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Abstract: A concept of entropy production associated with continuous topolog-

ical evolution is deduced (without statistics) from the fact that Cartan-Hilbert

1-form of Action defines a non-equilibrium symplectic system of Pfaff Topological

dimension 2n+2. The differential entropy, dS, is composed of the interior prod-

uct of the non-canonical components of momentum with the components of the

differential velocities. An irreversible process can describe entropy production

in terms of continuous topological evolution to non-equilibrium but stationary

states. An equilibrium system can be defined topologically as a Lagrange sub-

manifold of the 2n+2 topological space, upon which the change in entropy by

continuous topological evolution is zero, dS{equil}=0.

Keywords: Entropy production, Irreversible processes, Pfaff topological dimen-

sion, Cartan’s Magic formula, Decay to stationary states far from equilibirum.
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1 A Topological Perspective

In this article, non-equilibrium thermodynamics will be studied from the perspective of

continuous topological evolution, using methods based upon Cartan’s theory of exterior dif-

ferential forms. Discontinuous processes and statistical methods are, more or less, ignored,

for a method has been found to distinguish between the dynamics of reversible and irre-

versible processes acting on non-equilibrium systems. The title emphasizes that this article

describes a search for entropic thermodynamic features based upon, and applicable to, con-

tinuous topological evolution unfettered by geometrical constraints of metric and connection,

and without the imposition of statistical constraints. Of particular utility are the topological

concepts of Pfaff dimension, orientability, and that fact that continuous topological evolution

can be used to describe topological change with respect to C1 maps without inverse.

It is remarkable that Cartan’s theory of exterior differential forms can be applied to

this task, giving a local (differential) method of determining global (topological) features

of a thermodynamic system. When local differential methods are constrained by limiting

processes (that impose geometrical constraints such as metric and connection), then the in-

duced local linearity of derivatives defeats (or suppresses) any ability to determine global

(non-geometric) properties (such as stability) that might be associated with non-linear ef-

fects. Cartan’s methods permit an assessment of global features from local differential (not

derivative) data. Derivatives require a limiting process to be prescribed; differentials do not.

The assumed limiting processes for a derivative refine the topological structure of the more

general differential physical system.

Non-equilibrium thermodynamics owes a lot to the work of C. Eckart [9] who imposed

phenomenological geometrical constraints on hydrodynamic (Navier-Stokes) systems in order

to incorporate "irreversible" processes into the classical laws of physics. (The Lagrange-

Euler equations of hydrodynamics, which as Hamiltonian systems, have no thermodynamic

irreversible solutions.) Such phenomenological methods ultimately led to the industry of TIP

(Thermodynamic Irreversible Processes), which, when proved to be somewhat inadequate,

were superseded by adding new geometric variables to the mathematical descriptions, a

technique that led to the idea of "extended" thermodynamics. Such geometric methods led

to more palatable ideas concerning entropy production, but the concept that change had to

approach a maximum was axiomatically imposed.

Generally, the geometric methods presumed that entropy maintained its classical status

as an extensive variable (homogenous of degree 1). That assumption should have given

the clue that metric geometry was not of intrinsic importance, for homogeneity of degree 1

and additivity of extensive variables is a property of projective (not metric) transformations.

Projective invariants are always composed of cross ratios, which are independent from scales.
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Indeed, an entropy based upon cross ratios has been suggested by Rodriguez [28]. Nowadays

there have been concepts of entropy change that do away with the extensive property of

classic entropy and lead to yet another industry of "Non - Extensive Entropy" [30].

Using Cartan’s methods, equivalence classes of solutions to the Navier-Stokes equations

[19] can be defined which delineate between non-equilibrium chaotic and non-equilibrium

turbulent solutions. I know of no other theory that permits such a determination to be

made without ad hoc phenomenological additions. Similarly, given an electromagnetic field

as solutions to Maxwell’s equations, can it be decided if the electrodynamic system is a

non-equilibrium or equilibrium system from a thermodynamic point of view? The methods

of continuous topological evolution based on exterior differential forms permit such decisions

to be made in terms of the Pfaff topological dimension of that Action 1-form that encodes

the potentials, and therefor the field intensities, of the electromagnetic system.

1.1 The fundamental axioms

The theory of non-equilibrium thermodynamics from the perspective of continuous topo-

logical evolution, as utilized in this article, is based on four axioms.

Axiom 1 Thermodynamic physical systems can be encoded in terms of a 1-form of covariant

Action Potentials, Ak(x, y, z, t...), on a n ≥ 4 dimensional abstract variety of ordered inde-

pendent variables, {x, y, z, t...}. The variety is pre-geometric in that a metric or connection

has not been imposed. The variety, however, supports a volume element Ωn = dxˆdyˆdzˆdt...

Axiom 2 Thermodynamic processes are assumed to be encoded, to within a factor, ρ(x, y, z, t...),

in terms of contravariant vector direction fields, Vn(x, y, z, t...).

Axiom 3 Continuous topological evolution of the thermodynamic system can be encoded in

terms of Cartan’s magic formula (see p. 122 in [23]). The Lie differential, when applied to

a exterior differential 1-form of Action, A = Akdx
k, is equivalent abstractly to the first law

of thermodynamics. For n = 4,

Cartan’s Magic Formula L(ρV4)A = i(ρV4)dA+ d(i(ρV4)A) (1)

First Law of Thermodynamics : W + dU = Q, (2)

Inexact 1-form of Heat L(ρV4)A = W + dU = Q (3)

Inexact 1-form of Work W = i(ρV4)dA, (4)

Internal Energy U = i(ρV4)A. (5)

Axiom 4 Equivalence classes of systems and continuous processes can be defined in terms

of the Pfaff topological dimension.
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In effect, Cartan’s methods can be used to formulate precise mathematical definitions

for many thermodynamic concepts in terms of topological properties - without the use of

statistics or geometric constraints such as metric or connections. Moreover, the method

applies to non-equilibrium thermodynamical systems and irreversible processes, again with-

out the use of statistics or metric constraints. The fundamental tool is that of continuous

topological evolution, which is distinct from the usual perspective of continuous geometric

evolution. Such processes in non-equilibrium states (for which the Pfaff topological dimen-

sion is greater than 2) describe the evolution of non-homogeneous structures of multiple,

topologically coherent, but disconnected, components.

In order to make the equations more suggestive to the reader, the symbolism for the

variety of independent variables has been chosen to be of the format {x, y, z, t}, but be

aware that no geometric constraints of metric or connection are imposed upon this variety.

For instance, it is NOT assumed that the base variety is euclidean.

It is emphatically stated that geometric notions of scale and metric are to be avoided

in favor of topological properties, some of which are invariants of continuous topological

evolution, and some of which are not. Those classical thermodynamic features which are

diffeomorphic invariants (and useful to many equilibrium applications) are ignored, while

topological features which are invariants of continuous transformations (and therefore useful

to non-equilibrium applications) are not. Topological evolution is understood to occur when

topological features (not geometrical features of size and shape) change. The motivation

for this perspective was based upon the goal of developing analytical methods which could

decide if a given physical system was an equilibrium system or a non-equilibrium system,

and, also, if a specific analytic process was applied to the physical system, was that process

reversible or irreversible.

