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Abstract: In the present study, non-Newtonian flow in annular pipe is considered. The analytical 

solution for velocity and temperature fields is presented while entropy generation due to fluid friction 

and heat transfer is formulated. The third grade fluid with constant properties is accommodated in the 

analysis. It is found that reducing non-Newtonian parameter increases maximum velocity magnitude 

and maximum temperature in the annular pipe. Total entropy generation number attains high values in 

the region close to the inner wall of the annular pipe, which becomes significant for low non-

Newtonian parameters. Increasing Brinkman number enhances entropy generation number, particularly 

in the region close to the annular pipe inner wall.  

 

Key Words: Non-Newtonian, Third Grade Fluid, Annular Pipe, Entropy 

 

 

 

mailto:bsyilbas@kfupm.edu.sa
mailto:yurusoy@aku.edu.tr
mailto:mpak@kfupm.edu.sa


Entropy 2004, 6, 304-315 305

Introduction 

 Annular flow in concentric pipes finds wide application in industry, particularly in heating and 

cooling applications. The flowing fluid can be a mixture of two non-condensable fluids. To simulate 

such flow situations, the governing equations of flow need to be accommodated for each fluid and 

coupled equations for the fluids should also be introduced. This leads extensive computational effort 

and results are only valid for the flow parameters used in the simulations; consequently, generalized 

solution is difficult to achieve. However, the fluid can be considered as homogenous medium with the 

assumption that the flow behavior is non-Newtonian. In this case, the error associated with the analysis 

could be acceptably small [1]. Moreover, the analytical solution to the problem becomes possible, 

which in turn gives general solution to flow and temperature fields. In modeling the non-Newtonian 

flow situations, such as coal-based slurries as retrofit fuels, the power-law model was used widely to 

characterize the rheological properties of the fluid [2]. Although the power-law model adequately fit 

the shear stress and shear rate measurements for many non-Newtonian fluids, it could not always be 

used to predict accurately the pressure loss data measured during the transport of a coal-liquid mixture 

in a fuel delivery system [3]. Moreover, the power-law model could not predict correctly the normal 

stress effects that lead to phenomena like road climbing, in which case the stresses are developed 

orthogonal to planes of shear [4]. Consequently, a third grade fluid model is fruitful for non-Newtonian 

flow in pipe situations.   

 Considerable research studies were carried out to examine the non-Newtonian flow through 

pipes. Szeri and Rajagopal [5] studied the flow of non-Newtonian fluid between two heated horizontal 

parallel plates. They employed the third grade fluid model and introduced temperature dependent 

viscosity. The flow of a non-Newtonian fluid in a pipe was studied by Massoudi and Christie [6]. They 

accommodated a third grade fluid model and variable viscosity in the analysis. They showed 

numerically that increasing non-Newtonian parameter lowered the temperature and velocity of the fluid 

in the pipe. Yurusoy and Pakdemirli [7] presented an approximate analytical solution to the same 

problem using perturbations. They showed that within the range of validity of the expansion, the 

numerical solution and the perturbation solution were in good agreement. Yurusoy [8] extended the 

approximate analysis to the case of annular flow. The boundary layer equations of third grade fluids 

were derived by Pakdemirli [9]. He showed that the boundary layer equations did not have similarity 

solutions. Pinarbasi and Ozalp [10] investigated the effect of viscosity models on the stability of a non-

Newtonian fluid flow in an externally heated channel. They indicated that fluids obeying the Arrhenius 

law were more stable than those of Nahme law if both models were used for the same viscosity and 
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temperature. Non-Newtonian pipe flow with heat transfer was examined by Hecht [11]. They derived 

the expression for Stanton number as a function of Reynolds, Prandtl and Shmidt numbers. The 

downward liquid-gas flows in inclined eccentric annular pipes were studied by Baca et al. [12]. They 

developed a flow map in terms of liquid and gas superficial velocities, which showed the transitions 

between countercurrent and cocurrent gas flows. The unsteady axial laminar Couette flow of power-

law fluids in a concentric annulus was investigated by Wang et al.[13]. The solutions of the resulting 

pressure gradient equations were presented in both dimensionless and graphical forms for different 

pipe/borehole diameter ratios and power-law index values.  

