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ABSTRACT: A continuous map f of the interval is chaotic iff there is an increasing of 
nonnegative integers T such that the topological sequence entropy of f relative to T, hT(f), is 
positive [4]. On the other hand, for any increasing sequence of nonnegative integers T there 
is a chaotic map f of the interval such that hT(f)=0 [7]. We prove that the same results hold 
for maps of the circle. We also prove some preliminary results concerning statistical 
convergent   topological sequence entropy for maps of general compact metric spaces.   
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INTRODUCTION 
Let (X,ρ ) be a compact metric space; denote by )(XC  the space of all maps of this space 
into itself. We will pay a special attention to the case when X is the circle 1};|z| ;{ =∈= CzS    
the metric on S is given by  ),(||,|| 11 yxdistyx −− ΠΠ=  where Π  denotes the natural projection 
of the real line R onto S, i.e., ixex π2)( =Π .  By N we denote the set of all positive integers.If   
T = ∞

=1)( iit  is an arbitrary sequence of nonnegative integers then the (T,f,n)-trajectory of x∈ X 
is the sequence ∞

=1)( i
t xf i . The set of all periodic points of f is denoted by Per(f) and the set of 

periods of all periodic points of f by P(f). A set A ⊆  X is called a retract of X if there is a map 
r : X →  A such that r(a) = a for every a∈A. 
 
Definition1: Let (X, ρ ) be a compact metric space. The ∞

=1)( i
t xf i  is said to be statistical 

convergent to the ∞
=1)( i

t yf i  , if for 0>ε , and for Xyx ∈,  such that  
Definition2:  Let (X, ρ ) be a compact metric space. A map )(XCf ∈  is said to be chaotic 
ifthere are points Xyx ∈, such that 

.0),(inflim

,0),(suplim

=
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∞→
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yfxf
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A set A ⊆X is said to be (T, f,ε , n)- statistical convergent separated if for any x,y∈A, x≠ y   
there is an index i , .1 ni ≤≤  , such that ερ >),( yfxf ii tt . Let st-Sep(T, f,ε , n)  denote the 
largest of cardinalities of all (T, f,ε , n) –statistical separated sets. Put 
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A subset of X is said to be a (T,f,ε ,n)-st-span if it (T,f,ε ,n)st-spans X. Let st-Span(T,f,ε ,n) 
denote the smallest of cardinalities of all (T, f,ε , n)-st-spans. Put 

).,,,(suplimlim),( 1
0

nfTSpanstfTSepst nn
ε

ε
−=−

∞→→
 

Then st-Sep(T,f) = st-Span(T,f) we define the statistical convergent topological sequence 
entropy of f relative to T, hst-T (f), to be st-Sep(T, f)[3]. 
 
In [4] Franzová and Smítal, proved that a map f of the interval is chaotic if and only if there is 
an increasing sequence of nonnegative integers T such that hT (f) > 0. A natural question arose 
whether there is some universal sequence which characterizes chaos. This is not the case as it 
was proved in [7] for any increasing sequence of nonnegative integers T there is a chaotic 
map f with hT(f) = 0. The main aim of this paper is to prove the same results for statistical 
convergent topological sequence entropy maps of the circle. 
Theorem1: A map )(SCf ∈  is chaotic if and only if there is an statistical convergent 
sequence of nonnegative integers T such that h st-T (f) > 0. 
Theorem2: Let X be a compact metric space containing a homeomorphic image of an interval 
and let T be an statistical convergent sequence of nonnegative integers. Then there is a chaotic 
map )(XCf ∈  such that hst-T (f) = 0. 
 

PRELIMINARY RESULTS 
 
Let (X, ρ ) and (Y,σ ) be compact metric spaces, )(XCf ∈ ; )(YCg ∈ , and let YX →:π  be 
a  map such that the diagram 

π

YY

XX

g  
             

 f

→

↓↓

→

π  

 
commutes. In this situation we have the following. 
 