1.2 Notable Results

Remarkably, utilization of these (topological) axioms leads to notable results that are not

obtained by geometric methods:

1. Thermodynamics is a topological theory.

2. Topological change is a necessary condition for thermodynamic irreversibility.

3. When the Pfaff topological dimension of the 1-form of Action that encodes a physical

system is 2, or less, the system is topologically isolated. The topological structure

on domains of topological dimension n ≤ 2 never admit a continuous process which

is thermodynamically irreversible. Non-equilibrium systems are of Pfaff topological

dimension > 2.
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4. A 1-form of Action, A, with Pfaff topological dimension equal to 1, defines an equilib-

rium isolated system which has representation as a Lagrangian submanifold.

5. The topological structure of physical systems on domains (contact manifolds) of odd

topological dimension n = 3, 5, 7.. > 2 are non-equilibrium systems. On such systems

there exists (to within a factor) a unique continuous extremal process, VE, which may

be chaotic, but nevertheless is thermodynamically reversible, and has a Hamiltonian

generator.

6. The topological structure of physical systems on domains of even topological dimension

n = 4, 6, 8... > 2 (symplectic manifolds) are non equilibrium systems. Such systems

support (to within a factor) a unique continuous process, VT , related to the concept of

Topological Torsion. Continuous evolution in the direction of the topological torsion

vector is thermodynamically irreversible. In this sense, thermodynamic irreversibility

is an artifact of topological dimension n ≥ 4.

7. The change of the Pfaff topological dimension will produce topological defects and

thermodynamic phase changes.

8. The assumption of uniqueness of evolutionary solutions (which implies a Pfaff Topolog-

ical dimension equal to 2 or less), and homeomorphic evolution, are different, but ubiq-

uitous, constraints imposed upon classical mechanics that eliminate any time asymme-

try.

9. All Hamiltonian, Symplectic-Bernoulli and Helmholtz processes are thermodynamically

reversible. In particular, the work 1-form, W , created by Hamiltonian processes is of

Pfaff topological dimension 1 or less.

10. The functional forms of tensor fields with arguments in terms of the base variables of

the final state are not deterministically predictable in terms of the functional forms of

tensor fields with arguments in terms of the base variables of the initial state, unless

the map from initial to final state is a diffeomorphism (which preserves topology)

[17] . On the other hand, the functional forms of those alternating tensor fields

which are coefficients of exterior differential forms, and with arguments in terms of

the base variables of the initial state, are well defined in terms of the functional forms

of tensor fields with arguments in terms of the base variables of the final state, even

when the (C1) map from initial to final state describes topological evolution. In

other words, retrodiction of differential forms is possible when topology changes, but

prediction is impossible. Hence an Arrow of Time asymmetry is a logical result [15]
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when topological evolution is admitted, but does not appear if the evolution is restricted

to be a homeomorphism or a diffeomorphism, for then the topology is invariant.

11. The topological structure of domains of Pfaff dimension 2 or less creates a connected,

but not necessarily simply connected, topology. Evolutionary solution uniqueness is

possible, to within a projective factor. Such a topological structure can be thought of

as a topologically homogeneous object.

12. The topological structure of domains of Pfaff dimension 3 or more creates a discon-

nected topology of multiple components. If solutions to a particular evolutionary

problem exist, then the solutions are not unique. Envelope solutions, such as Huygen

wavelets and propagating discontinuities (called signals) are classic examples of solu-

tion non-uniqueness. Such structures can be thought of as inhomogeneous topological

objects.

13. Cartan’s Magic formula, in terms of the Lie differential acting on exterior differential

1-forms establishes the long sought for combination of dynamics and thermodynamics,

enabling non-equilibrium systems and many irreversible processes to be computed in

terms of continuous topological evolution, without resort to probability theory and

statistics. The technique goes beyond the usual constraints embedded in a variational

principle.

14. The Lie differential acting on differential forms is not necessarily the same as a linear

affine covariant differential acting on differential forms. It is possible to demonstrate

that if the process is locally adiabatic (no heat flow in the direction of the evolutionary

process), then the Lie differential and the covariant differential can be made to coincide,

as they both satisfy the Koszul axioms for an affine connection (see section 2.5). This

is a surprising result, for, when the argument is reversed, the theorem implies that

the ubiquitous affine covariant differential of tensor analysis, acting on a 1-form of

Action, can always be cast into a form representing an adiabatic process. However,

such adiabatic processes need not be reversible. Not all thermodynamic processes are

adiabatic; the covariant derivative of tensor analysis does not capture such processes.

15. The Lie differential can describe evolutionary processes which are not C2 differen-

tiable, leading to a better understanding of wakes and shocks. On odd dimensional

spaces, sequential C1 (translational) processes can be thermodynamically reversible,

while intransitive C2 processes (rotation and expansion with a fixed point) will be

thermodynamically irreversible.
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16. If the evolutionary process described by the Lie differential, affine equivalent or not,

leaves the 1-form of Action invariant, then the process is thermodynamically reversible.

If the affine covariant differential of tensor analysis induces parallel transport (the co-

variant differential is zero), then the affine process is adiabatic and reversible. Parallel

transport does not encode irreversible processes.

17. On spaces of Pfaff topological dimension 4, the Cayley-Hamilton theorem produces a

characteristic polynomial with similarity invariant coefficients which will generate the

format of the Gibbs function for a (universal) van der Waals gas, with a well defined

critical point and binodal and spinodal lines. The same technique can be applied to

dynamical systems. The fourth order polynomial indicates that the concept of phase

change can be related to a 4th order "Higgs" potential.

These results, as they are determined from the perspective of continuous topological evo-

lution, are summarized in section 2, but details appear elsewhere [18]. The notable missing

thermodynamic feature in the list above is entropy. One objective of this article is deter-

mine how some of the concepts of classical entropy can be deduced from the perspective of

continuous topological evolution of the Cartan topology.

Section 3 presents the details of how a concept of the entropy production, dS, of continuous

topological evolution can be deduced (without statistics) from the fact that Cartan-Hilbert

1-form of Action (with topological fluctuations) is of Pfaff Topological dimension 2n+2 on

a pre-geometric variety {qk, pk, v
k, t} of dimension 3n+1. The entropy change can be put

into correspondence with the concept of a space-time bulk viscosity, where dissipation is

related to expansions and contractions, or otherwise intransitive motions. The requirement

that the differential volume element of the 2n+2 dimensional symplectic space is non-zero

implies the existence of a perfect differential of entropy change, dS, not included among

the differentials of the functions that of the 2n+1 state space, {qk, pk, t}. The differential

entropy change is composed of the interior product of the non-canonical components of

momentum with the components of the differential velocities. The topological orientation

of the 2n+2 volume element, coupled with a constraint of continuous evolution, requires

that dS ≥ 0. Continuous topological processes preserve orientation, so once an orientation

is decided, continuous transformations preserve that orientation.

