, tj)

2,∆si
g(si, tj),∆tjg(si, tj) >

appears whose sum vanishes in L2 by the same considerations as in Step I.1.4. The only problem

comes when we take sum corresponding more and less to the double bracket of (s, t) → g1(s, t) of

the type
∑

i,j < ∇2ω(g(si, tj)).∆si
g(si, tj).∆tig(si, tj),∆si

g(si, tj),∆tig(si, tj) > whose treatment

is similar to step I.1.3 by expanding a product of integrals into iterated integrals of length 2.

Step II: convergence of AN
2 and AN

3 .

The treatment for AN
2 and AN

3 are similar. So we will treat only the case of AN
2 .

We write:

AN
2 =

∑
i,j

< ω(g(si, tj)), dsα
N
3 (s, t), dtα

N
2 (t) >

=
∑
i,j

∫
Ti,j

< ω(gN(s, t))− ω(g(si, tj)), dsα
N
3 (s, t), dtα

N
2 (t) >= BN

1 +BN
2

(140)

Step II.1: convergence of BN
1 .

∫
Ti,j

< ω(g(si, tj)), dfsα
N
3 (s, t), dtα

N
2 (t), >=

∫
Ti,j

ds

si+1 − si

(t− tj)dt

(tj+1 − tj)2

< ω(g(si, tj)), g(si+1, tj+1)− g(si, tj+1)− g(si+ 1, tj) + g(si, tj), g(si, tj+1)− g(si, tj) >

(141)

The integral over Ti,j is constant. We write:

g(si+1, tj+1)− g(si, tj+1)− g(si+1, tj) + g(si, tj)

= {g(si+1, tj+1)− g(si, tj+1)} − {g(si+1, tj)− g(si, tj)} = γ1
i,j − γ2

i,j

(142)

The term in γ2
i,j can be treated as in step I.1. The term in γ1

i,j can be treated as in step I.1,

because the increments between ∆si
B(si, tj) and ∆si

B(si, tj+1) > satisfy to (121), and we can do

as in the treatment of (121)

Step II.2: convergence of BN
2 .

We use (137) and we conclude as in step I.2.

Step III: convergence of AN
4 .

We write:

AN
4 =

∑
i,j

∫
Ti,j

< ω(g(si, tj)), dsα
N
3 (s, t), dtα

N
3 (s, t) >

+
∑
i,j

∫
Ti,j

< ω(gN(s, t))− ω(g(si, tj)), dsα
N
3 (s, t),dtα

N
3 (s, t) >= BN

1 +BN
2

(143)
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Step III.1: convergence of BN
1 .

We write with the notations of (142):∫
Ti,j

< ω(g(si, tj)), dsα
N
s (s, t), dtα

N
3 (s, t)) >

= 2

∫
Ti,j

(t− tj)dt

tj+1 − tj

ds

si+1 − si

< ω(g(si, tj)), γ
1
i,j + γ2

i,j, γ
1
i,j + γ2

i,j >

(144)

The integral over Ti,j is constant. In order to treat the sum, we write the second γ1
i,j + γ2

i,j as

δ1
i,j + δ2

i,j where

δ1
i,j = g(si+1, tj+1)− g(si+1, tj) (145)

and

δ2
i,j = −g(si, tj+1) + g(si, tj) (146)

and we perform the limit as in the previous considerations.

Step III.2: convergence of BN
2 .

We write ∫
Ti,j

αN(s, t) < ω(gN(s, t))− ω(g(s, t)), γ1
i,j + γ2

i,j, δ
1
i,j + δ2

i,j > dsdt (147)

and we use (137) for αN(s, t) a suitable function of (s, t).

When the form depends on a finite dimensional parameter, we show that the approximation of

the stochastic integrals converge for all the derivatives of ω and we conclude by using the Sobolev

imbedding theorem as in [23]. That is we consider the integrals∫
D

< ∇α
uω(gN(s, t)), dsg

N(s, t), dtg
N(s, t) > (148)

which converge in L2 for all multiindices α. ♦
We would like to get the same theorem with a more intrinsic approximation g̃N(s, t) of the

random field g(s, t). As in the part III, the finite dimensional approximations of the integral∫
T 2 g̃

N,∗ω will converge in L2, but we don’t know if they will converge to the same limit integral

of
∫

T 2 g
N,∗ω.

