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Abstract:

The nonextensive entropy of Tsallis can be seen as a consequence of postulates on a

self-information, i.e., the constant ratio of the first derivative of a self-information per

unit probability to the curvature (second variation) of it. This constancy holds if we

regard the probability distribution as the gradient of a self-information. Considering

the form of the nth derivative of a self- information with keeping this constant ratio,

we arrive at the general class of nonextensive entropies. Some properties on the series

of entropies constructed by this picture are investigated.
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1 Introduction

Tsallis statistics[1] can be seen as a formalism based on a pair of deformed functions of usual

exponential and logarithmic ones[2, 3]. Their deformed functions are called the q-exponential and

the q-logarithmic functions, respectively. The q-exponential function is defined as ex
q ≡ [1 + (1 −

q)x]
1/1−q
+ , where [x]+ = max{x, 0} and the q-logarithmic function lnq x = (x1−q−1)/(1−q), where

x � 0. The derivation of the deformed (or, the generalized) form of the usual logarithmic entropy

and its mathematical structure based on it have been attracted much attention. Furthermore,

studies on deriving probability distribution functions consistent with these generalized entropies

from microscopic dynamics have been done [4, 5] and some statistical mechanical foundations of



Entropy 2004, 6 365

the Tsallis distribution are summarized in Ref.[6] (and references therein). One question arises

regarding the origin of the nonextensive entropy and the clarification of it is desirable for further

study. Although the Tsallis entropy was devised in physics in a heuristic way motivated by multi-

fractals[1], the use of it has been stretched to neighboring scientific fields such as information theory

[7], econophysics[8], to name a few. Therefore, it is required to understand how the entropy is

connected to the existing quantities. In this paper, we shall provide a partial answer to that query

from the information theoretical point of view and present a general form of entropies.

Let us review the elicitation procedure of the Tsallis entropy. It is shown that the Tsallis

entropy is derived from the following set of postulates and a notation on the self-information with

standard average:

Postulate 1: For p ∈ [0, 1], h(p) is a continuous function

Postulate 2: For two different probabilities p1 and p2, h(p1p2) = h(p1)+h(p2)+λh(p1)h(p2), where

λ �= 0

Postulate 3 (Notation): h(0) = 1/(q − 1), where q ∈ R.

Since λ �= 0, the expression in Postulate 2 can be rewritten as a factorized form s(p1p2) = s(p1)s(p2)

with s(p) = 1 + λh(p). The trivial solution s(p) = 0, which gives constant function for h(p)

(= −1/λ) is not appropriate due to the fact that it provides constant information irrespective of

the associated probabilities. Therefore we may put the general solution as s(p) = pq−1[9], which

leads to the form h(p) = (pq−1 − 1)/λ. From Notation, we determine λ = 1 − q, hence the linear

average of h(p) (i.e.,
∑

k pkh(pk)) leads to the Tsallis entropy. Since Notation fixes the value

of λ, if we replace Notation with h(1/2) = 1, resulting entropy gives the type β generalization

of Shannon entropy by Havrda-Charvat[10] and Daroczy[11]. In this case the factor λ becomes

21−β − 1, where β �= 1. The difference between the Tsallis entropy and the type β entropy stems

from the arbitrary factor which fixes the form of the self-information. It should be noted that, in a

nonadditive self-information h(p) = (pq−1−1)/(1− q), we have finite information for q �= 1 even if

the least probable event occurs[7], whereas we get infinite information in the ordinary logarithmic

definition of the self-information (see Appendix for the definition).

In view of the fact that some alternative entropies and discussions based on them are recently

attracting much attention for their potential uses and applications[12, 13, 14], our motivation in

this study is set to the investigation for certain types of a hierarchical structure embedded in

the generalized entropies starting with a self-information, which characterizes the associated en-

tropy. This paper presents a procedure for obtaining a series of generalized class of (nonextensive)

entropies, which include some existing entropies as special cases.

In the next section, we give an elementary prescription in order to obtain a series of nonextensive

entropies including Tsallis one. In Section 3, we briefly discuss properties of basic ingredients for

the nonextensive entropies. We present our conclusions in the last section.



Entropy 2004, 6 366

2 A method to construct a generalized class of entropies

Information content is a basic quantity for measuring information of systems considered in in-

formation theory. This notion is used for making entropies in our study. As a starting point,

let us consider a probability distribution under α rescaling transformation defined on R, where α

(α �= 1) is a positive real number. The transformed probability distribution pα(x) is defined as

pα(x) = αp(x/α). In general, the value of α determines the broadness and the size of the distribu-

tion. When α < 1, pα(x) shrinks, whereas if α > 1 it enlarges, however, its shape is maintained.

