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1 Introduction

The entropy H = −
∑

j pj log pj of a finite set of n mutually exclusive events with corresponding

probabilities p1, . . . , pn measures the amount of uncertainty associated with those events [1, p.3].

Its value is zero when any of the events is certain, it is positive otherwise, and attains its maximum

value (log n) when the events are equally like, that is, p1 = . . . = pn = 1/n. Alternatively [2, p.7],

H is the mean value of the quantities − log pj and can be interpreted as the mean information in

an observation obtained to ascertain the mutually exclusive and exhaustive (hypotheses defined

by those) events.

In general, the probabilities of an ensemble with n elements are indexed by the set

V = {1, . . . , n},

and commonly indicated by p1, p2, . . . , pn. However, there are applications in which the elements

in the ensemble exhibit intrinsic symmetries. Consider, for example, an election in which voters

select their ordered preferences among the candidates in the list {a, b, c} by choosing one of the 6

permutations in the set

V = {abc, cab, bca, bac, cba, acb}.

The resulting distribution

p′ = (pabc, pcab, . . . , pacb)

of relative frequencies of those choices is then an example of empirical probabilities indexed by

permutations. Accordingly, the corresponding entropy is written as

H = −
∑

s∈V

ps log ps.

In another example, the experimental results might be the empirical probabilities

p′ = (pAA, pAG, . . . , pTT)

with which the 16 binary sequences

V = {AA, AG, . . . , TT}

in the DNA alphabet {A, G, C, T} appear in a given reference sequence of interest. Similarly, then,

these probabilities are indexed by a set of labels structurally more interesting than {1, 2, . . . , n}.
In fact, the 16 binary words can be classified, for example, by permutations shuffling the letters

in the DNA alphabet, or distinctly, by permutations shuffling the positions of those letters.

The objective of this paper is demonstrating that there is a systematic relationship among the

labels, the (frequency) data indexed by those labels and the symmetries that are consistent with

them, and showing that the methodology describing such relationship leads to the statistical

analysis of the observed entropy of those frequency distributions.
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The basic elements of symmetry studies are introduced in the next section and applied to the

derivation of the standard (Section 3) and regular (Section 4) decompositions of entropy. In

Section 5 a symmetry study of the entropy in Sloan Charts used in the quantification of visual

acuity is presented. Additional comments are included in Section 6. The algebraic aspects present

in this paper follow from the elements of the theory of linear representations of finite groups and

can be found, for example, in [3, pp.1-24].

2 Symmetry Studies

The voting and the molecular biology data mentioned in the Introduction are examples of struc-

tured data in symmetry studies [4, 5]. These studies are centered on the notion of data (x) that

are indexed by a finite set V of indices or labels (s) upon which certain symmetry transformations

can be defined. Briefly, symmetry studies explore the symmetry transformations identified by

the set of labels to facilitate the classification, interpretation and statistical analysis of the data

{x(s), s ∈ V} indexed by these labels. A finite group (G) with g elements acts on V and determines

a linear representation (ρ) of G that operates in the data vector space (V). The resulting factor-

ization of V into a direct sum of invariant subspaces follows from the construction of algebraically

orthogonal projections of the form P = n
∑

τ∈G χ(τ−1)ρ(τ)/g, one for each irreducible represen-

tation (in dimension of n and character χ) of G. The canonical projections are the key elements

leading to the explicit calculation and interpretation of the canonical invariants P1x,P2x, . . . in

the data. If G has h irreducible representations, then there are h projections, and the identity

operator I in V reduces according to the sum I = P1 + P2 + . . . + Ph of algebraically orthogonal

(PiPj = PjPi = 0 for i 6= j) projection (P2
i = Pi, i = 1, . . . , h) matrices. A formal connection with

the data analytical component of any symmetry study follows from the observation that basic

decompositions of the form

(x|y) = (x|P1y) + (x|P2y) + . . . + (x|Phy),

for any inner product (·|·) defined in V, can then always be studied within the context of statistical

inference for quadratic forms [6, 7]. As a consequence, symmetry-related hypotheses defined by

the canonical invariants can be identified and assessed [8–10].

The present paper concentrates on two basic types of canonical decompositions. In the standard

case the components of the probability distributions p′ = (p1, . . . , pn) are indexed by the set

V = {1, . . . , n}, the symmetry transformations are defined by the group Sn of all permutations of

those indices, which then acts on V according to

τ : (1, 2, . . . , n) → (τ1, τ2, . . . , τn), τ ∈ Sn.