For that if g(s, tj) and g(s, tj+1) are close, we use the functions:

FN(t, g(s, tj), g(s, tj+1) = exp[
t− tj
tj+1 − tj

log(g(s, tj+1)g
−1(s, tj)]g(s, tj) (149)

conveniently extended to the whole sets of matrices.

We approximate g(s, tj+1), g(s, tj) as follows:

FN(s, g(si, tj+1), g(si+1, tj+1)) = exp[
s− si

si+1 − si

log(g(si+1, tj+1)g
−1(si, tj+1))]g(si, tj+1) (150)

conveniently extended over the whole matrix algebras as well as its inverse. Moreover,

FN(s, g(si, tj), g(si+1, tj)] = exp[
s− si

si+1 − si

log(g(si+1, tj)g
−1(si, tj))]g(si, tj) (151)



Entropy 2004, 6 209

conveniently extended as well as its inverse to the set of all matrices.

We take as approximation:

g̃N(s, t) = exp[
t− tj
tj+1 − tj

log(FN(s, g(si, tj+1, g(si+1, tj+1))

(FN)−1(s, g(si, tj), g(si+1, tj)))]F
N(s,g(si, tj), g(si+1, tj))

(152)

We have the asymptotic expansion:

FN(t, g(s, tj), g(s, tj+1) = g(s, tj)

+
t− tj
tj+1 − tj

(g(s, tj+1)− g(s, tj))+O((
t− tj
tj+1 − tj

)2(g(s, tj+1 − g(s, tj))
2)

(153)

We imbed in this expression the approximation of g(s, tj+1) and of g(s, tj). This shows that, in

the expansion of g̃N(s, t), the more singular term is the same in (70), modulo some more regular

terms which converge. The main Itô integral is the same, but we don’t know if the correcting

terms are the same.

We get the main result of this part:

Theorem 4.2: when N → ∞, the traditional integral ÃN
v =

∫
T 2(g̃

N)∗ωv converges in L2 to

the stochastic Stratonovitch integral:∫
D

g∗ωv =

∫
S1×[0,1]

< ω(g(s, t)), dsg(s, t), dtg(s, t) > (154)

Moreover,
∫

D
g∗ωv has a smooth version in v.

Remark: we ignore if the stochastic integral of Theorem IV.2 is equal to the stochastic integral

of Proposition IV.1. In the rest of this paper, we will use the version of Theorem IV.2.

Remark: we can consider in the previous theorem a 2-tensor which is not necessarily a 2-form.

5 Stochastic W.Z.N.W. model on the punctured sphere

Let us consider the 3-form closed Z-valued ω over G which is supposed simple simply connected,

which at the level of the Lie algebra of G is equal to

ω(X,Y, Z) = K < [X, Y ], Z > (155)

We extend ω in a 3-form over the whole matrix algebra bounded with bounded derivatives of all

orders. We can suppose that ω is Z-valued on G.

Let Σ(1, n) be a (1 + n) punctured sphere. We deduce a family of loops s → g(s, t). Let

s→ g(s, t) such a loop. We repeat the considerations of [28] and [31] in order to define over such

loop group Li
t(G) the stochastic 2-form:

τst(ω) =

∫
S1

< ω(g(s, t)), dsg(s, t), . > (156)
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We can define for that the following poor stochastic diffeology (see [10], [46] for the introduction

of this notion in the deterministic case). Let Ω be the probability space where the random (1+n)

punctured sphere is defined:

Definition 5.1: A stochastic plot of dimension m of L(G) is given by a countable family

(O, φi,Ωi) where O is an open subset of Rm such that:

i)The Ωi constitute a measurable partition of Ω.

ii) φi(u)(.) = {s → Fi(u, s, g(s, t))} where Fi is a smooth function over O × S1 × RN with

bounded derivatives of all orders (RN is the matrix algebra where we have imbedded G).

iii)Over Ωi, for all u ∈ U , φi(u)(.) belongs to the loop group L(G).