In our present consideration, we focus on a special case with respect to this rescaling, where the

probability function is invariant under the transformation:

αp
(x

α

)
= p(x). (1)

This transformation expresses that the probability distribution is a homogeneous function of

degree one. It can be shown that, when the probability distribution is continuous on [0, 1], the

ratio p(x)/x is found to be constant over this range. For positive integers ni (i = 1, · · · , 4)

satisfying n1/n2(= r1), n3/n4(= r2) ∈ [0, 1], repeated use of the equation (1) yields

p(n1/n2) = n1p(1/n1 · n1/n2) = n1p(1/n2)

= n1n4p(1/n2 · 1/n4) = n1n4p((n2n3)
−1 · n3/n4)

= n1/n2 · n4/n3p(n3/n4), (2)

which leads to p(r1)/r1 = p(r2)/r2. Therefore, the ratio p(x)/x results in a constant value. This

fact constitutes a crucial basis in the following consideration. It is shown that the constant ratio

of the change of the self-information per unit probability to its curvature (second derivative) leads

to the Tsallis entropy. For this purpose, we add the following postulate:

Postulate 4: The ratio
h′(x)/x

h′′(x)
is invariant under transformation Eq.(1).

This postulate implies (h′(x)/x)/h′′(x) = const., in which the general solution can be expressed as

h′(x) = axb (a, b ∈ R). Then, if we choose a = −1, b = q − 2, and setting the integration constant

as 1/(q − 1), we obtain the form h(x) = lnq(x
−1). This form leads to the Tsallis entropy if we use

the standard mean value
∫

xh(x)dx (If we employ the escort average[15], we have the normalized

Tsallis entropy[7, 16, 17]). We immediately generalize the above procedure to the nth derivative

of the self-information. That is,

Postulate 4’: The ratio h(n)(x)/x

h(n+1)(x)
is invariant under transformation Eq.(1), where h(x) is a Cn+1

class function.

The general solution of the above expression can be put as h(n)(x) = axq−(n+1) + b. Therefore, we
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obtain the solutions:

h(x) =




n+1∑
k=1

ck−1
xk−1

(k − 1)!
, cn = a + b (if q = n + 1)

axq−1

C(q;n)
+

n+1∑
k=1

ck−1
xk−1

(k − 1)!
, cn = b (if q �= n + 1 and q �= n)

axn−1

(n−1)!
ln x +

n+1∑
k=1

ck−1
xk−1

(k − 1)!
, cn = b (if q = n)

, (3)

where C(q; n) = (q − 1)(q − 2) · · · (q − n) and c0, . . . , cn are integration constants. We find that

the Shannon entropy (the self-information by Hartley[18]) is recovered when n = 1, a = −1, b = 1

and ck = 0, ∀k in the third line of the above expression. Since the form of the cases q �= n + 1

and q �= n in the second line can be considered as a generic self-information, we shall consider

properties of it in the next section. The values of a and ck’s are constrained by the feature of h(x)

in addition to the sign of C(q; n). Using the standard definition of the mean value, the resulting

average of the self-information (i.e., entropy) can be expressed as follows:

a

C(q; n)

∑
i

pq
i +

∑
i

n+1∑
k=1

ck−1
pk

i

(k − 1)!
, (n � 1). (4)

We denote this entropy as Hn
q (p; {ck}), where a set of probabilities is denoted simply by p. Some

existing entropies can be expressed as a paticular class of Hn
q (p; {ck}):

when a = −1,

(1) the Rényi entropy of order α, ln
∑

i p
α
i /(1 − α) is expressed as ln[(1 − α)H1

α(p; 0, 0)]/(1 − α).

(2) H1
q (p; 1

q−1
, 0) is equivalent to the Tsallis entropy

∑
i pq

i−1

1−q
.

(3) the quadratic information, 1 − ∑
i p

2
i (e.g.,[19]) is given by H1

2 (p; 1, 0).

(4) the type β entropy is H1
β(p; 1

1−21−β , 0).

If we allow a to take various values, we can express other entropies with Hn
q (p; {ck}). For example,

the cubic information 1 − ∑
i p

3
i [20] can be represented either by H2

3 (p; 1, 0, 1) with a = −1, or

H2
3 (p; 1, 0,−2) with a = 0, or H1

3 (p; 1, 0, 0) with a = −2.