In the regular case the components (pσ) of the probability distributions are indexed by the elements

σ of a finite group (G, ∗) acting on itself according to

τ : (σ)σ∈G → (τ ∗ σ)σ∈G, τ ∈ G.
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In closing this section it is opportune to remark that applications of group-theoretic principles in

statistics and probability have a long history and tradition of their own, from Legendre-Gauss’s

least squares principle through R.A Fisher’s method of variance decomposition. According to

E.J. Hannan [11], the work [12] of A. James appears to be among the first describing the group-

theoretic nature of Fisher’s argument, giving meaning to the notion of relationship algebra of an

experimental design. In that same early period, U. Grenander [13] showed the effectiveness of

harmonic analysis techniques to extend classical limit theorems to algebraic structures such as

locally compact groups, Banach spaces and topological algebras. Two decades later, the relevance

of group invariance and group representation arguments in statistical inference would become

evident [14–19]. The integral of Haar, object of L. Nachbin’s 1965 monograph [20], became a

familiar tool among statisticians. The work of S. Andersson on invariant normal models [21] is

now recognized as a landmark concept extending and setting definitive boundaries to multivariate

statistical analysis [22] in the tradition of T.W. Anderson. The collection of contemporary work

in [23] clearly documents the present-day interest on those methods.

3 The Standard Decomposition of Entropy

Consider first a probability distribution p indexed by the set V = {1, 2}, that is p′ = (p1, p2).

The group of permutations is S2 = {1, t}, where 1 indicates the identity and t indicates the

transposition (12). S2 acts on V by permutation of the indices of their elements and the resulting

linear representation

τ : (1, 2)
ρ(τ)−−→ (τ1, τ2), τ ∈ S2,

is given by

ρ(1) =

[
1 0

0 1

]
, ρ(t) =

[
0 1

1 0

]
.

Note that ρ(τ) is the matrix defined by the change of basis {e1, e2} → {eτ1, eτ2} in the data vector

space R2. The canonical projections associated with ρ are defined by

A =
1

2
[ρ(1) + ρ(t)] =

1

2

[
1 1

1 1

]
, Q =

1

2
[ρ(1) − ρ(t)] =

1

2

[
1 −1

−1 1

]
,

where the coefficients {1, 1} and {1,−1} determining A and Q are the two irreducible characters

of S2. Note that

AQ = QA = 0, A2 = A, Q2 = Q,

and

I =

[
1 0

0 1

]
= A + Q.

Let `′ = (log(p1), log(p2)), so that H = −p′` is the entropy in the probability distribution p. It

then follows from I = A + Q that H decomposes as

H = −p′` = −p′I` = −(p′A` + p′Q`),
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the components of which can be expressed as the log geometric mean

H1 = −p′A` = −1

2
log(p1p2)

of the components of p, and as

H2 = −p′Q` = −1

2
(p1 − p2) log(

p1

p2

).

Because H2 can be expressed as

H2 = −
2∑

i=1

(pi −
1

2
) log

pi

1/2
,

it then follows that −H2 is precisely Kullback’s [2, p.110] divergence between p and the uniform

distribution e′/2 = (1, 1)/2, thus justifying the interpretation of entropy as a measure of non-

uniformity.

The standard decomposition of the entropy obtained for two-component distributions extends to

n−component distributions in the expected way. Writing

A =
1

n
ee′, Q = I −A,

where ee′ is the n × n matrix of ones, it then follows that the canonical decomposition is exactly

I = A + Q.

Clearly, it satisfies A2 = A, Q2 = Q and AQ = QA = 0. Moreover, A projects V = Rn into a

subspace Va of dimension tr A = 1 generated by e = e1 + . . . + en = (1, 1, . . . , 1)′ ∈ V, whereas Q
projects V into an irreducible subspace Vq in dimension tr Q = n− 1, the orthogonal complement

of Va in V. The irreducibility of Vq, proved using character theory [3, p.17; 5, p.70], shows that the

reduction V = Va + Vq is exactly the canonical reduction determined by ρ. This decomposition is

referred to as the standard decomposition or reduction. Applying the standard reduction I = A+Q
to the entropy H = −p′` of a distribution p′ = (p1, . . . , pn), where `′ = (log(p1), . . . , log(pn)), it

follows, in summary,

Proposition 3.1 The standard reduction of the entropy H in p′ = (p1, . . . , pn) is H = H1 + H2

with

H1 = −1

n
log(p1p2 . . .pn), H2 = −1

n

∑

i<j

(pi − pj) log
pi

pj

.