Section 4 presents an everyday example of an irreversible process (a skidding - sliding

bowling ball) that causes a thermodynamic system of Pfaff topological dimension 6 to decay

to an excited state of Pfaff topological dimension 5, far from equilibrium, but where further

continuous topological evolution is not thermodynamically irreversible. The coefficient of

"bulk velocity" and its relationship to entropy production can be computed analytically.
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1.3 Entropy and Topology

It must be remembered that many definitions of "topological" entropy put restrictions on

the processes such that they are elements of some group. As Thomas Ward [32] states "For

any automorphism α : X → X of a compact metrizable group X, the topological entropy

h(α ) may be defined in several different ways. The most convenient formulation is that

of Bowen [4], where the topological entropy is expressed as a local rate of volume growth."

However, in this article the processes, X, are not restricted to be elements of a group, much

less a compact metrizable group. The processes of interest are not homeomorphisms, much

less, diffeomorphisms. The search is then for a definition of entropy that does not depend

upon group properties and their inability to describe irreversible evolution.

In that which follows, a mechanism for defining an entropy production, dS, in terms of

processes that express a local "space-time volume" growth will be established, and a cer-

tain amount of comparison can be made to the usual formulations of "topological entropy"

and the phenomenological concept of "bulk viscosity". However, the irreversible processes

described herein involve the concept of what has been defined as "Topological Torsion".

Topological Torsion leads to concepts of entropy production related to "volumetric " expan-

sion or contraction, but without the use of metrical geometric ideas. In engineering terms,

the bottom line is that the phenomenological concept concept of "bulk viscosity" is a topo-

logical, not a geometric, idea. The bulk viscosity concept involves intransitive evolution of

expansions and rotations with a projective fixed point (or origin) not at infinity, and therefor

cannot be described by transitive affine assumptions (which do not preserve the origin). On

the other hand, shear viscosity can be related to transitive affine assumptions.

Warning! The topology of interest to this article is that generated by Cartan’s Topological

structure based on a 1-form of Action, A, and Cartan’s theory of exterior differential forms

[2]. The Cartan topology is NOT a metric topology, NOT a Hausdorf topology, and even

does NOT satisfy the separation axioms required to be a T1 topology [22]. Yet all of

the pertinent topological ideas, including the non-intuitive ones, are easy to grasp from

the simple example of the T4 point set topology. Of utmost importance, for physical

systems of topological dimension greater than 2, is the fact that the Cartan topology is not a

connected topology. This idea implies that such systems are topologically inhomogeneous.

As will be discussed below, when the topological dimension is greater than 2, the physical

system is a non-equilibrium physical system. Non-equilibrium systems are a consequence

of a disconnected topology. Irreversible processes are artifacts where the Pfaff topological

dimension is ≥ 4. The importance of this result resides with the topological theorem that

mappings from a disconnected topology to a connected topology can be continuous, but

continuous maps from a connected topology to a disconnected topology are impossible. In
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other words continuous maps can be used to describe the irreversible decay of a Turbulent

state, but not its creation [14].

1.4 Topological Torsion

One of the major achievements of a thermodynamics expressed in terms of continuous topo-

logical evolution is that it is possible to define the concept of Topological Torsion on sym-

plectic manifolds (of even Pfaff topological dimension > 2) in terms of a vector direction

field, say T4 (on a space of Pfaff topological dimension 4). The components of the topolog-

ical torsion direction field are uniquely defined in terms of the C1 coefficient functions used

to encode the physical system as a 1-form of Action, A. On the symplectic manifold, the

"divergence" of this vector field, T4, is not zero (implying that symplectic manifold is not

compact without boundary, and is either open or with boundary). It section 2.3 it is demon-

strated that a process with a component in the direction of the topological torsion vector,

T4, is an irreversible process in a thermodynamic sense. The heat 1-form, Q, generated by

such a process, T4, is of Pfaff dimension 3 or greater, and does not admit an integrating

factor.
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If the divergence of the topological torsion tensor is zero, then the Pfaff topological di-

mension of such a domain is not even. The domain no longer has a symplectic structure,

but the does admit a contact structure. It is noteworthy fact that the contact structure

(a non-equilibrium state space of odd topological dimension >2 ) does support "stationary"

states in a Hamiltonian sense. This result lends credence to the Prigogine conjecture of

"stationary states far from equilibrium". Such "excited - stationary" states are far from

equilibrium, for their Pfaff dimension is greater than 2. These excited states represent self

organized topologically coherent complexes which are representative of the topological inho-

mogeneities in the thermodynamic system. On a state space of topological dimension 2n+1

embedded in a space of topological dimension, 2n+2, the topological torsion vector is not

zero, but has a zero divergence. Evolution in the direction of the divergence free topological

torsion vector is no longer thermodynamically irreversible. In fact, the topological torsion

vector represents a characteristic process which is both extremal and associated, in the sense

of the calculus of variations, and can be related to Hamilton-Jacobi theory.

2 Fundamentals of non-equilibrium thermodynamics

from a perspective of continuous topological evolu-

tion.

2.1 The Pfaff Topological Dimension

Perhaps one of the most important topological tools to be used within the theory of continu-

ous topological evolution is the concept of Pfaff topological dimension. The maximum Pfaff

dimension is equal to number of independent variables in a given pre-geometric base variety,

which in this section has been limited (for reasons of simplicity, and unless otherwise stated)

to n = 4. For a given 1-form of Action, A = Ak(x, y, z, t)dx
k defined on the base variety

of independent variables, {x, y, z, t}, it is possible to ask what is the irreducible minimum

number of independent functions θ(x, y, z, t) required to describe the topological features

that can be generated by the specified 1-form, A. This irreducible number of functions is

defined herein as the "Pfaff topological dimension" of the 1-form, A. For example, if

A = Akdx
k ⇒ dθ(x, y, z, t)irreducible, (6)

such that Ak = ∂θ(x, y, z, t)/∂xk, (7)

then only one C1 function θ(x, y, z, t) is required to describe the Action, not four. In this

example the irreducible Pfaff topological dimension of the 1-form, A, is 1, although the



Entropy 2004, 6 272

dimension of the base variety is 4. In a sense, the Pfaff topological dimension defines the

existence of a domain of "topological" base variables (topological coordinates) as submersions

from the original base variety (pre- geometric coordinates) to the irreducible base variety

(topological coordinates). Differential forms constructed on the irreducible topological base

variety of functions, are functionally well defined on the original pre-geometric base variety,

even though the submersion is not invertible.

Relative to the Cartan topology [2], the "Pfaff topological dimension" can be generated

for each of the Pfaffian forms associated with any thermodynamic system. The irreducible

Pfaff topological dimension for any given 1-form A is readily computed by constructing the

Pfaff sequence of forms:

Pfaff sequence: {A, dA,AˆdA, dAˆdA}. (8)

In this 4D example the Top Pfaffian is the term dAˆdA, which is exact, and has a preimage as

the 3-form AˆdA. The Pfaff topological dimension is equal to the number of non-zero terms

in the Pfaff sequence. If dAˆdA is not equal to zero, then the Pfaff topological dimension

is 4.