In the subsequent discussion, we set a = −1 by taking into account that the conventional

entropy is recovered in this case. If we put a = −kB, where kB is the Boltzmann factor, it can

be regarded as an entropy in statistical mechanics, however, recall that we usually put kB = 1 to

make the entropy dimensionless.
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3 Some general properties of Hn
q (p; {ck})

There are many properties characterizing an entropy. Among these, we shall investigate ingre-

dients to clarify the relation to the physical entropy, which is expected to have concavity[21] for

instance. Our way of consideration is to determine or to give constraints between parameters

included in Hn
q (p; {ck}) so that the generalized entropies can possess the fundamental features

below.

Certainty and monotonicity w.r.t the number of states:

In order to guarantee the certainty Hn
q (1, 0, . . . , 0; {ck}) = 0, we need to have the relation

C(q; n)−1 =
n+1∑
k=1

ck−1/(k − 1)! (a = −1). This provides a strong constraint on the value of ck’s and

q for a given order n. Whether or not the entropy for the equiprobability pi = w−1 is an increasing

function of w, in general, depends complicately on the range of value q and the values of ck’s.

As a specific example, let us mention the case n = 1. The behavior of H1
q (w−1; c0, c1) is shown

in Figure 1, where the relation that ensures the certainty condition described above has used. It
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Figure 1: Entropy for a two-state system H2
q (p; c0, c1) as a function of p for different values of

q with c1 = 0.7. Note that the value of c0 is determined from the values of q and c1 such that

(c0 + c1)
−1 = (q − 1)(q − 2) due to the requirements H2

q (0; c0, c1) = 0 and H2
q (1; c0, c1) = 0. From

the value of the second derivative of the entropy at p = 1/2, it is concave when c1 < q
q−1

21−q.
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increases monotonically with respect to w when 1 < q < 2 for all values of c0. For other regions

of q, H1
q (w−1; c0, c1) monotonically decreases as w grows. In a specific choice of the integration

constants, i.e., when ck = 1, ∀k, dHn
q (w−1; 1, . . . , 1)/dw is written as −w1−q/C(q; n)+

∑n
i=1 wk/k!

(a = −1) for q �= n. This means that Hn
q (w−1; 1, . . . , 1) can be an increasing function of w (when

the values of n and q are chosen appropriately), which is one of the desirable behavior for an

entropy at the equiprobability.

Two-state system:

One of the simple examinations of a behavior of the generalized entropy is for a two-state sys-

tem (W = 2), where the probabilities is defined p1 = p and p2 = 1 − p, respectively. From the

definition, straightforward calculations yield a final expression:

H1
q (p; c0, c1) =

1 − pq − (1 − p)q

(q − 1)(q − 2)
+ 2c1p(p − 1), (5)

where we set a = −1, and used the end-points condition (i.e, the entropy should vanish at p = 0

and p = 1, leading to the relation c0 + c1 = [(q − 1)(q − 2)]−1). Figure 2. shows the shape of

H2
q (p; c0, c1) for different values of q, where the end-points condition and the concavity are both

satisfied. Note that the concavity of the entropy holds only for the parameter range c1 < q
q−1

21−q.

Expansibility:
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Figure 2: H2
q (w−1; c0, c1) as a function of w for different values of q when c0 = 1.3. Note that the

value of c1 is determined from the values of q and c0.
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Hn
q (p; {ck}) is expansible for all q and n, i.e.,

Hn
q (p1, · · · , pw; {ck}) = Hn

q (p1, · · · , pw, 0; {ck}), (6)

where w denotes the number of states. Regarding the entropy for uniform probabilities and

certainty, we shall add comments in the next section.

Transformation from discrete entropy to continuous one:

If we define a discrete probability as pi = p(x̄i)∆x (∀i, i = 1, . . . , m), where x̄i ∈ [xi−1, xi] and

the bins of length ∆x = xi − xi−1 with x0 and xm being end-points of its support, and p(x) is

continuous within the bins, then the corresponding discrete entropy can be expressed as

Hn
q (p; {ck}) = −

m∑
i=1

∆xpq(x̄i)

C(q; n)
(∆x)q−1 +

m∑
i=1

n+1∑
k=1

ck−1

(k − 1)!
∆xpk(x̄i)(∆x)k−1. (7)

If we put ∆x = 1 as explained in Ref.[22], the first and second terms come close to the integral of

−pq(x̄i)/C(q; n) and
∑n+1

k=1 ck−1p
k(x̄i)/(k − 1)!, respectively by the Riemann integrability.