We identify two stochastic plots (O, φ1
i ,Ω

1
i ) and (O, φ2

j ,Ω
2
j) if φ1

i = φ2
j almost surely over Ω1

i ∩Ω2
j .

If φi(u) is a stochastic plot,

φ∗i τst(ω)(X, Y ) =

∫
S1

< ω(Fi(u, s, g(s, t))

, dsFi(u, s, g(s, t)), ∂XFi(u, s, g(s, t)), ∂Y Fi(u, s, g(s, t)) >

(157)

which defines a random smooth form over O by the rules of the Part III.

We can look at the apparatus of [28], [30], [31] to define a stochastic line bundle ξi
t over Li

t(G),

with curvature 2π
√
−1kτst(ω) for k an integer. Let us recall how to do (See [28], p 463-464): let

gi be a countable system of finite energy loops in the group such that the ball of radius δ and

center gi for the uniform norm Oi determine an open cover of L(G). We can suppose that δ is

small. The loop gi constitutes a distinguished point in Oi. We construct if g belongs to Oi a

distinguished curve joining g to gi, called l(gi, g): since δ is small, gi(s) and g(s) are joined by a

unique geodesic for the group structure. lu(gi, g) is the loop s → expgi(s)
[u(g(s) − gi(s))] where

g(s)− gi(s) is the vector over the unique geodesic joining gi(s) to g(s) and exp the exponential of

the Lie group associated to the canonical Riemannian structure over the Lie group. This allows to

define over Oi a distinguished path joining g(.) to gi(.). We choose a deterministic path joining the

unit loop e(.) to gi(.) li(e(.), gi(.)), and by concatenation of the two paths, we get a distinguished

path joining g(.) to e(.) li(g(.), gi(.)) over Oi.

The second step is to specify a distinguished surface bounded by li(e(.), g(.)) and lj(e(.), g(.)),

where g(.) belongs to Oi ∩Oj. Since δ is small, there is a path u→ expgi(.)
[u(gj(.)− gi(.))] joining

gi(.) to gj(.). Because L(G) is simply connected, because G is two-connected, the loop constituted

of the path joining e(.) to gi(.), the path joining gi(.) to gj(.) and the path joining gj(.) to e(.)

can be filled by a deterministic surface in the smooth loop group. We can moreover fill the small

stochastic triangle constituted of l.(gi(.), g(.)), l.(gj(.), g(.)) and the the exponential curve joining

gi(.) to gj(.) by a small stochastic surface (See [28] for analoguous statements). We get a surface

Bt
i,j(g(.)) which satisfies to our request and which is a stochastic plot. By pulling back (See [28],

[30], [31]), we can consider the stochastic Z-valued form τst(ω) and integrate it over the surface

Bt
i,j(g(.)). We put

ρt
i,j(g(.)) = exp[−

√
−12πk

∫
Bt

i,j(g(.))

τst(ω)] (158)

(See [30]).
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Definition 5.2: a measurable setion φt of the line bundle ξt
i associated to the stochastic

transgression τst(2πω) over Li
t(G) is a collection of random variable αt,i

j Li
t(G) measurables over

Oj submitted to the rules

αt,i
j′ = αt,i

j ρ
t
j,j′ (159)

almost surely over Oi ∩ Oj. The Hilbert space of section Ξt
i of the line bundle ξi

t is the space of

measurable sections of ξi
t such that

E[‖φt‖2] <∞ (160)

where ‖φt‖ = |αt,i
j | over Oj, definition which is consistent, because ρt

j,j′ is almost surely of modulus

1 in (159).

Let us work in a loop space where the loop splits in two loops. We get a splitting map

gtot
t → (g1

t , g
2
t ). Moreover,

τ tot
st = τ 1

st(ω) + τ 2
st(ω) (161)

If we consider a couple of stochastic sections (φ1,t) and φ2,t over the two small loop groups, this gives

therefore a stochastic section φtot,t over the big loop group (See [30] for analoguous considerations),

and the different operations are consistent with the glueing property of two loops, especially the

notion of stochastic connection, we will define now [28]).