Similarly to the case n = 2 described earlier, (−1×) the entropy of a n−component distribution

decomposes as the sum of the log geometric mean and Kullback’s divergence

−H2 =
n∑

i=1

(pi −
1

n
) log

pi

1/n

between p and the uniform distribution e′/n. This can be easily verified by direct evaluation of

the RHS of the above equality.
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3.1 Graphical displays of {H1, H2}

It is observed that both H1 and H2 remain invariant under Sn, in the sense that for P = A,Q,

(ρ(τ)p)′P(ρ(τ)`) = p′ρ(τ)′Pρ(τ)` = p′P`. (3.1)

The last equality in (3.1) is a consequence of the fact that P and ρ(τ) commute for all τ ∈ Sn.

Therefore, H1 and H2 define a set of one-dimensional invariants that can be jointly displayed and

interpreted, along with any additional covariates. Graphical displays such as these are generically

called invariant plots.

Table (3.3) shows the observed frequencies with which the words in the permutation orbit

V = {ACT, CTA, TAC, CAT, TCA, ATC} (3.2)

of the DNA word ACT appear in 9 subsequent regions of the BRU isolate K02013 of the Human

Immunodeficiency Virus Type I. To locate the sequence in the National Center for Biotechnology

Information (http://www.ncbi.nlm.nih.gov) data base, use the accession number K02013. Each

region is in length of 900 base pairs. Table (3.3) also shows the entropy (H) of each distribution

and its standard decomposition: the log geometric mean (−H1) and divergence (−H2) relative to

the uniform distribution e′/6. In the present example S6 acts on V by permutation of the six DNA

words. In the next section the same frequency data will be studied under the permutation action

of S3 on the letters of the DNA words.

1 2 3 4 5 6 7 8 9
ACT 8 16 16 7 17 11 12 6 14

CTA 15 8 14 9 14 15 8 5 16

TAC 7 17 13 15 9 11 18 5 17

CAT 14 15 16 14 21 17 15 10 8

TCA 11 18 10 17 11 16 14 9 13

ATC 7 15 9 13 11 11 11 12 10

total 62 89 78 75 83 81 78 47 78

H 1.74 1.76 1.77 1.75 1.75 1.77 1.76 1.73 1.76

H1 1.84 1.82 1.82 1.84 1.83 1.81 1.82 1.85 1.82

H2 −0.10 −0.060 −0.050 −0.090 −0.080 −0.040 −0.060 −0.120 −0.060

(3.3)

The invariant plot of Figure 3.1 shows the (color coded) entropy of the ACT orbit and its invariant

components (H1, H2) in each one of nine regions. Note, for example, that the entropy in regions

3 and 6 are equal and yet their location in the invariant plot differ, showing a slightly increased

divergence from the uniform distribution e′/6 in region 3. Although the entropy in regions 6 and

8 is essentially the same, there is a three-fold ratio between their divergence components- this

is noticeable by inspecting the (lack of) uniformity in the corresponding frequency distributions.
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Differentiations of that nature are possible because the dimension of the invariant subspace asso-

ciated with H2 is tr Q = n − 1, where n is the number of components in the distribution under

consideration. The regular decomposition described in the next section will further illustrate

these differentiations and their relation to the symmetries imposed in the set of labels for the

components of the distributions.

Figure 3.1: Color coded entropy levels (H) and their invariant components {H1, H2} in 9 subsequent

regions of the HIV virus Type I (BRU isolate).

3.2 The standard decomposition of the entropy of the Sloan fonts

Table (3.4) shows the ten Sloan fonts [24, Table 5] used for the assessment of visual acuity in the

Early Treatment Diabetic Retinopathy Study, along with their estimated difficulty (probability of

incorrectly identifying the letter), the corresponding entropy and their standard invariant compo-

nents H1 and H2. Figure 3.2 shows the standard decomposition for each letter. The divergence

from the uniform distribution e′/2 ranges from 0.58 when the distribution is (0.844, 0.156) to 0.001
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for (0.516, 0.484). The study of the entropy of Sloan fonts will continue later on in Section 5.

Sloan Font Difficulty Entropy H1 H2

Z 0.844 0.433 1.01 −0.580

N 0.774 0.535 0.870 −0.337

H 0.688 0.619 0.770 −0.152

V 0.636 0.656 0.730 −0.076

R 0.622 0.663 0.725 −0.061

K 0.609 0.669 0.720 −0.048

D 0.556 0.687 0.700 −0.012

S 0.516 0.693 0.695 −0.001

O 0.47 0.692 0.695 −0.003

C 0.393 0.673 0.715 −0.040

(3.4)

Figure 3.2: Entropy canonical components for the ten Sloan fonts.

