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1 Introduction

Given an apparatus or memory A, a system S and the environment E , the measurement process
M can be represented by the following sequence:

M := A
 S !d trE (A
 S)!
pA�
S�, � 2 I: (1)

The �rst step is the entanglement between the system S and the apparatus A. The second step,
d; is the decoherence of the entangled AS system by the perturbation through the environment
E and the creation of classical alternatives. The third step, p, is the projection to one of the
eigenstates and the record of a de�nite outcome. At this stage other states of the memory are
being erased. In the course of this process the entropy of the AS system is going to �uctuate which
re�ects the expansion and compression of the abstract phase space spanned by the eigenvectors
of a corresponding observable:
There is no algorithm (e.g di¤erential equation) known to describe M exactly in time. The
�uctuation of entropy alone makes it clear that the process M cannot be described in �nite
time by a Hamiltonian �ow and the projection postulate does not refer to time at all. If we
describe the decohered AS system by its density matrix �AS , there holds for the entropy S�AS =
�tr�AS log �AS � 0: If the environment is supposed to be in thermal equilibrium of temperature
T; the generalized Landauer principle [10] ; [13] tells us that during the measurement process an
amount of energy whose average over di¤erent measurement outcomes E satis�es

E � kTS�AS ; (2)

is being dissipated.

2 Time

2.1 Dissipation

In the last paragraph we stated that the measurement process is accompanied by the dissipa-
tion of energy to the environment: So far no time parameter has entered the discussion. In the
projection postulate quantum mechanics supposes that the realization of an eigenstate happenes
instantaneously. The natural question arises whether the processM does not need some minimal
amount of time to happen. Note that we are considering here the notion of external time [12] ;
i.e. the time valid outside the system AS.
Let us rewrite sequence (1) for a representative model case where the apparatus A, the system S
and the environment E are one bit systems each and let  = �1 j1i+�2 j2i be the measured state,
Ai; i = 1; 2 the states of the apparatus and "i; i = 1; 2 the states of the environment. We may
assume that h1j 2i = hA0jA1i = h"0j "1i = 0: Let E be in thermal equilibrium of temperature T:
For the simplicity of notation we will just write down the coe¢ cients �i 2 C and their conjugates
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��i 2 C; i = 1; 2 of the density matrix and omit the basis vectors in each step of sequence (1): This
leaves us with

M:=

 
j�1j2 �1�

�
2

��1�2 j�2j2

!
!d

 
j�1j2 0

0 j�2j2

!
!p j�ij2 ; i = 1; 2:

In step d and p a total entropy of S
d
+S

p
=
P
i=1;2

j�ij2�Si+ k
P
i=1;2

j�ij2 ln j�ij2 is being generated.

By the second law of thermodynamics there must hold for the corresponding energies E
d
+E

p
=

T
P
i=1;2

j�ij2�Si + kT
P
i=1;2

j�ij2 ln j�ij2 � 0; which is (2) [10] :

Note that to each outcome there corresponds an energy Ei; i = 1; 2:

2.2 External Time

2.2.1 Scope

In the sequel we would like to look at the question of minimal measurement time from an intrinsic
angle. By intrinsic we mean that we abstract from a conscious observer. We solely base on
elements given by our model, namely on the system AS, the environment E , the sequence (1) and
the corresponding physical consequences (2). For the sequence (1) the word "realization" would
probably be more accurate than "measurement" in this context. The projection and registering of
the de�nite outcome with the necessary erasure of other/former states of the memory is an integral
part of this measurement process. The information gained by decoherence has to be o¤set.
The connection between the environement E and the system AS which, from the intrinsic per-
spective of E , gives proof of the de�nite outcome of M, is only the dissipated energy. In �rst
order approximation the dissipation can be described by some Hamiltonian HASE which is in our
intrinsic sense unknown to the detector. In this situation we can apply the time-energy inequality
[1]. Let us assume that the true energy is E0: Following [1] ; the intrinsic energy uncertainty on
the basis of quantities given in our model is

�E0 :=
P
1;2

j�ij2 jEi � E0j � cASE; (3)

where cAS > 0 depends upon the system AS.
By the time-energy inequality [1] and (3) there holds for the lower bound on �t

�t � ~
�E0

� ~
cASE

:

The lower bound holding for all possible measurements is therefore by (2)

�t � ~
cASkTS�AS

: (4)

This result can be interpreted that the processM takes, from the perspective of a generic detector
in the environment E , minimally a time interval �t = ~

cASkTS�AS
to happen.
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2.2.2 Application

Let us assume that in empty Euclidean space there is a free particle, represented by a wave packet
�(x) 2 L2(R3) with fairly well de�ned momentum. Since its momentum is well known, by the
Heisenberg uncertainty relation, its position is highly unprecise in R3. Classical theory, however,
would say that this particle moves with constant velocity � along a straight line in the direction
of the momentum vector. There is no way, given the uncertainty principle, to reconstruct directly
the concept of classical trajectory and hence velocity de�ned by � = �x

�t
in the quantum realm.

