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1 Introduction

It is well known that there are a number of ways to motivate the fundamental quantities of

information theory, for example:

• Entropy can be defined as essentially the only quantity that is consistent with a plausible

set of information axioms (the approach taken by Shannon (1948) for a communication

system–see also Csiszár and Körner (1997) for additional axiomatic approaches).

• The definition of entropy is related to the definition of entropy from thermodynamics (see,

for example, Brillouin (1962) and Jaynes (1957)).

There is a substantial literature on various generalizations of entropy, for example, the Tsal-

lis entropy (with an extensive biblioigraphy in Group of Statistical Physics (2006)), which was

introduced by Cressie and Read (1984) and Cressie and Read (1989) and used for statistical de-

cisions. There is a literature on income inequality which generalizes entropy (see, for example,

Cowell (1981)). A generalization of relative entropy, relative Tsallis entropy (alpha-divergence),

was introduced by Liese and Vajda (1987). Österreicher and Vajda (May, 1993), Stummer (1999),

Stummer (2001), and Stummer (2004) discussed Tsallis entropy and optimal Bayesian decisions.

A number of these generalization are closely related to the material in this paper. In this paper, we

discuss entropy and Kullback-Leibler relative entropy from a decision theoretic point of view; in

particular, we review utility-based motivations and generalizations of these information theoretic

quantities, based on fundamental principles from decision theory applied in a particular ”market”

context. As we shall see, some generalizations share important properties with entropy and relative

entropy. We then formulate a statistical learning problem (estimation of probability measures) in

terms of these generalized quantities and discuss optimality properties of the solution.

The connection between information theoretic quantities and gambling is well known. Cover and

Thomas (1991) (see Theorem 6.1.2), for example, show that in the horse race setting, an expected

wealth growth rate maximizing investor, who correctly understands the probabilities, has expected

wealth growth rate equal to that of a clairvoyant (someone who wins every bet) minus the entropy

of the horse race. Thus, the entropy can be interpreted as the difference between the wealth

growth rates attained by a clairvoyant and an expected wealth growth rate maximizing investor

who allocates according to the true measure p. It follows from Cover and Thomas (1991), Theorem

6.1.2 and Equation (6.13) that an investor who allocates according to the measure q rather than

p, suffers a loss in expected wealth growth rate of Kullback-Leibler relative entropy D(p‖q).

Investors who maximize expected wealth growth rates can be viewed as expected logarithmic

utility maximizers; thus, the entropy can be interpreted as the difference in expected logarithmic

utility attained by a clairvoyant and expected logarithmic utility maximizing investor who allocates

according to the true measure p. By similar reasoning, an investor who allocates according to the

measure q rather than p, suffers a loss in expected logarithmic utility of D(p‖q). Friedman and

Sandow (2003b) extend these ideas and define a generalized entropy and a generalized Kullback-

Leibler relative entropy for investors with general utility functions.
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In Section 2, we review the generalizations and various properties of the generalized quantities

introduced in Friedman and Sandow (2003b). In Section 3 we consider these quantities in a new

and natural special case. We show that the resulting quantities, which are still more general than

entropy and Kullback-Leibler relative entropy, share many of the properties of entropy and relative

entropy, for example, the data processing inequality and the second law of thermodynamics. We

note that one of the most popular families of utility functions from finance leads to a monotone

transformation of the Tsallis entropy. In Section 4 we formulate a decision-theoretic approach

to the problem of learning a probability measure from data. This approach, formulated in terms

of the quantities described in Section 3, generalizes the minimum relative entropy approach to

estimating probabilistic models. This more general formulation specifically incorporates the risk

preferences of an investor who would use the probability measure that is to be learned in order to

make decisions in a particular market setting. Moreover, we show that the probability measure

that is “learned” is robust in the sense that an investor allocating according to the “learned”

measure maximizes his expected utility in the most adverse environment consistent with certain

data consistency constraints.

2 (U,O)-Entropy

According to utility theory (see, for example, Theorem 3, p. 31 of Ingersoll (1987)), a rational

investor acts to maximize his expected utility based on the model he believes. Friedman and

Sandow (2003b) use this fact to construct general information theoretic quantities that depend on

the probability measures associated with potential states of a horse race (defined precisely below).

In this section, we review the horse race setting, notions from utility theory and definitions and

some of the basic properties of the generalized entropy ((U,O)−entropy) and the generalized

relative entropy (relative (U,O)-entropy) from Friedman and Sandow (2003b).

