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Abstract: The present research discusses four ‘physical’ models of system and calculates the 
reliability function during system’s aging and maturity on the basis of the system structure.    
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1. Introduction 

Attempts to develop a fundamental quantitative theory of aging, mortality, and lifespan have deep 
historical roots. Studies upon aging started with the earliest statistical studies on human mortality and 
later embraced both biological and artificial systems. Endeavors to classify theories of aging have led 
to the two major classifications. We find ‘wear and tear theories’ that sustain aging is the effect of the 
sum effect of many kinds of environmental assaults (e.g. radiation, metal ions) and of internal 
deterioration (e.g. mechanical attrition, spin-off accumulation) [1]. At the other side ‘programmed 
aging theories’ hold aging is due to something inside an organism's control mechanisms that forces 
elderliness and deterioration [2], [3]. The latter school is particular popular in the biological realm, 
while the former is formally sustained by the reliability theory. The fact that the failure rate is an 
increasing function of time is the formal expression of an aging property of system in the course of its 
operations.  

Reliability theory seems to be a great method to obtain a general theory of aging and degradation of 
technical and biological systems, and interesting efforts have been conducted to define accurate 
statistical models of aging [4]. The present work follows a different path in the sense we discuss 
‘physical models’ of systems and not pure statistical models. In particular we derive the reliability 
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function from those models using the stochastic entropy, a function different from Shannon’s entropy 
and introduced in [5].  

I briefly remind that the stochastic entropy H(Ai) is function of the probability Pi of the state Ai 

 
H(Ai) = H(Pi) =  loge (Pi)                                                             (1) 

 
and quantifies the reversibility/ irreversibility of the state Ai of the discrete-state stochastic system S. 
Assuming S in Ai, it may be said in intuitive terms that when S often abandons this state, Ai is 
somewhat reversible and H(Ai) is 'low'. When the system does not evolve from the state Ai, we say that 
the state Ai is irreversible, and the stochastic entropy H(Ai) is 'high'.  

By definition the entropy H(Ai) is summable 
 

1 2
1

( ) ( , ,... )
n

i i i i in ig
g

H H A f H H H H
=

= = = ∑                                                     (2) 

 
where S has n substates and Hig is the entropy of the generic substate (or component) g. 
 
2. Aging interpretations 

In the present work we consider the stochastic system is binary, namely S either works or is 
repaired, and S assumes either the functioning state Af  or the recovery state Ar  

 
Pf =  1 – Pr                                                                    (3) 

 
Current literature holds that when a system becomes old, the probability Pf slops down. This trend 

implies that the entropy Hf =H(Pf) declines, namely the functioning state becomes reversible and the 
capability of working of S diminishes in the physical world. The stochastic entropy illustrates that 
aging consists both of increased failure risk and of low ability of working, and in such a way answer an 
open riddle. In fact physicians, sociologists and other researches in the biological realm understand 
aging as the worsening of the performance characteristics of a system (e.g. see biomarkers of aging 
[6]). At the other side mathematicians interpret aging as the dramatic increase of the hazard rate. These 
views seem irreconcilable; instead the notion of reversibility/ irreversibility unifies the ‘failure 
interpretation’ of aging and the ‘performance interpretation’. 

Authors agree that system reliability gradually decreases during system maturity and comes down 
in the last period of lifetime. Aging is the accelerated decay of a system because additional phenomena 
join to the maturity decaying and worsen the behavior of systems. Because of this pair of parallel 
phenomena, I formalize the decay of S during maturity, and later shall tackle the system aging. 
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3. Maturity 

A wide assortment of natural and artificial components degenerates due to bare functioning. 
Prolonged attrition, oxidation processes and other secondary effects, caused solely by running, bring 
forth the progressive reduction of system components. We make clear that: 

 
1) –  The ability of working of the generic component k decreases at constant rate with the passage 

of time, as a result of processes inherent in the functional block.  
2) –  The more a component is bust and the more the overall system degenerates. The capability of 

good functioning of the entire system S slops down due to the continuous decay of the 
components.   