3.3 Geological compositions

Tables .1 in Appendix A appear in [25, pp. 354, 358] and show the geological compositions of

albite, blandite, cornite, daubite and endite in 25 samples of coxite and hongite, in addition to

the porosity (percentage of void space) of each sample of coxite. In this example, probability

distributions are referred to as compositions, following [25, p. 26]. Figures 3.3 and 3.4 show, re-

spectively, the color coded entropy and porosity levels for the coxite samples, and their invariant
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components {H1, H2}. The entropy among all compositions is within the range of 75− 87 percent

of the max entropy (log 5 = 1.6), thus being concentrated in a relatively narrow region. The joint

distribution of porosity and H2 shown in Figure 3.5 suggests that porosity is negatively correlated

with H2, or, equivalently, positively correlated with the divergence. In fact, the observed sample

correlation coefficient based on 25 samples of these two variables is 0.78.

Figure 3.6 shows the color coded entropy in the hongite samples and their invariant components

{H1, H2}. Figure 3.7 clearly shows the contrasting difference in entropy range between the two

minerals, also evident in the range of the divergence in those compositions. This noticeable feature

of the compositions[25, p.4], namely that coxite compositions are much less variable than hongite

compositions, is clearly captured in these invariant plots.

Figure 3.3: Color coded entropy levels (H) and their invariant {H1, H2} components in the geo-

logical compositions of 25 samples of coxite.

4 Regular Decompositions of Entropy

In this section, the decomposition of the entropy for probability ensembles with components in-

dexed by S3, the group of permutations of three objects, will be considered. Decompositions for

ensembles indexed by other finite groups can be obtained similarly.
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Figure 3.4: Color coded porosity levels (P) and their invariant entropy components {H1, H2} in

the geological compositions of 25 samples of coxite.

To illustrate, consider the DNA word ACT and its permutation orbit

V = {ACT, CTA, TAC, CAT, TCA, ATC}

introduced early on in Section 3.1. Note that V can be generated from the word ACT by applying,

respectively, the permutations
(

A C T
A C T

)
,

(
A C T
C T A

)
,

(
A C T
T A C

)
,

(
A C T
C A T

)
,

(
A C T
T C A

)
,

(
A C T
A T C

)

defining the group S3, so that V is isomorphic to S3. Indicate by

p′ = (r1, r2, r3, t1, t2, t3)

the respective relative frequencies with which the words in V, or equivalently, the elements in

S3, appear in a given DNA reference region. These relative frequencies are, consequently, data

indexed by S3. Let also ` indicate the vector of the log components of p, so that H = −p′` is the

entropy in the probability distribution p indexed by S3.

4.1 The regular decomposition

The permutations in S3 act on the DNA words by shuffling the letters. This gives a linear

representation

τ : (σ)σ∈G
ρ(τ)−−→ (τ ∗ σ)σ∈G, τ ∈ G = S3

ρ of S3. Each matrix ρ(τ) is defined in the vector space for the data indexed by S3. Associated

with ρ there are three canonical projections

Pi =
ni

g

∑

τ∈G

χi(τ
−1)ρ(τ), i = 1, 2, 3,
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Figure 3.5: Porosity levels and divergence components H2 in 25 samples of coxite.

corresponding to the irreducible characters




χ 1 t r

χ1 1 1 1
χ2 2 0 −1

χ3 1 −1 1




,

of S3, with n1 = n3 = 1, n2 = 2, g = 6, t = {(12), (13), (23)}, r = {(123), (132)}, given by

P1 = 1/6




1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1




, P2 = 1/3




2 −1 −1 0 0 0

−1 2 −1 0 0 0

−1 −1 2 0 0 0

0 0 0 2 −1 −1

0 0 0 −1 2 −1

0 0 0 −1 −1 2




,

and

P3 = 1/6




1 1 1 −1 −1 −1

1 1 1 −1 −1 −1

1 1 1 −1 −1 −1

−1 −1 −1 1 1 1

−1 −1 −1 1 1 1

−1 −1 −1 1 1 1




.
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Figure 3.6: Color coded entropy levels (H) and their invariant {H1, H2} components in the geo-

logical compositions of 25 samples of hongite.

Observe that PiPj = PjPi = 0 for i 6= j, P2
i = Pi, i = 1, 2, 3 and I = P1 +P2 +P3. The underlying

invariant image subspaces Pix, x ∈ R6, are in dimension of 1, 4, 1 respectively.

It then follows that

H = −p′` = −p′P1` − p′P2` − p′P3`,

with the regular components of the entropy H given by

H1 = −p′P1` = −1

6
log[r1r2r3t1t2t3],

H2 = −p′P2` = −1

3
log[(

r1

r2
)r1−r2(

r1

r3
)r1−r3(

r2

r3
)r2−r3(

t1

t2
)t1−t2(

t1

t3
)t1−t3(

t2

t3
)t2−t3 ],

and

H3 = −p′P3` = −1

6
log(

r1r2r3

t1t2t3
)(r1+r2+r3−t1−t2−t3).