As another example, if the Pfaff sequence for a given 1-form A is {A, dA, 0, 0} in a region

U ⊂ {x, y, z, t}, then the Pfaff topological dimension of A is 2 in that region, U. The 1-

form A, in the region U, then admits description in terms of only two, but not less than 2,

independent variables, say {u1, u2}. For a differentiable map ϕ from {x, y, z, t} ⇒ {u1, u2},

the exterior differential 1-form defined on the target variety U of 2 pre-geometry dimensions

as

A(u1, u2) = A1(u
1, u2)du1 +A2(u

1, u2)du2, (9)

has a functionally well defined pre-image A(x, y, z, t) on the base variety {x, y, z, t} of 4 pre-

geometric dimensions. This functionally well defined pre-image is obtained by functional

substitution of u1, u2, du1, du2 in terms of {x, y, z, t} as defined by the mapping ϕ. The

process of functional substitution is called the pull-back:

A(x, y, z, t) = Akdx
k = ϕ∗(A(u1, u2)) = ϕ∗(Aσdu

σ). (10)

It may be true that the functional form of A yields a Pfaff topological dimension equal to

2 globally over the domain {x, y, z, t}, except for sub regions where the Pfaff dimension of A

is 3 or 4. These sub regions represent topological defects in the almost global domain of Pfaff

dimension 2. Conversely, the Pfaff dimension of A could be 4 globally over the domain,

except for sub regions where the Pfaff dimension of A is 3, or less. These sub regions

represent topological defects in the almost global domain of Pfaff dimension 4. Applications
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of both viewpoints have merit. The important concept of Pfaff topological dimension also

can be used to define equivalence classes of both physical systems and processes.

The concept of "Pfaff topological dimension" was developed more than 110 years ago

(see page 290 of Forsyth [11] ), and has been called the "class"1 of a differential 1-form

in the mathematical literature. More recent mathematical developments can be found

in [29]. The method and its properties have been little utilized in the applied world of

physics and engineering. Of key importance (in 4 dimensions) is the fact that the non-zero

existence of the 3-form AˆdA = AˆF of Topological Torsion, and the 4-form of Topological

Parity, dAˆdA = FˆF implies that the Pfaff topological dimension of the region is 3 or

4, respectively. Either value is an indicator that the physical system (in the sub region)

is NOT in thermodynamic equilibrium. The concept of Topological Parity, FˆF , has its

foundations in the theory of Pfaff’s problem, with a recognizable 4 dimensional formulation

appearing in Forsyth [11] page 100. The idea of Topological Torsion, AˆF , is associated

with the idea of magnetic helicity density, a concept that apparently had its electromagnetic

genesis with the study of plasmas in WWII. However, the concept of helicity density is but

one component of the four dimensional Topological Torsion 4 vector.

Recall that a space curve with non-zero Frenet - Serret torsion does not reside in a two

dimensional plane. Non-zero Frenet - Serret torsion of a space curve is an indicator that the

geometrical dimension of the space curve is at least 3. The fact that the Pfaff topological

dimension of the 1-form, A, is at least 3, when AˆF is non-zero, is the reason why the

3-form, AˆF , was called "Topological Torsion". The idea of non-zero AˆF also appears in

the theory of the Hopf Invariant [5].

2.2 Physical Systems: Equilibrium, Isolated, Closed and Open

Physical systems and processes are elements of topological categories determined by the

Pfaff topological dimension (or class) of the 1-forms of Action, A, Work, W , and Heat, Q.

For example, the Pfaff topological dimension of the exterior differential 1-form of Action,

A, determines the various species of thermodynamic systems in terms of distinct topological

categories. There are two topological thermodynamic categories that are determined by the

closure (or differential ideal) of the 1-form of Action, A∪dA, and the closure of the 3-form of

topological torsion, AˆdA∪dAˆdA. The first category is represented by a connected Cartan

topology, while the second category is represented by a disconnected Cartan topology.

1The term "Pfaff topological dimension" (instead of class) was introduced by the present author in order

to emphasize the topological foundations of the concept.
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2.2.1 Connected Topology: Topological Torsion = AˆdA = 0

1. Equilibrium physical systems are elements such that the Pfaff topological dimension is

1.

2. Isolated physical systems are elements such that the Pfaff topological dimension is 2,

or less [22]. Isolated systems of Pfaff dimension 2 need not be in equilibrium, but do

not exchange radiation or mass with the environment.

Systems : Pfaff topological dimension when: AˆdA = 0 (11)

dA = 0 Equilibrium - Pfaff dimension 1 (12)

AˆdA = 0 Isolated - Pfaff dimension 2 (13)

Both systems have a connected topology, but these domains need not be simply con-

nected.

2.2.2 Disconnected Topology: Topological Torsion = AˆdA 	= 0

1. Closed physical systems are elements such that the Pfaff topological dimension is 3.

Closed systems can exchange radiation, but not mass, with the environment.

2. Open physical systems are such that the Pfaff topological dimension is 4. Open

physical systems can exchange both radiation and mass with the environment.

Systems : Pfaff topological dimension when: AˆdA 	= 0 (14)

d(AˆdA) = 0 Closed - Pfaff topological dimension 3 (15)

dAˆdA 	= 0. Open - Pfaff topological dimension 4. (16)

When the 3-form of Topological Torsion is zero, the Cartan Topology is a connected topology,

and solutions to the Pfaff equation are uniquely determined to within a factor. When the

3-form of Topological Torsion is non-zero, the Cartan topology is a disconnected topology,

and the Pfaffian equation may have non-unique solutions. Note that these topological

specifications as given above are determined entirely from the functional properties of the

physical system encoded as a 1-form of Action, A. The system topological categories do

not involve a process, which is encoded (to within a factor) by some vector direction field,

V4. However, the process V4 does influence the topological properties of the work 1-form

W and the Heat 1-form Q, which depend on both the physical system and the process.
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2.3 Reversible and Irreversible Processes

The Pfaff topological dimension of the exterior differential 1-form of Heat, Q, determines

important topological categories of processes. From classical thermodynamics "The quantity

of heat in a reversible process always has an integrating factor" [12] [25] . In the language of

exterior differential forms, the existence of an integrating factor requires that the Frobrenius

unique integrability theorem, QˆdQ = 0, must be statisfied. Hence all reversible processes

are such that the Heat 1-form, Q, is of Pfaff dimension 2 or less. Irreversible processes are

such that the Pfaff dimension of Q is greater than 2. A dissipative irreversible topologically

turbulent process is defined when the Pfaff dimension of Q is 4.

Processes defined by the Pfaff dimension of Q

Processes : as defined by the Pfaff dimension of Q (17)

QˆdQ = 0 Reversible - Pfaff dimension 2 (18)

d(QˆdQ) 	= 0. Turbulent - Pfaff dimension 4. (19)

Note that the Pfaff dimension of Q depends on both the choice of a process, V4, and

the system, A, upon which it acts. As reversible thermodynamic processes are such that

QˆdQ = 0, and irreversible thermodynamic processes are such that QˆdQ 	= 0, Cartan’s

formula of continuous topological evolution can be used to determine if a given process, V4,

acting on a physical system, A, is thermodynamically reversible or not:

Processes defined by the Lie differential of A

[
Reversible Processes ρV4 : L(ρV4)AˆL(ρV4)dA = 0,

Irreversible Processes ρV4 : L(ρV4)AˆL(ρV4)dA 	= 0.