 
Axiom 3.1 - We quantify the reduced capabilities of S by ( )fH t  which observes the following 

axioms: 
 
1. The entropy of the generic component k in the state Af  decreases linearly in function of the 

time   
 

Hfk (t) = – λk t              λk > 0     k=1,2..n                       (4) 
 
where λk is the time-constant of k.  

 
2. 1 2( ) ( , ,... )f f f f nH t f H H H=  is a monotonically increasing function of Hfk  (k = 1,2,..,n). 

 
Theorem 3.1 – The maturity function ( )fH t  that complies with axioms 1 and 2 is the following 

  
( )fH t tλ= −                                                                  (5) 

 
Proof: The property (2) holds the stochastic entropy is summable  

  

1
( )

n

f fk
k

H t H
=

= ∑                                                                (6) 

  
By combining (4) and (6) we prove the theorem 
  

1 1 1

( )
n n n

f fk k k
k k k

H t H t t tλ λ λ
= = =

⎛ ⎞= = − = − = −⎜ ⎟
⎝ ⎠

∑ ∑ ∑                                       (7) 

 
Application 3.1 - From Eqn (5) and (1) may be easily derived that the reliability function Pf (t) is 

exponential [7] during the system maturity   
 

( )( ) expfP t tν λ= −                     ν  > 0                            (8) 
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In substance (5) yields that if the system components grow worse with a regular rule, then the 

system reliability decreases with the exponential law. This result is a classical issue in reliability 
theory which we have derived from the model (4). Some authors have gained the exponential law 
using Markov chains but the method of calculus has raised some problems which instead are not 
present here [7]. 
 
4. Aging 

Current literature holds a component decays so heavily in the last period of the system lifetime that 
the component hastens close components to failure. A ‘cascade effect’ unites to the phenomenon 
calculated by (5) and accelerates the system death. This mechanism runs toward every direction, in 
fact a deteriorated piece damages the components all around and even others more distant in S*. We 
calculate this mechanism of S* by means of the aging function *

fH , which has three special properties. 

 
1) –  The foregoing considerations imply that the entropy *

fH  of S* increases in function of the 

entropy Hfk of the generic component k. 
2) –  A component is capable of stopping the entire system. If only one component gives away, the 

overall system may give away, and this means that if the entropy Hfk  of the generic component k 
reaches the minimum, then the reliability entropy *

fH  of S reaches the minimum value. 

3) –  The aging mechanism begins when the system is no longer mature. Intuitively we may say that 
the reciprocal damaging of components can start only when *

fH  has reached a 'certain' level 
below zero, which is the maximum of *

fH . We assume that aging starts when the reliability 
entropy is -1, in order to normalize the function *

fH . 

 

Axiom 4.1 - To recapitulate, we assume the following axioms. 
 
1.  *

1 2( , ,... )f f f fnH f H H H=  is a monotonically increasing function of Hfk (k = 1,2,..,n). 

2.   If f kH =−∞ , then *
fH =−∞  

3.  If 1f kH =  for all the generic components k, then * 1fH =  (Axiom 3 is said 'normalization 

axiom'). 
 
Theorem 4.1 -  The aging function that satisfies the three given axioms is 
 

*

1

n

f f k
k

H H
=

=−∏                                                       (9) 
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Proof:  Multiplication is a repeated addition of multipliers, thus axiom 1 is followed. It is sufficient 
a multiplier is infinite to obtain the product be infinite in (9). It is evident how the product  

1 1 1 1 ... 1 1− ⋅ ⋅ ⋅ ⋅ ⋅ =−  proves the last axiom. 

 
Remark 4.1 - The aging function (9) quantifies the worsening mechanism achieved by n 

components that systematically interact one with another. To exemplify the components a, b and c 
make the chains abc, acb, bac, bca, cab, and cba in S* = {a,b,c,d}.  

                                                                       a                b 
 

 
                                                                              c  
 
In short, n! chains carry on the overall aging process in the ideal S* which is somewhat rare in the 
physical reality, thus we shall calculate two system structures that are more realistic. 
 