The interpretation of these components can be expressed in terms of three axial reflections (trans-

positions) and the three-fold rotations (cyclic permutations) of the regular triangle: −H1 is the

log geometric mean of the components of p; direct evaluation shows that

−H2 = r•D(r : u) + t•D(t : u)

where r• is the marginal probability r1 + r2 + r3 of a rotation, t• is the marginal probability

t1 + t2 + t3 of a reflection, D(r : u) is Kullback’s divergence between the rotation subcomposition

[25, p.33]

r = (r1, r2, r3)/(r1 + r2 + r3)
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Figure 3.7: Entropy levels in the standard invariant plot for coxite and hongite data.

and the uniform distribution u = e′/3, and D(t : u) is the divergence between the reflection

subcomposition t = (t1, t2, t3)/(t1 + t2 + t3) and the uniform distribution u; and

−H3 =
1

3
D((r, t) : (1/2, 1/2)) +

1

2
(r• − t•)[log geom. mean (r) − log geom. mean (t)].

It is then possible to summarize the regular decomposition of the entropy of a distribution p in-

dexed by S3 as a three-component sum: the log geometric mean of p, the total uniform divergence

within rotations and within reflections and a component measuring the between rotations and

reflections separation.

Table (4.1) shows the regular decomposition H = H1 + H2 + H3 for the permutation orbit of ACT
in each one of 9 adjacent regions of the isolate. Table (4.2) shows the ratios H1/H and H2/H3

for potential comparisons among these regions. Similar ratios were calculated for the words AGT
and ACG (Tables (4.3) and (4.4), respectively). The regions 1 and 4 were removed from the
calculations for ACG due to presence of zeros in the frequency distributions.

1 2 3 4 5 6 7 8 9
H 1.74 1.76 1.77 1.75 1.75 1.77 1.76 1.73 1.76

H1 1.84 1.82 1.82 1.84 1.83 1.81 1.82 1.85 1.82

H2 −0.0969 −0.0505 −0.0338 −0.0506 −0.0836 −0.0289 −0.0607 −0.0120 −0.0195

H3 −0.0013 −0.0081 −0.0120 −0.0343 −0.0010 −0.0072 −0.0012 −0.1050 −0.0444

(4.1)

ACT 1 2 3 4 5 6 7 8 9
H1/H 1.06 1.03 1.03 1.05 1.05 1.02 1.03 1.07 1.03

H2/H3 72.3 6.20 2.82 1.48 81.2 4.01 49.0 0.114 0.439

(4.2)
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AGT 1 2 3 4 5 6 7 8 9
H1/H 1.03 1.02 1.03 1.10 1.06 1.05 1.09 1.03 1.01

H2/H3 2.76 2.70 7.43 0.222 108.0 1.72 1.56 2.07 4.03

(4.3)

ACG 2 3 5 6 7 8 9
H1/H 1.58 1.59 1.50 1.56 1.44 1.17 1.24

H2/H3 1.45 0.614 0.736 0.295 0.404 0.313 0.324

(4.4)

The within-region and between-words in the ratios of the entropy regular components for the

three DNA words considered in this example is striking. In particular, the ratio H2/H3 clearly

differentiates the ACG orbit from ACT and AGT. The between-region range of the ratios H2/H3

is 0.295 − 1.45 in the ACG orbits, in contrast to 0.222 − 108 in the AGT orbits and 0.114 − 72.3

in the ACT orbits.

5 A Symmetry Study of Sloan Charts

This study will combine the notions developed in the previous sections by introducing the Sloan

Charts and considering each line in the chart as the sampling unit (total of 42 lines); identifying

the group G of planar symmetries of the Sloan fonts; determining the invariants associated with

the regular representation of G and studying the line entropy in that space. Cyclic permutation

orbits have been used [26] to describe the evolutionary strategy of the HIV-1 virus.

5.1 The Sloan Charts and the Sloan Fonts symmetries

Tables (5.2) show a Sloan Chart [24, Table 5] developed for use in the Early Treatment Diabetic

Retinopathy Study and the 10 individual Sloan letters appearing in Example 3.2, their symmetry

transformations, the single-letter difficulty as the estimated [24] probability of incorrectly identi-

fying the letter, and the corresponding entropy.

The group of interest here is the point planar group G = {1, o, v, h}, in which 1 is the identity, o

the point symmetry or inversion, v the vertical axis reflection and h the horizontal axis reflection.