]

(20)

Remarkably, Cartan’s magic formula can be used to describe the continuous dynamic

possibilities of both reversible and irreversible processes, in equilibrium or non-equilibrium

systems, even when the evolution induces topological change, transitions between excited

states, and changes of phase, such as condensations. It should be noted that all classic

Hamiltonian, Bernoulli-Casimir, and Helmholtz dynamical processes satisfy the topological

constraint [20] such that

di(ρV4)dA = dW = dQ = 0. (21)

Hence, it follows that all such processes are thermodynamically reversible, as QˆdQ = 0.
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It is also important to note that the direction field, V4, need not be topologically con-

strained such that it is singularly parameterized. That is, the evolutionary processes de-

scribed by Cartan’s magic formula are not necessarily restricted to vector fields that satisfy

the topological constraints of kinematic perfection, dxk − V kdt = 0. A discussion of topo-

logical fluctuations, where dxk − V kdt = ∆k 	= 0, and an example fluctuation process is

described below. Topological fluctuations are related to the differences between the concept

of a derivative and the concept of a differential.

2.4 A Non-Equilibrium Physical System

2.4.1 Topological Torsion

For maximal, non-equilibrium, turbulent systems in a 4D variety of independent variables

(space-time), the maximal element in the Pfaff sequence generated by the three 1-forms,

A,W, or Q, is a 4-form. On the geometric space of 4 independent variables, every 4-form

is globally closed, in the sense that its exterior differential vanishes everywhere. It follows

that every 4-form is exact and can be generated by the exterior differential of a 3-form. The

exterior differential of the 3-form is related to the concept of a divergence of a contravariant

vector direction field. At first, the development in this article will be devoted to the study of

such 3-forms and 4-forms, whose existence imply that the associated thermodynamic system

is a non-equilibrium system. It is a remarkable fact that all 3-forms (in general, N-1 forms)

admit integrating denominators, such that the exterior differential of a rescaled 3-form is

zero almost everywhere. Space time points upon which the integrating denominator has a

zero value produce singularities defined as topological defect structures. In sections 3 and

4, these methods will be extended to spaces of higher Pfaff topological dimension.

When the Action for a 4D physical system is of Pfaff dimension 4, there exists a unique

direction field, T4, defined as the Topological Torsion 4-vector, that can be evaluated entirely

in terms of those component functions of the 1-form of Action, A, which define the physical

system. To within a factor, this direction field2 has the four components of the 3-form

AˆdA, with the following properties:

2A direction field is defined by the components of a vector field which establish the "line of action" of

the vector in a projective sense. An arbitrary factor times the direction field defines the same projective

line of action, just reparameterized. In metric based situations, the arbitrary factor can be interpreted as a

renormalization factor.
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Properties of the Topological Torsion vector T4

i(T4)Ω4 = AˆdA (22)

W = i(T4)dA = σ A, (23)

U = i(T4)A = 0, (24)

L(T4)A = σ A = Q, (25)

QˆdQ = L(T4)AˆL(T4)dA = σ
2AˆdA 	= 0 (26)

dAˆdA = 2 σ Ω4. (27)

Hence, by equation (26 ) evolution in the direction ofT4 is thermodynamically irreversible,

when σ 	= 0 and A is of Pfaff topological dimension 4. The kernel of this vector field is

defined as the zero set under the mapping induced by exterior differentiation. In engineering

language, the kernel of this vector field are those point sets upon which the divergence of

the vector field vanishes. The Pfaff topological dimension of the Action 1-form is 3 in

the defect regions defined by the kernel of T4. The coefficient σ can be interpreted as a

measure of space-time volumetric expansion or contraction. It follows that both expansion

and contraction processes (of space-time) are related to irreversible processes. It is here

that contact is made with the phenomenological concept of "bulk" viscosity.

Note that if QˆdQ = 0, then the thermodynamic process is reversible. In a qualitative

sense, if the 3-form is non-zero, then its fluctuation away from zero yields information as to

the "measure" of irreversibility. More precisely, if the initial conditions of QˆdQ are not

zero, then equation (26) indicates that the measure of irreversibility is proportional to σ2.

It is tempting to identify σ2 with the concept of entropy production, for the implication is

that both expansions and contractions of the volume element, as indicated by the factor,

σ, cause the 3-form to change in the same manner. The approach to reversibility leads to

entropy production and an entropy maximum.

2.4.2 An Electromagnetic Example

For purposes of more rapid comprehension, consider a 1-form of Action given by the expres-

sion in terms of electromagnetic potentials,

A = Ak(x, y, z, t)dx
k = A ◦ dr− φ dt. (28)

The exterior differential, dA, leads to an electromagnetic interpretation (E = −∂A/∂t−∇φ,

and B = ∇×A)3. The explicit format of the Electromagnetic Topological Torsion 4 vector,

3The bold letter A represents the first 3 components of the 4 vector of potentials, with the order in

agreement with the ordering of the independent variables. The letter A represents the 1-form of Action.
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T4, becomes [16]:

T4 = −[E×A+Bφ, A ◦B] (29)

AˆdA = i(T4)Ω4 (30)

= T x4 dyˆdzˆdt− T
y
4 dxˆdzˆdt+ T

z
4 dxˆdyˆdt− T

t
4dxˆdyˆdz, (31)

dAˆdA = 2(E ◦B) Ω4 = KΩ4 (32)

= {∂T x4 /∂x+ ∂T
y
4 /∂y + ∂T

z
4 /∂z + ∂T

t
4/∂t} Ω4. (33)

When the 3-form AˆdA is not zero, then the thermodynamic system is a non-equilibrium

thermodynamic system. Note that a non-zero magnitude of helicity density, A ◦B 	= 0, is

sufficient, but not necessary, for the electromagnetic system to represent a non-equilibrium

thermodynamic system. Even systems without a magnetic field B can be non-equilibrium

systems. Systems without an electric E field, but with non-zero B fields (such as found in

certain plasmas) can also represent non-equilibrium thermodynamic systems.

When the divergence of the topological torsion vector is not zero, σ = (E ◦ B) 	= 0, and

A is of Pfaff dimension 4, W is of Pfaff dimension 4, and Q is of Pfaff dimension 4. The

process generated by T4 is thermodynamically irreversible, as

QˆdQ = L(T4)AˆL(T4)dA = σ
2AˆdA 	= 0. (34)

The evolution of the volume element relative to the irreversible process T4 is given by the

expression,

L(T4)Ω4 = i(T4)dΩ4 + d(i(T4)Ω4) (35)

= 0 + d(AˆdA) = 2(E ◦B) Ω4. (36)

Hence, the differential volume element Ω4 is expanding or contracting depending on the sign

and magnitude of σ = E ◦ B, a useful fact when topological thermodynamics is applied

to cosmology. A cosmology on 4D can have an expanding volume element, Ω4, but with

embedded 3D defect structures (the galaxies) which are not "expanding".