 In the flow systems, thermodynamic irreversibility can be quantified through entropy analysis. 

Considerable research studies were carried out to examine entropy generation in the flow systems. 

Entropy generation and minimization in thermal systems was investigated by Bejan [14]. He showed 

that entropy minimization improved system efficiency. The modeling of non-isothermal viscoelastic 

flows was considered by Peters and Baajens [15]. They formulated the partitioning between dissipated 

and elastically stored energy and showed the difference between entropy and energy elasticity. Demirel 

and Kahraman [16] carried out the second law analysis for convective heat transfer in annular packed 

bed. They indicated that the volumetric entropy generation map showed the regions with excessive 

entropy generation due to operating conditions or design parameters for a required task and lead to 

enhance the understanding of the behavior of the system. Carey [17] examined the advantages of using 

two-phase flow and phase change processes in thermal systems to improve the second law efficiency. 

He suggested that ongoing efforts to develop condenser passage design, which enhanced annular flow 

heat transfer and provided large surface area, helped to improve the thermal efficiency of the system 

and component performance. The irreversibility analysis of concentrically rotating annuli was carried 

out by Mahmud and Fraser [18]. They presented the distributions of volumetric average entropy 

generation rate for both isothermal and isoflux conditions.  

 To investigate the thermodynamic irreversibility in non-Newtonian annular flow, the present 

study is carried out. The flow and temperature fields are presented analytically after considering a third 

grade fluid model. The closed form solutions for entropy generation due to fluid friction and heat 

transfer are obtained and entropy number is computed for various non-Newtonian parameters. By 

incorporating the entropy analysis, the work presented here further contributes to the fluid flow 

solutions presented in [8].  
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Velocity and Temperature Profiles 

 

 The non-dimensional steady state, fully developed, variable viscosity form of the equations of 

motion of a third grade fluid in a pipe with heat transfer was derived by Massoudi and Christie [6]: 
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where r is the dimensionless radius (ri < r < ro), ri is dimensionless radius of inner cylinder, ro is 

dimensionless radius of outer cylinder, v is the dimensionless velocity, θ is the dimensionless 

temperature and µ is the dimensionless viscosity. The terms are related to the dimensional ones (with 

over bars) through the following relations 
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 where R is the ratio of inner to outer radius, V0 is a reference velocity, µ* is a reference viscosity, 

mθ and θw are the bulk mean fluid temperature and wall temperature respectively.  

 The dimensionless parameters involved in equations (1) and (2) are 
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where C1 is the pressure drop in the axial direction, Γ is the Brinkman number, Λ is the dimensionless 

non-Newtonian viscosity, β3 is the dimensional material constant for the third grade fluid and k is the 

thermal conductivity.  
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Figure 1. Annular Pipe Flow 

 
 Approximate solutions for velocity and temperature profiles using perturbation methods were 

presented for the above equations due to non-Newtonian fluid flow in annular pipe (Figure (1)) [8] 
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 The perturbation solution is valid if the correction terms are much smaller than the leading 

terms. Since, there are many physical parameters involved, analytical criteria formulas for validity 

cannot be accomplished. For a simpler case of normal pipe flow, criteria of validity have already been 

presented in Ref [7]. In our case, as well as in the simpler case of [7], validity does not depend on one 

parameter, but a combination of parameters. In all numerical computations, validity is ensured by 

checking the numerical values of correction terms to be much smaller than the leading terms.  
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Viscous Dissipation and Entropy Generation 

 

 The dimensional viscous dissipation term ( ) can be obtained from equations of motion, i.e.: φ
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The dimensional volumetric entropy generation is defined as [14], 
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where 0θ  is the reference temperature. The first term in equation (25) is the volumetric entropy 

generation due to heat transfer and the second term is the entropy generation due to viscous dissipation. 