Remark 4.2 - For the sake of exhaustiveness, we highlight that the so-called ‘cascade effect’ does not 
work in some systems. For example, the probability of failure show special trends during aging of 
electronic circuits in fact the components do not damage one another in accordance to the mechanism 
above discussed. 
 
 
5. Aging of linear systems 

Let ^S  has a linear structure, thus the spoiled component k is capable of damaging only the 
component (k + 1).  
 
 
                                                                    a           b            c 

 
A precise sequence of components accomplishes the aging process of the entire system. 

 
Theorem 5.1 -  The aging function for a linear system is the following 

 

1 2 3^ ...

!
f f f fn

f
H H H H

H
n

⋅ ⋅ ⋅ ⋅
=−                                                (10) 

 
Proof: The aging function of the linear system may be easily derived from (9). In fact *

fH  

calculates n! permutations without repetitions while a linear process consists of only one permutation. 
Supposing there are no special reasons that unbalance the system aging, we divide *

fH  by the factorial 

and obtain the aging function ^
FH  for the linear chain 
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 1 2 3^ 1
...

! !

n

f k
f f f fnk

f

H H H H H
H

n n
=

⋅ ⋅ ⋅ ⋅
=− =−

∏
                                 (11) 

 
Application 5.1 : Eqn (4) is true during the system maturity and even during aging. We make explicit 
the entropies of the components in (11) to see the reduced capability of ^S  in the time 

 

1 2 3^ ...
( )

!
f f f fn

f
t t t t

H t
n

λ λ λ λ⋅ ⋅ ⋅ ⋅
=−                                             (12) 

 
For the sake of simpleness we assume all the time-constants equal to λf , and we get 

 

^ ( )
! !

n n nf f n n
f

t
H t t t

n n

λ λ
σ

⎛ ⎞⋅ ⎟⎜ ⎟⎜=− =− =−⎟⎜ ⎟⎜ ⎟⎟⎜⎜⎝ ⎠
                                              (13) 

 
Where σ is a constant depending on the system ^S . From the logarithm function (1) we get the 

reliability function that follows the Weibull distribution 
                

      ( ) exp( )n
f fP P t tβ α= = ⋅ −            β, α > 0                             (14) 

 
This theoretical result perfectly matches with current literature; in fact several artificial systems (e.g. 

vehicles, machines, industrial processes, automatic equipment) are linear and preferably follow the 
Weibull law [8]. 
 
6. Aging of compound systems 

Biological systems are not linear and the interferences during aging are not systematic and follow 
distinguished rules. Heart, lungs, nerves, skin, bones, muscles, and stomach work together; they do not 
collapse but endanger according to selected relationships when they get old. 

 
Example 6.1 - Lungs reduce the ventilation during aging and cause cardiac fatigue. There is a direct 

interference between this pair of components. Lungs do not affect other organs e.g. skeleton, spleen.  
 
 

Lungs                Hearth 
 
 Example 6.2 - Abdominals muscles lose tone during aging and become flabby. As a consequence 

of this decaying, the insides are no longer contained and the peristaltic movements lose the appropriate 
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rhythms and the processes of digestion delays and become defective. An interference chain strikes four 
components 
 
 
             Abdominals Muscles           Insides     Peristaltic Movements      Digestion 
 

In conclusion a component makes cascade chains of different length. On principle we state the 
generic component k degenerates by-itself and even causes one-step chain, two-step chain, three-step 
chain, up-to n-step chain.  

  
                                             c                          a                 
 

                                                                                                      b 
                                                                              
 

In other words, the degeneration chains stemming from k are unequal and range from one to n 
components.  
 

Theorem 6.1 -  The aging function for the complex system S+  is the following 
 

1

...
...

1! 2! 3! !

n fk fk fh fk fl fd fk fi fs fu
f

k

H H H H H H H H H H
H

n
+

=

⎛ ⎞⎟⎜ ⎟⎜ ⎟=− + + + +⎜ ⎟⎜ ⎟⎟⎜⎜ ⎟⎝ ⎠
∑                  (16) 

 
Proof: As first we calculate the aging function Hfk

+ for the generic component k which causes n 
chains of inference. We use (10) to calculate each chain and (2) to calculate the overall result 
 

...
...