If A is (or becomes) of Pfaff dimension 3, then dAˆdA ⇒ 0 which implies that σ2 ⇒

0, but AˆdA 	= 0. The differential geometric volume element Ω4 is subsequently an

evolutionary invariant, and evolution in the direction of the topological torsion vector is

thermodynamically reversible. The physical system is not in equilibrium, but the divergence

free T4 evolutionary process forces the Pfaff dimension of W to be zero, and the Pfaff

dimension of Q to be at most 1. Indeed, a divergence free T4 evolutionary process has a

Hamiltonian representation. In the domain of Pfaff dimension 3 the subsequent continuous

evolution of the system, A, relative to the process T4, proceeds in an energy conserving
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manner, representing a "stationary" or "excited" state far from equilibrium. These excited

states can be interpreted as the evolutionary topological defects in the Turbulent dissipative

system of Pfaff dimension 4. The Topological Torsion vector becomes an adiabatic, extremal,

characteristic direction field in the space of geometric dimension 4, but where the Pfaff

dimension of the physical system, A, is of Pfaff topological dimension 3.

On a pre-geometric domain of 4 dimensions, assume that the evolutionary process gener-

ated by T4 starts from an initial condition (or state) where the Pfaff topological dimension of

A is also 4. Depending on the sign of the divergence of T4, the process follows an irreversible

path for which the divergence represents an expansion or a contraction. If the irreversible

evolutionary path is attracted to a region (or state) where the Pfaff topological dimension

of the 1-form of Action is 3, then E ◦B becomes (or has decayed to) zero. The zero set

of the function E ◦B defines a hypersurface in the 4 dimensional space. If the process

remains trapped on this hypersurface of Pfaff dimension 3, E ◦B remains zero, and the T4
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process becomes an extremal, adiabatic, characteristic direction field. Such extremal fields

are such that the virtual work 1-form vanishes, W = i(T4)dA = 0. The direction field that

represented an irreversible process, in domains where the divergence goes to zero, becomes

a representation for a reversible conservative extremal Hamiltonian process. Although the

process is conservative in a Hamiltonian sense, the physical system can be in a "excited"

state on the hypersurface that is far from equilibrium, for the Pfaff dimension of the 1-form

of Action is 3, and not 2. (If the path is attracted to a region where the function E ◦B

is oscillatory, the system evolutionary path defines a limit cycle, or what has been called a

"breather" in soliton theory.)

2.5 The Lie differential L(V ) and the Covariant differential ∇(V )

The covariant derivative of tensor analysis, as used in General Relativity, is often defined in

terms of isometric diffeomorphic processes (that preserve the differential line element) and

can be used to describe rigid body motions and isometric bendings, but not deformations and

shear processes associated with convective fluid flow. Another definition of the covariant

derivative is based on the concept of a connection, such that the differential process acting on

a tensor produces a tensor. The definition of the covariant derivative usually depends upon

the additional structure (or constraint) of a metric or a connection placed on a given variety,

while the Lie differential does not. As the Lie differential is not so constrained, it may be

used to describe non-diffeomorphic processes for which the topology changes continuously.

The covariant derivative is avoided in this article.

Koszul ( see p. 262 in [13]) has given a set of axioms that can be used to define an affine

connection and a covariant derivative. The covariant derivative axioms require that

∇(fV )ω = f ∇(V )ω, (37)

∇(V )fω = (∇(V )f )ω + f ∇(V )ω. (38)

This axiomatic representation of a covariant derivative and an affine connection should be

compared to the Lie differential,

L(fV )A = f L(V )A+ df (i(V )A), (39)

L(V )fA = (L(V )f )A+ f L(V )A. (40)

Only if the last term in the expansion of the Lie differential, df (i(V )A), is zero does the

formula for the Lie differential have an equivalent representation as a covariant derivative in

terms of an affine connection. Suppose that i(V )A = 0, such that the Lie differential and

the covariant differential are equivalent.

L(fV )A = f L(V )A = f ∇(V )A. (41)



Entropy 2004, 6 281

Then it follows that

L(fV )A = f L(V )A+ df (i(V )A) (42)

= f L(V )A = f Q. (43)

But i(V )Q = f i(V )i(V )dA = 0⇒ i(V )Q, (44)

where i(V )Q = 0 defines an adiabatic process. (45)

Conclusion 5 Hence, all covariant derivatives with respect to an affine connection have an

equivalent representation as an adiabatic process!!! Such covariant adiabatic processes need

not be thermodynamically reversible.

Suppose that the adiabatic process is such that

L(V )A = Q = 0. (46)

Then

dL(V )A = L(V )dA = dQ = 0, (47)

and it follows that the adiabatic process is reversible. However, the condition that Q be

zero is the equivalent to the condition of parallel transport:

L(V )ω ⇒ ∇(V )ω = 0. (48)

Conclusion 6 The remarkable conclusion is that the concept of parallel transport in tensor

analysis is - in effect - an adiabatic, reversible process!!!

As it is apparent that not all evolutionary processes are adiabatic, much less reversible,

it seems sensible to conclude that theories (such as general relativity) that invoke the use

of a covariant derivative, and or parallel transport, to describe evolutionary processes have

allowed irreversible phenomena, in the words of Sir Arthur Eddington, "to slip through the

net".

3 The basic idea: Topological Fluctuations lead to a

concept of an entropy production relative to contin-

uous topological evolution.

3.1 Extensions of the Cartan-Hilbert Action 1-form

This subsection considers those physical systems that can be described by a Lagrange func-

tion L(q,v,t) and a 1-form of Action given by:

A = L(qk,vk,t)dt+ pk·(dq
k − vkdt), (49)
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The classic Action, L(qk,vk,t)dt, is extended to included topological fluctuations in the

kinematic variables. It is no longer assumed that the equation of Kinematic perfection

is satisfied. That is, fluctuations of the topological constraint of kinematic perfection are

permitted:

Topological Fluctuations :

in position ∆q = (dqk − vkdt) 	= 0, (50)

in velocity ∆v = (dvk − akdt) 	= 0, (51)

in momenta ∆p = (dpk − fkdt) 	= 0. (52)

These topological fluctuations are not merely functions of time, but can be fluctuations

in space and perhaps other parametric variables. Note that the topological fluctuations are

not derivatives, but are differentials - the limit process has not been explicitly stated. One

particular fluctuation problem is related to the choice of an "observers" origin. For example,

in mechanics it is often assumed that the origin is located at the center of mass. Such an

approach can lead to imprecision and fluctuations of parameters, such as mass. The only

origin that is free from such defects is a singular barycentric system, but that cannot be

defined with parameters that are positive definite (such as mass). In the singular barycentric

system of projective systems, any point can be used as the "origin" for all other points in

an equivalent manner.

When dealing with topological fluctuations, the pre-geometric dimension will not be con-

strained to only 4 independent variables. At first glance it appears that the domain of

definition for the Cartan-Hilbert Action 1-form, above, is a 3n+1 dimensional variety of

independent base variables, {pk, q
k,vk,t}. The reader is warned that p is NOT constrained

to be a jet; e.g., pk 	= ∂L/∂v
k. Instead, the pk are considered to be a (set of) Lagrange

multiplier(s) to be determined later. Note that the Action 1-form has the format used in

the Cartan-Hilbert invariant integral [8], except that herein it is not assumed that the pk
are canonical; that is, pk 	= ∂L/∂v

k necessarily. Also, it is NOT assumed at this stage

that the vector field, v, is a kinematic velocity function, such that (dqk − vkdt) ⇒ 0. A

classical inference is to assert that topological fluctuations in kinematic velocity, ∆q, are

related to pressure, and topological fluctuations in kinematic acceleration, ∆v, are related

to temperature.