Substituting equation (25) into (26), expressing the terms in dimensionless forms, one finally obtains:  
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where Ns is the entropy generation number. It is defined by dividing the dimensional volumetric 

entropy generation to a reference volumetric entropy generation S . The relevant definitions are:  G′′′
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In equation (27), the first term due to heat generation can be assigned as Ns1 and the second term due to 

viscous dissipation as Ns2, i.e.: 
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Results and Discussions 

 

 Non-Newtonian fluid flow through annular pipe and entropy generation are considered. The 

velocity and temperature fields are formulated and entropy generation rates due to fluid friction and 

heat transfer are obtained. 
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 Figure (2) shows velocity profiles in the annular pipe for different values of non-Newtonian 

parameter. The maximum velocity moves towards the inner pipe wall due to the convective 

acceleration (annular effect). As the non-Newtonian parameter reduces, the velocity magnitude 

increases, in which case the rate of fluid strain increases in the region of the pipe wall. Moreover, the 

location of maximum velocity magnitude moves towards the inner pipe wall as the non-Newtonian 

parameter reduces. This indicates that convective acceleration of the fluid enhances with reducing non-

Newtonian parameter, i.e. the maximum velocity magnitude and its location in the annular pipe 

changes.  
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Figure 2. Velocity Profiles in the Annular Pipe for 

different values of non-Newtonian Parameter 
(C=-1 R=1/4) 
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Figure 3. Temperature Profiles in the Annular Pipe 
for different values of non-Newtonian Parameter 

(C=-1 R=1/4, Γ=1) 
 

 Figure (3) shows temperature profiles in the annular pipe for different values of non-Newtonian 

parameter. Temperature profiles do not follow velocity profiles. In this case, convective heat transfer 

from fluid to the pipe wall influences significantly the temperature profiles. Moreover, due to the 

diffusional heat transfer in the central region of the annular pipe, temperature gradient gradually decays 

in this region, i.e. temperature gradient is less than the velocity gradient in this region. Moreover, 

reducing non-Newtonian parameter enhances the temperature rise in the annular pipe, i.e. the 

magnitude of temperature attains high values in this region. Consequently, reducing non-Newtonian 

parameter enhances the velocity magnitude and temperature in the central region of the annular pipe. 

 Figure (4) shows entropy generation number due to heat transfer in the annular pipe for 

different values of non-Newtonian parameter. Entropy generation number in the central region of the 

annular pipe is low due to gradually varying and small temperature gradient in this region. Moreover, 



Entropy 2004, 6, 304-315 312

entropy generation number attains high values in the region close to the annular pipe walls, which is 

more pronounced towards the inner wall. This is because of the high temperature gradient attainment in 

this region. Entropy generation number decays sharply in the vicinity of the annular pipe wall due to 

the high rate of convective heat transfer taking place in this region. As the non-Newtonian parameter 

decreases, entropy generation number increases. In this case, reducing non-Newtonian parameter 

increases maximum velocity magnitude and temperature in the pipe. This, then, enhances convective 

and diffusive heat transfer in the region close to the annular pipe wall. 
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Figure 4. Entropy Generation Number due to Heat 
Transfer in the Annular Pipe for different Values of 

non-Newtonian Parameter. (C=-1 R=1/4, Γ=1) 
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Figure 5. Entropy Generation Number due to 

Fluid Friction in the Annular Pipe for different 
non-Newtonian Parameter. (C=-1 R=1/4, 

Γ=1,θ0=0.75) 
 