The font is considered centered at the center of inversion with their natural vertical and horizontal

directions along the corresponding axes of reflection. Observe that the symmetries indicated in

the RHS Table in (5.2) are the subgroups of G leaving the letter fixed (or the letter stabilizer).

G is an Abelian group isomorphic to C2 × C2 and its multiplication table is given by

∗ 1 v h o

1 1 v h o

v v 1 o h

h h o 1 v

o o h v 1

. (5.1)
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C O H Z V

S Z N D C

V K C N R

K C R H N

Z K D V C

H V O R K

R H S O N

K S V R H

H N K C D

N D V K O

D H O S Z

V R N D O

C Z H K S

O R Z S K

,

Letter Symmetries Difficulty Entropy

Z 1, o 0.844 0.433

N 1, o 0.774 0.535

H 1, o, v,h 0.688 0.619

V 1, v 0.636 0.656

R 1 0.622 0.663

K 1 0.609 0.669

D 1,h 0.556 0.687

S 1, o 0.516 0.693

O 1, o, v,h 0.470 0.692

C 1,h 0.393 0.673

(5.2)

The objective here is studying the relationship between line entropy and letter symmetry based

on 42 ETDRS lines, obtained from three charts similar to the one shown in the LHS table in (5.2).

5.2 The regular decomposition

The canonical projections for the regular representation (G acting on itself) are given by

P1 = 1/4




1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1




, Po = 1/4




1 1 −1 −1

1 1 −1 −1

−1 −1 1 1

−1 −1 1 1




,

Pv = 1/4




1 −1 1 −1

−1 1 −1 1

1 −1 1 −1

−1 1 −1 1




, Ph = 1/4




1 −1 −1 1

−1 1 1 −1

−1 1 1 −1

1 −1 −1 1




.

Indicating, for simplicity of notation, by x′ = (1, o, v, h) a generic vector of data indexed by G,

direct evaluation shows that

P1x =
1

4
x̂1[1, 1, 1, 1]′, Pox =

1

4
x̂o[1, 1,−1,−1]′,
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Pvx =
1

4
x̂v[1,−1, 1,−1]′, Phx =

1

4
x̂h[1,−1,−1, 1]′,

where x̂ are the Fourier transforms

x̂1 = 1 + o + v + h, x̂o = 1 + o − v − h,

x̂v = 1 + v − o − h, x̂h = 1 + h − o − v,

evaluated at the irreducible one-dimensional representations of G.

Note, as shown in Appendix B, that

(Pβx)σ =
nβ

g
tr [β(σ−1)x̂(β)] = xβ(σ),

that is, the entry x(τ) of the regular β-invariant Pβx is precisely xβ(τ) = nβtr [β(τ−1)x̂(β)]/g.

Consequently, the data assignment xβ identifies the properties of the regular canonical projection

Pβ with the properties of the Fourier transform x̂(β) evaluated at β. In that sense, the indexing

xβ should retain the interpretations associated with the invariant subspace of Pβ, and, jointly, the

data vectors {xβ, β ∈ Ĝ} should fully describe the regular symmetry invariants. Here Ĝ indicates

the set of all irreducible representations of G. Any indexing x of G decomposes (via the Fourier

inverse formula) as the linear superposition
∑

β∈Ĝ xβ(τ) of regular invariants xβ of G. Shortly,

then x =
∑

β∈Ĝ xβ.

5.3 Sorting the line entropy by font symmetry type

Indicate by

fix (τ) = {s ∈ V; ϕ(τ, s) = s} ⊆ V

the set of elements in V that remain fixed by the symmetry transformation τ applied to s ∈ V

according to the rule ϕ. Then there is a general method of indexing the data by G, called the

regular indexing, constructed as follows: to each element τ ∈ G associate the evaluation x(τ) of a

scalar summary of x defined over the set fix (τ). That is, x(τ) indicates a summary of the data

over those elements (if any) in V that share the symmetry of τ . For example, if the summary of

interest is the averaging, then

x(τ) =
1

|fix(τ)|
∑

s∈fix(τ)

x(s), |fix(τ)| > 0.

As an example, the regular indexing is applied to the font entropy data x(s) of each font s in

each line (V) of the Sloan Chart shown in the LHS Table in (5.2). Here fix(τ) is the set of fonts

with the symmetry of τ ∈ G, and x(τ) is the average font entropy over the set of fonts with the

symmetry of τ , or the mean line entropy conditional to fonts with symmetry of τ . Table (5.3)

shows the line entropy indexed, or sorted, by the symmetries of G. Note that line 2 was excluded
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because there were vertical symmetries in that line. One can then proceed with the study of the

regular decomposition for x as data indexed by the group G of planar symmetries.