4 Concluding remarks

It is noteworthy that for the general form of entropy such as
∑

i f(pi) (in our case f(pi) = pih(pi)),

the additivity of the entropy holds only when it satisfies the relation [pif
′′(pi)]

′ = 0. This relation

straightforwardly leads to the Shannon form f(pi) = −pi ln pi [23]. In this sense, a family of

generalized entropies constructed in this paper can be considered to be intrinsically nonadditive.

Since the generalized form of entropy presented in this study contains a number of parame-

ters (integration constants) depending on the order n, some properties satisfied by some known

generalized entropies can be used as constraints for the parameters. Among preferable properties

that should be possessed by entropies, a behavior for the equiprobability and certainty have been

mentioned. As for obtaining the analytical expression of the equilibrium distribution pi by the

Lagrange multiplier method, it seems to be difficult to perform it for the general form. This is

mainly because of the fact that the constrained (by energies) entropy functional, which should be

solved, becomes a polynomial with respect to pi.

In this paper, we have presented an elementary procedure to obtain a series of nonexten-

sive entropies from some postulates on the self-information. As a main ingredient, the ratio

(h(n)(x)/x)/h(n+1)(x) has been assumed to be constant. Our formulation provides us that the

Tsallis nonextensive entropy can be viewed as a special realization of a set of the large class of

generalized entropies. In fact, this view is not new perspective. Some authors seem to have been

shared this viewpoint in developing the generalized entropies[14, 24, 25]. We believe that the
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discussion presented in this study serves as understanding the structure of entropies and giving a

deeper insight into a number of (generalized) entropies, not from a heuristic definition. We note

that applications of these entropies to systems both in statistical mechanics and in information

theory are potentially fruitful, but we need to know what aspect of the system relatetes to the

nonextensivity parameters for further studies.
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Appendix

Rudiments of information theory are how to define the self-information. Let Ω be a certain set or

phase space: Ω = {ω1, ω2, . . .}. The phase space consists of an ensemble of elementary events (mi-

crostates in the language of the statistical mechanics). We are now considering the discrete case,

which enables us to suppose to take the probability space (Ω,F , P ), where F is a σ-algebra over

Ω and P is a probability measure P : F → [0, 1] given by P (F) =
∑

ωi∈F pi, where pi = p({ωi}).

Definition

A function I which takes real value defined on the F is a self information or information content

on F if the axioms below are satisfied:

(A1) The impossible event contains finite information θ(q) determined by system’s intrinsic pa-

rameter q, whereas the certain event does not contain any information;

I(φ) = θ(q), I(Ω) = 0.

(A2) For any two event ωi and ωj belonging to F , such that ωj ⊂ ωi, we have

I(ωi) < I(ωj).

Proposition

Let I(ωi) be an information content on F . If the function f satisfies conditions:

f−1 : R+ → [0, 1], f−1(0) = 1, f−1(θ(q)) = 0

then the set function

µ
(q)
f (ωi) = f−1(I(ωi)) (q ∈ R) (8)
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for every event ωi ∈ R is a probability measure on R.

From the two axioms we conclude I(ωi) � 0 (∀ωi ∈ F). Then we immediately have the following

statement on the self-information:

If the information independence of events belonging to F does not coincide with the probability

independence such that I(ωi ∩ ωj) = I(ωi) + I(ωj) + (q − 1)I(ωi)I(ωj) (additivity violation), then

we have f(x) = k lnq x(k > 0). Hence the probability measure is given as µ
(q)
f (ωi) = e

− I(ωi)

k
q which

is equivalent to

I(ωi) = −k lnq µ
(q)
f (ωi). (9)

Proof

By the condition of the above statement, for any two events ωi and ωj we have

µ
(q)
f (ωi ∩ ωj) = µ

(q)
f (ωi)µ

(q)
f (ωj) (10)

only when I(ωi ∩ ωj) = I(ωi) + I(ωj) + (q − 1)I(ωi)I(ωj). Let us put xi = I(ωi) and xj = I(ωj).

Then

f−1(xi + xj + (q − 1)xixj) = f−1(I(ωi ∩ ωj)) = µ
(q)
f (ωi ∩ ωj) = f−1(I(ωi))f

−1(I(ωj))

The functional equation obtained is f−1(xi + xj + (q − 1)xixj) = f−1(xi)f
−1(xj). When we put

φ(x) = lnqf
−1(x), the functional equation which should be satisfied is

φ(xi + xj + (q − 1)xixj) = φ(xi) + φ(xj) + (q − 1)φ(xi)φ(xj)

whose solution is φ(x) = kx. Therefore we obtain f−1(x) = ekx
q . When we replace the arbitrary

constant k with −1/k, the functional form f(x) = −k lnq x(k > 0) is concluded.�
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