1! 2! 3! !
fk fk fh fk fl fd fk fi fs fu

fk
H H H H H H H H H H

H
n

+
⎛ ⎞⎟⎜ ⎟⎜ ⎟=− + + + +⎜ ⎟⎜ ⎟⎟⎜⎜ ⎟⎝ ⎠

                    (17) 

                
Eqn (17) is valid for every component of S+, thus we calculate the aging function through 

summation and we prove the theorem is true 
 

1 1

...
...

1! 2! 3! !

n n fk fk fh fk fl fd fk fi fs fu
f fk

k k

H H H H H H H H H H
H H

n
+ +

= =

⎛ ⎞⎟⎜ ⎟⎜ ⎟= =− + + + +⎜ ⎟⎜ ⎟⎟⎜⎜ ⎟⎝ ⎠
∑ ∑        (18) 

 
 

Application 6.1 : Eqn (4) is valid for S+ , thus we make explicit the aging function in respect to 
time 
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2 3 4

1
( ) ...

1! 2! 3! 4!

n
fk fk fh fk fl fd fk fi fs fu

f
k

t t t t
H t

λ λ λ λ λ λ λ λ λ λ+

=

⎛ ⎞⎟⎜ ⎟⎜=− + + + + ⎟⎜ ⎟⎜ ⎟⎟⎜⎜⎝ ⎠
∑                      (19) 

 
For the sake of simpleness we put each product fkλ , fk fhλ λ , fk fl fdλ λ λ ,  fk fi fs fuλ λ λ λ  equals to λf. 

This assumption also fits with the experience because the speed toward fatal failure of a degeneration 
chain is indifferent to the number of the chain steps. Thus it is reasonable to take the constant-time of 
every mechanisms be equal and to write 

  
2 3 4

2 3 4

( ) ...
1! 2! 3! 4! !

...
1! 2! 3! 4! !

n
f f f f f

f

n

f

t t t t t
H t n

n

t t t t tn
n

λ λ λ λ λ

λ

+
⎛ ⎞⎟⎜ ⎟⎜=− + + + + + =⎟⎜ ⎟⎜ ⎟⎟⎜⎜⎝ ⎠
⎛ ⎞⎟⎜ ⎟⎜=− + + + + + ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

                            (20) 

 
The number of components n in a biological system is high, we conclude that (20) reasonably 

approximates the exponential series 
 

1
( ) exp( )

!

j

ff
j

tH t n t
j

λ ζ
∞

+

=

⎛ ⎞⎟⎜ ⎟⎜ ⎟=− =−⎜ ⎟⎜ ⎟⎟⎜⎜⎝ ⎠
∑                  ζ > 0                     (21) 

 
Using (1) we obtain that the reliability function follows the exponential-exponential distribution 

  
( ) exp[ (exp) ]f fP P t tδ ε= = −                     δ, ε > 0                 (22) 

 
This nice result conforms to current literature which claims that the reliability function or mortality 

force for biological beings complies with the Gompertz distribution [1]. The new of the present 
research is that the Gompertz distribution has been computed from a ‘physical’ model which does not 
raise the problems opposed by other theoretical models [7]. 
 
7.   Conclusive  Remarks 

At present, most efforts revolve on the definition pure statistical models in reliability theory. Few 
theoretical researches try to derive the properties of the system from its very structure and the results 
appear questionable. The current study calculates the behavior of a system during its maturity and 
aging by means of four ‘physical’ models of system, in particular the last couple of models yield 
respectively the aging of artificial and biological systems.  

The present work has derived the reliability function on the basis of those models, in other word it 
has passed from studying ‘how’ a system declines, to studying ‘why’ a system declines, and is worth 
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of attention due to this special approach. I guess the present method will contribute to the maturation 
of the reliability theory from the statistical analysis of the events to the theoretical forecast of the 
events. 
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