Sloan chart line x(1) x(o) x(v) x(h)

COHZV 0.614 0.580 0.657 0.660

VKCNR 0.636 0.535 0.656 0.673

KCRHN 0.632 0.575 0.619 0.645

ZKDVC 0.624 0.433 0.656 0.680

HVORK 0.660 0.655 0.657 0.655

RHSON 0.640 0.635 0.655 0.655

KSVRH 0.660 0.655 0.640 0.619

HNKCD 0.636 0.575 0.619 0.660

NDVKO 0.648 0.615 0.675 0.690

DHOSZ 0.624 0.608 0.655 0.667

VRNDO 0.648 0.615 0.675 0.690

CZHKS 0.618 0.580 0.619 0.645

ORZSK 0.630 0.603 0.692 0.692

(5.3)

Figure 5.1 shows the line entropy distribution classified by font symmetry Eτ ≡ x(τ) over 39 Sloan

Figure 5.1: Mean line entropy distribution and font symmetry Eτ ≡ x(τ).

charts lines. In three of the 42 lines the frequency counts were not all positive and those lines were



Entropy 2006, 8[2], 88-109 105

Figure 5.2: Distribution of the entropy invariants EINVO≡ x̂o, EINVV≡ x̂v and EINVH≡ x̂h for

the entropy data indexed by font symmetries.

deleted. The results suggest a (statistically) significant drop in mean line entropy conditional

to fonts with point symmetry. This result should be explored further taking into account, for

example, the fact that the mean number of letters per line (± standard deviation) with point,

horizontal and vertical symmetry are, respectively, 2.5 ± 0.804, 2.0 ± 0.698, and 1.5 ± 0.741.

In addition, Figure 5.2 shows the distribution of the Fourier transforms x̂2, x̂3 and x̂4 (second,

third and fourth invariants) for the entropy data

{x(1), x(o), x(v), x(h)}

of Table (5.3) indexed by the font symmetries. Consistently with the previous interpretation, the

distribution of the invariant x̂o is markedly shifted from the distributions of x̂v and x̂h.

6 Summary and Comments

This paper introduced the standard decomposition H = H1 + H2 of the entropy of any finite

distribution and the method for obtaining the regular decomposition H = H1 + . . . for the entropy

of distributions indexed by arbitrary finite groups.

1. The standard decomposition appears in analogy with the decomposition of the sum of

squares, or, more specifically, to the decomposition of an inner product (y|x) of two vector

x and y in the same finite-dimensional vector space. In fact, the standard decomposition

I = A + Q has a well-known role in statistics. It leads to the usual decomposition

x′x =
∑

x2
i = n(x)2 +

∑

i

(xi − x)2
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of the sum of squares in terms of the sample average x and the sample variance 1
n

∑
i(xi−x)2.

Similarly, it decomposes x′y into the sum nx y +
∑

(xi − x)(yi − y);

2. The methodology presented in this paper should provide an additional tool to study the

entropy in distributions of nucleotide sequences in molecular biology data. This case is

also of statistical and algebraic interest because it extends the decompositions introduced

in the present paper to the case in which the probability distributions are indexed by the

short nucleotide sequences upon which a group may act by symbol symmetry or by position

symmetry [5, p.40];

3. Two-dimensional invariant plots for the regular decomposition of the entropy by S3 can be

obtained by jointly displaying the three pairwise combinations of the invariant components

{H1, H2, H3}. The characteristic of the regions of constant entropy in these planes needs to

be investigated;

4. The large-sample theory for multinomial distributions, described in detail, for example, in

[27, p.469], can be applied to derive the moments of the entropy components.
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Appendix A