Lemma1: Let T be an increasing sequence of nonnegative integers.  
(i) if π  is injective then hT (f) < hT (g); 
(ii) if π  is subjective then hT (f) > hT (g); 
(iii) if π  is bijective then hT (f) = hT (g). 
Proof: 
(ii) and (iii). [5].  
(i). We have that π is a homeomorphism betweenX and .Xπ Thus, by (iii), 

).|()( Xghfh TT π=  Now let XE π⊆  be .),,|,( separatednXgT −επ Trivially, it is also 
sparatedngT −),,,( ε which gives ).()|( ghXgh TT ≤π  

 
Theorem3: Let (X, ρ ) be a compact metric space, )(XCf ∈ , T  be an statistical convergent  
sequence of nonnegative integers and k be a positive integer. Then there is an statistical 
convergent statistical sequence of nonnegative integers S such that h st-S(f k ) > h st-T (f). 
Proof: Since X is compact, 12 ,...,, −kfff are equicontinuous, i. e., for any ε  > 0 there is    
δ =δ (ε )>0 such that if x,y∈X and ρ (x; y) δ≤  then ερ <),( yfxf ii tt  for .1,...,1 −= ki We 
may assume that .εδ ≤  
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Let T = ∞
=1)( iit  . Define S = ∞

=1)( iis   as follows. Put ][ 1
1 k

ts = (where [.] stands for the integer 

part) and for any m let 1+ms  will be the first ][ k
ti  greater than ms . 

 Let XE ⊆ be an  ),,,( separetedstnfT −−ε set. We are going to show that E is a 
separetedstmfS k −−),,,( δ set where m is such that ][ k

t
m

ns = .  
To this end let y.  x,, ≠∈ Eyx  Then for some  .y)fx,(f  },,...,2,1({ ii tt ερ >∈ ni Take j  with 

].[ k
t

j
is = Then mj ≤  and from the definition ofδ we have  .y)fx,(f ii k.sk.s δρ > Thus E is a 

separetedstmfS k −−),,,( δ set. From this we have ).,,,(),,,( mfSSepnfTSep k δε ≤  
 
 
 
 Now,  

).()),,,Sep(-log(stsuplim  lim                                                                        

 )),,,Sep(-log(stsuplim  lim                                                                          

)),,,Sep(-log(stsuplim  lim)(                                                          

S-st
k1

0

k
n
1

n0

k
n
1

0

k
mm

nTst

fhmfT

mfT

nfTfh

=≤

≤

=

∞→→

∞→→

∞→→−

δ

δ

ε

δ

δ

ε

 

 
Corollary1: Let X be a compact metric space, )(XCf ∈  and k be a positive integer. Then 
the following two conditions are equivalent: 
(i) there is an increasing sequence T of nonnegative integers such that h T(f) >0; 
(ii) there is an increasing sequence T of nonnegative integers such that h T(fk) >0. 
 
In the sequel we will discuss the space of maps of the circle. The space )(SC  can be 
decomposed into the following classes[1], [10]. 

 }.  somefor   )(  );({

 }; somefor   ,...}2,2,1{0)(or    }1{)(  );({

   point}; periodic no has   );({

3

2
2

1

NnNfPSCfC

NnfPfPSCfC

fSCfC

n

nn

∈=∈=

∈=∈=

∈=

 

According to this we will distinguish three different cases. 
 

MAPS WITHOUT PERIODIC POINTS 
Throughout this section we assume )(SCf ∈  to have no periodic point. We are going to 
show that Theorem1 holds for such continuous maps. Since, by [9], f is not chaotic, we need 
only to show that 0)( =fhT  for any increasing sequence T. So fix T. If f is a homeomorphism 
then 0)( =fhT . Otherwise, there is a nowhere dense perfect set E which is the only ω -limit 
set of f, all (closed) contiguous intervals are wandering, the preimage of any contiguous 
interval is a contiguous interval, the image of any contiguous interval is either a contiguous 
interval or a point from E. Moreover, f|E is monotone. By linear extension of f|E we obtain a 
monotone map )(SCg ∈ . By [8], hT(g)=0 By Lemma1(i), ).()|( ghfh TET ≤  
Hence,  

0n),,|,logSpan(suplim n
1

n
=

∞→
εEfT  for any ε  > 0. 

Now fix an arbitrary ε  > 0. We are going to estimate st- Span ).,,,( nfT ε  Let kII ,...,1  
be all contiguous intervals longer than .2

ε  Let A be a ),,|,( 2 nfT E
ε st-span. Take any point x 

whose (T,f, n)-trajectory lies in S \ .1U
k

i iI=  If x∈E then x is (T, f,ε  , n)st-spanned by A. 
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For Ex∉  put y to be an endpoint of the contiguous interval which contains x. 
Then,  