 Figure (5) shows entropy generation number due to fluid friction in the annular pipe for 

different non-Newtonian parameter. Entropy generation number reduces to minimum in the central 

region of the annular pipe where the velocity magnitude is maximum. Due to high rate of fluid strain in 

the region close to the annular pipe wall, entropy generation number due to fluid friction attains high 

values in this region. This is more pronounced in the region close to the inner pipe wall due to 

enhanced fluid convective deceleration in this region. Increasing non-Newtonian parameter lowers the 

entropy generation number, particularly in the pipe wall region. Moreover, a local peak in entropy 

generation number is observed near the pipe wall region for non-Newtonian parameter of 0.1. This 

indicates that, the rate of fluid strain in this region is higher than that corresponding to the next to the 

pipe wall region.  
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 Figure (6) shows the variation of total entropy generation number with Brinkman number for 

different locations in the annular pipe. Location 1 is in the region close to the inner pipe while location 

4 corresponds to outer wall and location 2 is in the region close to the center of the annular pipe. Total 

entropy generation number increases with increasing Brinkman number, which is more pronounced in 

the region of inner wall of the annular pipe. The increase in Brinkman number results in enhanced 

convective transport in the pipe. Consequently, increasing kinetic energy of the fluid in the annular pipe 

results in increasing entropy generation particularly in the region close to the inner wall of the annular 

pipe. This is because of both enhanced heat transfer rates and fluid friction in this region. Lowering the 

Brinkman number results in less entropy production in the annular pipe. This is because of the reduced 

convection transport which is the result of low Brinkman number. Moreover, the entropy minimization 

can be delivered by reducing the Brinkman number in the annular pipe.  
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Figure 6. Variation of Total Entropy Generation 

Number with Brinkman Number for different 
Locations in the Annular Pipe.( C=-1 R=1/4, 

Λ=1,θ0=0.85) 
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Figure 7. Variation of Total Entropy Generation 

Number with non-Newtonian Parameter for  
different Locations in the Annular Pipe 

(C=-1 R=1/4, Γ=1,θ0=0.75) 
 

 Figure (7) shows the variation of total entropy generation number with non-Newtonian 

parameter for different locations in the annular pipe. Entropy generation number reduces with 

increasing non-Newtonian parameter. This becomes significant in the region close to the inner wall of 

the annular pipe. However, the variation of the total entropy generation number with non-Newtonian 

parameter is minimal for locations in the regions of center and close to the outer wall of the annular 

pipe. This indicated that once the fluid kinetic energy increases, which is high in the inner region due to 

convective acceleration, the influence of non-Newtonian parameter on the total entropy generation 
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number signifies. In this case, convective heat transfer and viscous dissipation enhance with decreasing 

non-Newtonian parameter.  

 The rate of entropy generation can be reduced by reducing both non-Newtonian parameter and 

Brinkman number; in this case, the entropy generation number reduces significantly, particularly in the 

region close to the inner wall of the annular pipe. 

 

Conclusions 

 

 Non-Newtonian flow in annular pipe is examined and analytical solutions for velocity and 

temperature fields are presented by considering third-grade fluid with constant viscosity case. The 

entropy generation in the annular pipe due to heat transfer and fluid friction is formulated. It is found 

that velocity and temperature gradients in the region close to inner wall of the annular pipe is high due 

to convective acceleration as similar to the Newtonian fluid. Moreover, reducing non-Newtonian 

parameter enhances the maximum velocity magnitude and maximum temperature in the annular pipe. 

Entropy generation due to fluid friction and heat transfer is high in the region close to the inner wall of 

the annular pipe due to enhancement of convective heat transfer and increased fluid friction due to high 

shear strain in this region. Increasing non-Newtonian parameter reduces the entropy generation number 

in this region. Total entropy generation number increases with increasing Brinkman number, which is 

more pronounced in the region of the inner wall of the annular pipe. Consequently, enhancement of 

fluid kinetic energy improves the heat transfer rates and increases the fluid friction in this region. Total 

entropy generation number decreases with increasing non-Newtonian parameter. This becomes 

significant in the inner wall region of the annular pipe. This indicates that influence of non-Newtonian 

parameter on the entropy generation rate becomes significant once the kinetic energy of the fluid 

increases in the annular pipe.  
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