For the given Lagrangian and its Action, construct the Pfaff sequence

Pfaff Sequence {A, dA,AˆdA, dAˆdA,AˆdAˆdA, dAˆdAˆdA, ..} (53)

in order to determine the Pfaff dimension or class of the 1-form [27]. The top Pfaffian is

defined as the non-zero p-form of largest degree p in the sequence. The top Pfaffian for the
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Cartan-Hilbert Action can be explicitly evaluated, and is given by the formula,

Top Pfaffian (54)

(dA)n+1 = (n+ 1)!{Σnk=1(∂L/∂v
k − pk)dv

k}ˆdp1ˆ...dpnˆdq
1ˆ..dqnˆdt,

The formula is a bit surprising in that it indicates that the Pfaff topological dimension of the

Cartan-Hilbert 1-form is 2n+2, and not the expected "geometrical" dimension 3n+1. For n

= 3 degrees of freedom, the top Pfaffian indicates that the Pfaff topological dimension of the

2-form, dA is 2n+2 = 8, and not the pre-geometrical dimension equal to 3n+1 = 10. The

implication is that there exists an irreducible number of independent variables equal to 2n+2

which completely characterize the differential topology of the first order system described by

the Cartan-Hilbert Action. It follows that the exact two form, dA, satisfies the equations

(dA)n+1 	= 0, but Aˆ(dA)n+1 = 0. (55)

As the top Pfaffian represents a 2n+ 2 volume element,

(dA)n+1 ⇒ Ω2n+2 = dSˆdp1ˆ...dpnˆdq
1ˆ..dqnˆdt, (56)

then the bracketed expression in the formula for the top Pfaffian must reduce to an exact

differential, dS :

(n+ 1)!{Σnk=1(∂L/∂v
k − pk)dv

k} = Σnj=1ℏkjdv
j ⇒ dS. (57)

Conclusion 7 As the 2n+2 form represents a volume element, the coefficient of the top

Pfaffian has a representation (to within a factor) as a perfect differential of a function, S,

which is independent from the {pk, q
k, t}. The differential change of the function S is

explicitly dependent upon the differentials of velocity dvk and the non-canonical components

of momentum (∂L/∂vk − pk).

Definition 8 The change in entropy due to continuous topological evolution is defined as

dS, and is given by the expression

dS = (n+ 1)!{Σnk=1(∂L/∂v
k − pk)dv

k}. (58)

Definition 9 The function S whose differential is the 1-form given in eq. ( 58) is defined

as the entropy of continuous topological evolution.

The even dimensional 2n+2 form represents an orientable volume element, and once an

orientation has been fixed (say +1), then as continuous evolution is constrained to maintain
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the volume element and its sign, the change in the entropy, dS, must be of one sign. So

entropy of topological evolution, if it changes globally, can be only of one sign (chosen to

be positive in the historic literature). Also, as dA is presumed to be non-degenerate, then

the differential, dS, can not change sign by continuous topological evolution on the 2n+2

dimensional space.

Conclusion 10 Hence the fact that global changes in entropy of continuous topological evo-

lution must be of one sign ≥ 0 is an artifact of topological orientability.

Next consider subspaces of the Symplectic 2n+2 space. In particular consider a La-

grangian submanifold, which must be dimension n+1. By definition, on the Lagrangian

submanifold (of dimension n+1) of the Symplectic space (of dimension 2n+2), the 2-form

dA must vanish [3]. The 2-form can be written as:

dA = dSˆdt+ {dpk − ∂L/∂x
kdt}ˆ(∆qk)⇒ 0. (59)

Observe that the immersion ψ of the configuration space with differentials {dq1ˆ..dqnˆdt}

into the top Pfaffian space {dSˆdp1ˆ...dpnˆdq
1ˆ..dqnˆdt}, defines a Lagrangian submanifold

when the pullback of the 2-form dA vanishes. The 2-form dA has expression given by the

equation above. Consider the case where the immersion into the 3n+1 space is such that

the pullback of (∆qk)⇒ 0.

ψ : (q1, .., qn, t)⇒ (S(q, p, t, v), p1, ..., pn, q
1, .., qn, v1, .., vn, t) (60)

Then the 2-form has a pullback realization such that

ψ∗(dA) = dSˆdt⇒ 0 for a Lagrange submanifold. (61)

The Pfaff topological dimension of the constrained 1-form of Action is then 2 on configuration

space, and induces a connected Cartan Topology. The 2-form vanishes when the entropy

is a constant:

Conclusion 11 Equilibrium implies dSequil(q, p, t, v)⇒ dSequil(t)⇒ 0.

It is also remarkable to note that if the momenta are canonically defined, such that

{∂L/∂vk − pk} ⇒ 0 ⊃ dS = {Σnk=1(∂L/∂v
k − pk)dv

k} ⇒ 0, (62)

then the entropy production, dS,vanishes.The concept of an entropy of continuous topo-

logical evolution is explicitly dependent upon the existence of non-canonical momenta. It
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is important to remember that the differential production of entropy, dS, is not necessar-

ily representable as derivative with respect to time, except on the Lagrangian equilibrium

submanifold.

If the Lagrange multipliers are constrained to be canonical momenta, as is done in the

classical theory of Hamiltonian mechanics, then the entropy production vanishes, the Pfaff

topological dimension becomes odd, and the Action 1-form admits extremal processes which

have a Hamiltonian solution. All such Hamiltonian processes are thermodynamically re-

versible.

4 An Irreversible Example: The Sliding Bowling Ball

4.1 The Observation

To give substance to the methods described above, an example of an irreversible process,

decaying from a set of initial conditions in a domain of Pfaff dimension 2n+2, will be given.

The irreversible process continues until the system reaches a point where the Pfaff topological

dimension decays to the value 2n+1. Once the evolutionary orbit enters the domain of Pfaff

topological dimension 2n+1, further motion can be described by a Hamiltonian process

without further irreersible dissipation. The physical system is not an equilibrium system,

for the Pfaff topological dimension is 2n+1, yet the evolution is stationary in the sense of a

Hamiltonian extremal field.

Consider a bowling ball given an initial amount of translational energy and rotational

energy. Assume the angular momentum and the linear momentum are orthogonal to them-

selves and also orthogonal to the ambient gravitational field. Then place the bowling ball,

subject to these initial conditions, in contact with the bowling alley. Initially, it is observed

that the ball slips or skids, dissipating its linear and angular momentum, until the No-Slip

condition is achieved. Note that it is possible for the angular momentum or the linear mo-

mentum to change sign during the irreversible phase of the evolution. The dynamical system

representing the evolutionary process is irreversible until the No-Slip condition is reached.

Thereafter, the dynamical system is reversible, and momentum is conserved.