By the help of our model, however, we will de�ne a quantitiy which can be interpreted as the
time �t the particle needs to "reach" a point at distance R: This way we will come close to a
reconstruction of classical velocity � = R

�t
:

We will use some technical facts: 1) �c � x lnx � x2 for some �xed c 2 R and all x � 0; 2)
L4(R3) � L2(R3); 3) limx!0 x

s lnx! 0; s; x > 0:

Let there be a free particle, �(x) � �(r); in an environment which is in thermal equilibrium of
temperature T: According to our model, the minimal time �tR needed to measure our particle at
a distance of at least R would by (4) be

�tR =
~

c�kTSR
;

where SR is de�ned as

SR := �
1R
R

j�j2 ln j�j2 dr (5)

and c� > 0 denotes the constant depending upon the set up (3).
The intuitive interpretation of �tR is the minimal time it takes for the particle to "reach" a point
at distance R or further.
Note that, since SR ! 0 as R ! 1; the intuitive fact that it takes longer to reach more distant
regions, is assured.
Next we want to better understand the dependency of SR from R: Since � 2 L2(R3) we have for
some R0 > 0; " > 0

j�(R)j � 1

R
3
2
+�
; R � R0:

By the technical facts we have for any s 2 R; s > 0

�1<�
1R
R

j�(r)j4 dr � �
1R
R

j�j2 ln j�j2 dr = �2
1R
R

j�j1+s j�j1�s ln j�j dr:

If we set s = 1
2
; we get for R > R0 big enough

SR = �2
1R
R

j�j
3
2 j�j

1
2 ln j�j dr � 2

1R
R

j�j
3
2 dr � 2

1R
R

1

r2+"0
dr � 2

R
:

If we put the last result into the expression for time we get for R > 0 big enough

�tR �
~R

c�2kT
:
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We now can de�ne the analouge of classical velocity by

� :=
R

�tR
� c�2kT

~
: (6)

(6) gives us an upper bound which is independent of the distance R; for R big enough.

Interpretation We try to reconstruct as closely as possible an analogue of classical velocity from
quantum mechanics. Thereby we focus on the reconstruction of the most simple situation where
there is a free particle in space of temperature T . Due to the probabilistic nature of quantum
mechanics it is clear that the reconstruction can only be done by using quantities which are at
most analogous to the classical notions of "distance passed on a straight line" and "time to pass
through that distance" which form the de�nition of classical velocity.
For the analogue of a classical particle moving on a straight line we use the radial symmetry of a
free wave packet with fairly well de�ned momentum. Our model gives an estimate for the minimal
time it takes to measure the position of this particle at a distance bigger or equal to R: It turns out
that, if R is big enough, we �nd an estimate for the minimal time needed which is proportionate
to the distance R; exactly what we would expect in the classical case. Note also that if R is big
the value of the integral (5) is concentrated in an annulus around R. So the probability that the
particle is detected outside an annulus [R;R + �] ; � > 0 gets smaller as R gets bigger. We then
interpret this time as the minimal time needed for our particle � to "reach" a distance R and can
reconstruct classical velocity. The fact that classically the particle moves with constant velocity
is mirrored by an upper bound for the reconstructed velocity.
Note that estimate (6) can certainly be re�ned and is probably not the best estimate possible.
If we could �nd an upper bound for c' ; (6) would give a general bound on the velocity of a free
particle.

3 Comments

Our ideas open some interesting perspectives on the philosophy of time. If conscious observers
develop mathematical models of reality they carve out the systems under consideration and base
their models on known energy functions or operators. Hence they do necessarily not account for
the continuous interaction with the environement and the corresponding �uctuations of entropy.
At the same time they are able to measure energies within arbitrarily short periods of time [1].
Consequently they conclude that time is a) reversible and b) continuous. Our intrinsic model tries
to abstract as much as possible from the meta standpoint of a conscious observer and under these
circumstances measurement, as de�ned in our model, needs some interval of time. Furthermore
the measurement process is irreversible and could be a true source for the arrow of time.
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