Coxite

Data

albite blandite cornite daubite endite porosity

44.2 31.9 5.40 10.5 8.0 21.8

4.90 25.4 5.80 11.3 8.50 25.2

50.2 24.8 5.70 11.1 8.20 26.1

49.9 24.7 5.40 11.4 8.60 26.3

48.5 27.8 5.90 10.2 7.60 22.6

45.9 27.1 6.90 11.5 8.60 21.4

44.1 31.9 6.0 10.2 7.80 22.0

46.4 29.9 5.50 10.3 7.90 22.0

45.7 27.0 6.20 12.0 9.10 23.1

46.4 30.0 5.10 10.4 8.10 24.0

41.7 30.2 7.70 11.6 8.80 18.4

44.9 25.7 7.70 12.4 9.30 20.5

48.6 27.7 5.80 10.2 7.70 22.9

49.7 26.7 4.90 10.6 8.10 27.2

49.6 24.4 6.40 11.2 8.40 23.4

46.5 28.6 5.90 10.7 8.30 22.5

47.3 24.2 7.90 11.8 8.80 21.6

44.7 30.0 6.80 10.5 8.0 20.5

48.0 25.6 7.0 11.1 8.30 22.7

50.0 23.8 6.60 11.2 8.40 23.7

51.4 24.2 5.70 10.7 8.0 26.2

53.3 25.1 5.20 9.40 7.0 26.4

47.9 25.4 6.70 11.4 8.60 22.2

43.5 29.8 6.70 11.2 8.80 19.5

44.5 29.2 6.50 11.2 8.60 21.3

Hongite

Data

albite blandite cornite daubite endite H H1 H2

0.488 0.317 0.0380 0.0640 0.0930 1.24 2.06 −0.82

0.482 0.238 0.0900 0.0920 0.0980 1.36 1.85 −0.49

0.370 0.0910 0.342 0.0950 0.102 1.41 1.82 −0.41

0.509 0.238 0.0720 0.101 0.0800 1.31 1.92 −0.61

0.442 0.383 0.0290 0.0770 0.0690 1.21 2.10 −0.89

0.523 0.262 0.0420 0.125 0.0480 1.23 2.06 −0.83

0.446 0.330 0.0460 0.122 0.0560 1.28 2.0 −0.72

0.346 0.0520 0.429 0.0960 0.0770 1.31 1.95 −0.64

0.412 0.117 0.267 0.0960 0.108 1.43 1.79 −0.36

0.426 0.466 0.00700 0.0560 0.0450 1.06 2.52 −1.46

0.499 0.195 0.114 0.0950 0.0970 1.37 1.84 −0.47

0.452 0.373 0.0270 0.0550 0.0930 1.20 2.14 −0.94

0.327 0.0850 0.389 0.0800 0.119 1.39 1.84 −0.45

0.414 0.129 0.234 0.158 0.0650 1.44 1.80 −0.36

0.462 0.175 0.158 0.0830 0.122 1.42 1.79 −0.37

0.323 0.0730 0.409 0.129 0.0660 1.37 1.88 −0.51

0.432 0.443 0.0100 0.0780 0.0370 1.09 2.42 −1.33

0.495 0.323 0.0310 0.0870 0.0630 1.20 2.10 −0.90

0.423 0.158 0.204 0.0830 0.132 1.46 1.76 −0.30

0.446 0.115 0.238 0.116 0.0850 1.41 1.80 −0.39

0.458 0.166 0.168 0.120 0.0880 1.42 1.79 −0.37

0.499 0.250 0.0680 0.109 0.0740 1.31 1.92 −0.61

0.486 0.340 0.0250 0.0940 0.0550 1.19 2.15 −0.96

0.455 0.166 0.176 0.0960 0.107 1.43 1.78 −0.35

0.459 0.249 0.0970 0.0980 0.0970 1.39 1.83 −0.44

(.1)

Appendix B

With the notation introduced in Section 5.2, define the g × g matrix

(Tβ)στ = nβtr [β(σ−1τ)]/g,

in which the rows and columns are indexed by the elements of G. Let also

Pβ = nβ

∑

τ∈G

χβ(τ−1)φ(τ)/g

indicate be the regular canonical projection associated with β ∈ Ĝ.

Proposition B.1 Pβ = Tβ.

Proof: To see this, use the fact that the single unitary entry in row σ of φ(γ) is at column τ if

and only if σ = γτ , or γ = στ−1, so that (Pβ)στ = nβχβ(στ−1)/g = nβtr β(στ−1)/g = (Tβ)στ , as

stated.
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Moreover, because the Fourier transform x̂(β) =
∑

τ∈G x(τ)β(τ) of the scalar function x is also

an element in Cnβ×nβ , the indexing xβ(τ) = nβtr [β(τ−1)x̂(β)]/g is well-defined. The following

proposition shows that it reduces as β.

Proposition B.2 xβ(τ) = nβtr [β(τ−1)x̂(β)]/g is an invariant of Pβ.

Proof: Using the identity Pβ = Tβ derived above, for an arbitrary vector x ∈ Rg, it follows that

(Pβx)σ =
∑

τ

(Tβ)στx(τ) = nβ

∑

σ

tr [β(σ−1)β(τ)]x(τ)/g

= nβtr [β(σ−1)
∑

τ

x(τ)β(τ)]/g = nβtr [β(σ−1)x̂(β)]/g = xβ(σ).

That is, the entry x(τ) of the regular β-invariant Pβx is precisely xβ(τ) = nβtr [β(τ−1)x̂(β)]/g.
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