Over Oi, the stochastic 1-form associated to the bundle ξ (we omitt to writte we work over

Li
t(G) by writting only L(G)), is given by:

Ai(g(.)) = 2πk

∫ 1

0

τst(li,t(e(.), g(.)))(ω)(d/dtli,t(e(.), g(.)), ∂li,t(e(.), g(.)) (162)

This gives the double integral:

2πk

∫ 1

0

∫ 1

0

< ω(li,u(e(.), g(.))(s)),

dsli,u(e(.), g(.))(s), duli,u(e(.),g(.))(s), ∂li,u(e(.), g(.))(s) >

(163)

Let us consider a stochastic plot (O, φj,Ωj) of dimension m. φ∗jAi is a random one form over O

given if u ∈ O by:

2πk

∫ 1

0

∫ 1

0

ω(li,t(e(.), Fj(u, ., g(.))(s)), dsli,t(e(.), Fj(u, ., g(.))(s),

dtlli,t(e(.),Fj(u,.,g(.))(s), ∂X li,t(e(.),Fj(u, ., g(.))(s) >= φ∗jAi(X)

(164)

where X is a vector field over the parameter space O whose generic element is u. By the results

of part II, this give a random smooth one form on O. This connection form are compatible with

the application gtot → (g1, g2) when the big loop splits in two small loops.

Let be an elementary cylinder in the (1+n) punctured sphere. Let Ωi, [ti, ti+1] where Ωi ⊆ Ω is

a set of probability strictly positive and such over Ωi t→ {s→ g(s, t)} belongs to Oi. We suppose

ti+1 > ti with the natural order which is inherited from the fact we consider over the (1 + n)
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punctured sphere n exit loop groups and one input loop group. We can define the stochastic

parallel transport from ξti to ξti+1 over Ωi along the path t→ {s→ g(s, t)} by the formula

exp[−2πik

∫ ti+1

ti

∫ 1

0

∫ 1

0

ω(li,u(e(.), g(., t))(s)), dsli,u(e(.), g(., t))(s), duli,u(e(.)

, g(., t)(s), dtli,u(e(.), g(., t))(s) > = τ̃ ti,ti+1

(165)

(See Part IV for the definition of the double stochastic integral). Let Σ(1, n) be a (1+n) punctured

sphere. Let Li
out(G) the n output loop groups and L1

in(G) the input loop group. We can define,

by iterating, a generalization of the stochastic parallel transport, which applies a tensor product

of sections φi
out over the output loop spaces to an element over the input loop space, because

the different operations are compatible with the notion of glueing loops. We call this generalized

parallel transport τ̃ 1,n. It is not measurable with respect of the σ-algebras given by the restriction

to the random 1 + n punctured to its boundary. Moreover, over each boundary, the laws of the

loops are identical, and the Hilbert space of section of the bundle ξi
out and ξin are identical. We

denote it by Ξ. We consider the map τ 1,n which associates to an element ξtot of the the tensor

product of the Hilbert spaces of section at the exit boudary the section conditional expectation

of τ̃ 1,nξtot with respect to the σ-algebra spanned by the input boudary. We get. :

Theorem 5.3: τ 1,n associated to the 1+n punctured sphere defines an element ofHom(Ξ⊗n,Ξ).

Moreover, when we give n random punctured spheres Σ(1, ni), and a punctured sphere Σ(1, n),

we can glue then in order to get a sphere Σ(1+
∑
ni) according the rules of Part II. We get τ 1,

∑
ni

which is got by Markov property of part II by composing over the input boundary of Σ(, ni) τ
1,ni

and τ 1,n along the output boundary of Σ(1, n).

Let σi be elements of Hom(Ξ⊗ni ,Ξ). We deduce by composition an element of Hom(Ξ⊗
∑

ni ,Ξ).

Moreover, it is naturally equivariant under the action of the symmetric groups over the n elements

σi. We say that the collection of vector spaces Hom(Ξ⊗n,Ξ) constitutes an operad (See [40], [38],

[39])

We deduce form the Markov property of the random field parametrized by Σ(1,
∑
ni) along

the sewing boundary that:

Theorem 5.4: τ 1,n realizes a morphism from the topological operad Σ(1, n) got by sewing

1 + n punctured spheres along their boundary into the operad Hom(Ξ⊗n,Ξ).

We refer to [21] and [22] for the motivation of this part.
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