2||,|| ε≤yfxf ii tt  for all .1 ni ≤≤  

Since y∈E is spannedstnfT −),,,( 2
ε by a point z∈A, the set A obviously ),,,( nfT ε st-

spans all such points x. So it remains to consider those points whose (T, f, n)-

trajectories meet .
1U

k

i iI
=

 Fix N∈N such that N > .1
ε  We are going to show that there 

is a set of cardinality at most n.k.Nk which ),,,( nfT ε st-spans all considered points. It 

is sufficient to show that there is a set with cardinality at most Nk which ),,,( nfT ε st-spans 
the set };{),( j

t
ji IxfSxItI i ∈∈=  (for fixed ).1 and 1 kjnj ≤≤≤≤  First, it is obvious that 

),( ji ItI  is a contiguous interval. Consider its (T, f, n)-trajectory  )).,(),...,,(( 1
ji

t
ji

t ItIfItIf n  
Each element in this trajectory is either a contiguous interval or a point from E. At most k of 
them have lengths greater than or equal to ε - cut each of such elements to N segments shorter 
thanε . All the other elements of the trajectory will be considered to be segments themselves. 
To each x∈I(tiIj) assign its code- the sequence (S1(x),…, Sn(x)) where )(xSl  is the segment 
containing ltf x. We have at most Nk different codes and all points with the same code can be 
(T, f,ε , n)-st-spanned by one point. From what has been said above we see that  

k
E NknnfTSpanstnfTSpanst ..),,|,(),,,( 2 +−≤− εε  

which finishes the proof of Theorem1 for maps without periodic points. 
 

MAPS WITH PERIODIC POINTS 
We will first deal with the case C2. We know that for any n∈N f is chaotic if and only if nf is 
chaotic. Taking into account Corollary1 we can without loss of generality assume that  

,...}.,2{1,2, )(or  }1{)( 2== fPfP  Since f has a fixed point, by [10] there is a lifting F and an 
F-invariant compact interval J longer than 1. In the following discussion of the case C2 we 
will write F and Π instead of F|J and Π |J, respectively, as in the next commutative diagram 

π

S
             

 F

→

↓↓

→

fS

JJ
π  

Note that if x,y∈J then ||Π x, Π y||≤  |x-y| with the equality whenever |x-y| .2
1≤  

 
Lemma2: F is chaotic if and only if f is chaotic[8],[10]. 
 
Lemma3: Let F be chaotic. Then there is an statistical convergent sequence T such that 
hst-T (f) > 0. 
Proof: If F has a periodic point of period  mk 2.  where k>1 is odd then, by Sharkovsky 
theorem, it has also a periodic point of period mk 2.′  where k>0 diam J + 1 is odd. SinceΠ |J is 
to most [diam J] + 1 to one, f has a periodic point of period mk ′′′ 2. where k ′′ > 1 is odd. This is 
a contradiction since P(f) is {1} or ,...}.,2{1,2, 2  So F is of type ∞2 , chaotic. By [10] there is 
an orbit of periodic intervals of period p>diam J such that Fp is chaotic on each of them.  At 
least one interval K in this orbit is shorter than 1. Then Π |K is injective and so K

pF |   is 
topologically conjugate with K

pf Π| . There is an statistical convergent sequence of 
nonnegative integers S such that hst-S( K

pF | ) > 0. Since hp.st-S(f) = hst-S( pf  ) it is sufficient to 
use Lemma1(iii) and (i) to get  
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).|()|()(. K
p

SstK
p

SstSstp Fhfhfh −Π−− =≥ ◊ 
 
Proof of Theorem1:We are going to show that Theorem 1 holds for maps from the class C2. 
Let f∈C2 be chaotic. Then we obtain the required result using Lemma 1 and Lemma2.  
 
Now let f∈C2 and let there be an statistical convergent sequence of nonnegative integers T 
such that hst-T(f)>0. Lemma(ii) implies that hst-T (F)>0 where F has the same meaning as 
above. F is chaotic.  

Finally we will discuss the situation for maps from the remaining class C3. So let     
Pst-( nf  )=N for some n. By [2]  We have that hst-( nf ) is positive and so is hst-(f). Then we 
have that nmf .  is strictly turbulent for a suitable Nm∈  which implies that f is chaotic for the 
same reason as in the interval case. This finishes the proof of Theorem1. 

 
Proof of Theorem2: The space X contains a homeomorphic image J of the interval [0,1]. The 
set J is a  retract of X by [6]. Let r : X→J be a corresponding retraction. By [7] there is a 
chaotic onto map g∈C([0,1]) such that hst-T(g) = 0. Let g~ ∈C(J) be a map topologically 

conjugate with g. Define f∈C(X) by rgf o~= . SinceI
∞

=
==

0i
i JfXXf , we have that         

hst-T (f) = hst-T  (f|J ) = 0. 
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