Entropy 2004, 6 286

4.2 The Analysis

Assume that the physical system may be represented by a 1-form of Action constructed from

a Lagrange function:

L = L(x, θ, v, ω, t) = {βm(λω)2/2 +mv2/2} (63)

The constants are: m=mass, β = moment of inertial factor (2/5 for a sphere), λ = effective

”radius” of the object, the moment of inertia = βmλ2.

Let the topological constraints be defined anholonomically by the Pfaffian system:

{dx− vdt} ⇒ 0, {dθ − ωdt} ⇒ 0, {dx− λdθ} ⇒ 0 (64)

Define the constrained 1-form of Action as

A = L(x, θ, v, ω, t)dt+ p{dx− vdt}+ l{dθ − ωdt}+ s{λdθ − dx} (65)

where {p, l, s} are Lagrange multipliers. Rearrange the variables to give (in the language of

optimal control theory) a pre-Hamiltonian action:
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A = (+p−ms)dx+ (l + λs)dθ − {pv + lω − L}dt. (66)

Computation of the Pfaff sequence leads to the apparent realization that the Pfaff dimension

of this Action 1-form is 2n+2 = 6. The Action defines a symplectic manifold of dimension

6.

For algebraic simplicity, assume initially that two of the Lagrange multipliers (momenta)

are defined canonically; e.g.,

p = ∂L/∂v ⇒ mv, l = ∂L/∂ω ⇒ βmλ2ω (67)

which implies that the 1-form of Action can be expressed as,

A = (mv − s)dx+ (βmλ2ω + λs)dθ − {mv2/2 + βm(λω)2/2}dt. (68)

The 6-dimensional volume element of the symplectic manifold (the top Pfaffian) is given by

the expression

6V ol = 6m2βλ2{v − λω}dxˆdθˆdvˆdωˆdsˆdt = dAˆdAˆdA. (69)

The 6D volume element is either expanding or contracting (irreversibly) with a coefficient

6m3βλ2{v − λω}. This dissipative coefficient is related to the concept of "bulk" viscosity.

The symplectic manifold has a singular subset upon which the Pfaff dimension of the

Action 1-form is 2n+1 = 5. The constraint for such a contact manifold is precisely the

no-slip condition (when the "bulk viscosity" goes to zero):

{v − λω} ⇒ 0. (70)

This condition is the analogue of the zero divergence condition in incompressible hydrody-

namics, only the divergence is that associated with the topological torsion vector, d(AˆdAˆdA)

in a six dimensional (2n+2) space.

On the 5 dimensional contact manifold there exists a unique extremal (Hamiltonian)

field which (to within a projective factor) defines the conservative reversible part of the

evolutionary process. As this unique extremal vector satisfies the equation

i(V)dA = 0, (71)

it is easy to show that dynamical systems defined by such vector fields must be reversible

in the thermodynamic sense. (As dQ = d(i(V)dA) = 0 for all Hamiltonian or symplectic

processes, it follows that QˆdQ = 0.)
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However, on the 6 dimensional symplectic manifold, there does not exist a unique extremal

field, nor a unique stationary field, that can be used to define the dynamical system. The

symplectic manifold does support vector fields, S, that leave the Action integral invariant,

but these vector fields are not unique in the sense that that they depend on an arbitrary

gauge addition to the 1-form of Action that may be required to satisfy initial conditions.

There does exist a unique torsion field (or current) defined (to within a projective factor,

σ) by the 6 components of the 5 form,

Topological Torsion = AˆdAˆdA (72)

Relative to the topological coordinates [dx, dθ, dt, dv, dω, ds], the Topological Torsion vector

has the components

T6 = [0, 0, 0,Tv,Tω,Ts], (73)

AˆdAˆdA = i(T6)Ω6, (74)

Tv = m2βλ2{+βλ2ω2 + 2λvω − v2} (75)

Tω = m2λ{+βλ2ω2 − 2βλvω − v2} (76)

Ts = m2βλ2{+βmλ2ω2 +mv2 + 2(λω − v)s} (77)

If the three non-zero components of the Topological Torsion vector are treated as a dynamical

system, then it is to be noted that the dynamical system is a Volterra system generated on

a Finsler space (see p.205 [1]).

This unique Topological Torsion vector, T6, independent of gauge additions, has the

properties that

L(T)A = Γ · A and i(T)A = 0. (78)

This ”Torsion” vector field satisfies the equation

L(T)AˆL(T)dA = QˆdQ = (6m
2βλ2{v − λω})2AˆdA 	= 0. (79)

Hence a dynamical system having a component constructed from this unique Torsion vector

field becomes a candidate to describe the initial irreversible decay of angular momentum and

kinetic energy.

It is to be noted that the non-canonical ”symplectic momentum” variables, defined by

inspection from the constrained 1-form of Action lead to the momentum map:

Px
.
= mv − s, Pθ

.
= mβλ2ω + sλ. (80)
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Substitution in terms of the momentum variables leads to the generic form (p. 31 [31],

also see [24]) for the 1-form of Action:

A = Pxdx+ Pθdθ −Hdt (81)

where H is an independent variable on the 6-dimensional manifold. The H map is given by

the expression for energy where v and ω are eliminated in terms of the Px and the Pθ.

H = (mv2/2 + βm(λω)2/2)⇒ (1/2m)[(Px + s)
2 + (1/β)(Pθ/λ− s)

2] (82)

Note that v = ∂H/∂Px and ω = ∂H/∂Pθ. Each component of ”canonical momenta” decays

with the same rate in the canonical domain.

5 Summary

A fundamental problem of thermodynamics (that has been the subject of much discussion)

is why canonical Hamiltonian mechanics (without additional and sometimes controversial

constraints and modifications) is not able, from first principles, to describe the decay to

an equilibrium state, or why the usual (extremal) methods of Hamiltonian mechanics (see

eq. (21))do not give any insight into the concept of irreversibility. It is extraordinary that

answers to these 150 year old Boltzmann - Loschmidt - Zermelo paradoxes of physics seem to

follow (without recourse to statistics) if one utilizes a perspective of continuous topological

evolution. The methods of continuous topological evolution lead to a precise evolutionary

definition of entropy production, dS, (see eq. (58)). The entropy production differential 1-

form, dS, is used to define the volume element of the 2n+2 dimensional symplectic manifold

generated by the Cartan-Hilbert Action. For a continuous process that is initiated in the

topological domain of Pfaff topological dimension 2n+2, the sign of the volume (represent-

ing its orientation) cannot change. However, continuous topological evolution can cause

the 2n+2 dimensional volume element to expand or contract irreversibly (giving credence to

concept of "bulk viscosity") until a topological change takes place, such that the Pfaff topo-

logical dimension becomes 2n+1. The continuous change of entropy dS during a process

can never be negative, a requirement necessary if the orientation of the 2n+2 symplectic

manifold (generated by the 2-form, dA) is continuously preserved. The 2-form dA repre-

sents the limit points of the Action 1-form. Equilibrium is defined by the n+1 dimensional

Lagrangian submanifold of the 2n+2 dimensional symplectic space, upon which dA, hence

dS, is zero.
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