2.1 Probabilistic Model and Horse Race

We consider the random variable X with values, x, in a finite set X .1 Let q(x) denote prob{X = x}

under the probability measure q. We adopt the viewpoint of an investor who uses the model to

place bets on a horse race, which we define as follows:2

Definition 1 A horse race is a market characterized by the discrete random variable X with

possible states x ∈ X , where an investor can place a bet that X = x, which pays the odds ratio

O(x) > 0 for each dollar wagered if X = x, and 0, otherwise.

We assume that our investor allocates b(x) to the event X = x, where

∑

x

b(x) = 1. (1)

1We have chosen this setting for the sake of simplicity. One can generalize the ideas in this paper to continuous

random variables and to conditional probability models; for details, see Friedman and Sandow (2003b).
2See, for example, Cover and Thomas (1991), Chapter 6.
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We note that we have not required b(x) to be nonnegative. For some utility functions, the investor

may choose to “short” a particular horse. We also note that we can ease the constraint (1) so as

to allow our investor to leverage or withhold cash. This will not lead to any significant change in

the final results of this paper (see Friedman and Sandow (2004)).

The investor’s wealth after the bet is

W = b(x̃)O(x̃), (2)

where x̃ denotes the winning horse.

We note that an investor who allocates $1 of capital, investing B
O(x)

to each state x, where

B =
1

∑

x
1

O(x)

, (3)

receives the payoff B with certainty. This motivates the following definition:

Definition 2 The riskless bank account payoff, B, is given by

B =
1

∑

x
1

O(x)

. (4)

In a horse race with superfair odds,3 B > 1; in a horse race with subfair odds (there is a “track

take”), B < 1. In financial markets, with positive “interest rates,” B > 1. If the “interest rate”

is zero, B = 1.

2.2 Utility and Optimal Betting Weights

In order to quantify the benefits, to an investor, of the information in the model q, we consider

the investor’s utility function, U .

Assumption 1 Our investor subscribes to the axioms of utility theory.4 The investor has a utility

function, U : (Wb,Ws) → R, that

(i) is strictly concave,

(ii) is twice differentiable,

(iii) is strictly monotone increasing,

(iv) has the property (0,∞) ⊆ range(U ′), i.e., there exists a ’blow-up point’, Wb, with

lim
W→W+

b

U ′(W ) = ∞ (5)

and a ’saturation point’, Ws, with

lim
W→W−

s

U ′(W ) = 0, (6)

and
3See, for example, Cover and Thomas (1991).
4Such an investor maximizes his expected utility with respect to the probability measure that he believes (see,

for example, Luenberger (1998)).
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(v) is compatible with the market in the sense that Wb < B < Ws.

One can see easily that condition (v) just means that the wealth associated with the bank account

lies in the domain of U .

We note that many popular utility functions (for example, the logarithmic, exponential and power

utilities (see Luenberger (1998)) are consistent with these conditions.

According to Utility Theory, a rational investor who believes the measure q allocates so as to

maximize the expectation, under q, of his utility function (as applied to his post-bet wealth). In

conjunction with (2), this means that this investor allocates with

b∗(q) = arg max
b∈BX

Eq[U(b,O)] , (7)

where

Eq[U(b,O)] =
∑

x∈X

q(x)U(b(x)O(x)) , (8)

and

BX = {b :
∑

x∈X

b(x) = 1} . (9)

The following lemma states how the optimal betting weights can be computed:

Lemma 1 An expected utility maximizing investor who believes the probability measure q and

invests in a horse race with odds ratios O will allocate

b∗(q)(x) =
1

O(x)
(U ′)−1

(

λ

q(x)O(x)

)

, (10)

where (U ′)−1 denotes the inverse of the function U ′, and λ is the solution of the following equation:

∑

x

1

O(x)
(U ′)−1

(

λ

q(x)O(x)

)

= 1. (11)

Under the assumptions of this paper, the solution to (11) is exists, is unique, and the optimal

allocation, b∗(q), depends continuously on q.

Proof: See, for example, Friedman and Sandow (2003b), Theorem 1.

2.3 Generalization of Entropy and Relative Entropy

We define a utility-based generalization of Kullback Leibler relative entropy via:

Definition 3 The relative (U,O)-entropy from the probability measure p to the probability measure

q is given by:

DU,O(p‖q) =
∑

x

p(x)U(b∗p(x)O(x)) −
∑

x

p(x)U(b∗q(x)O(x)). (12)
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Interpretation: relative (U,O)-entropy is the difference between

(i) the expected (under the measure p) utility of the payoffs if we allocate optimally according

to p, and,

(ii) the expected (under the measure p) utility of the payoffs if we allocate optimally according

to the misspecified model, q.

Definition 4 The (U,O)-entropy of the probability measure p is given by:

HU,O(p) =
∑

x

p(x)U(O(x)) −
∑

x

p(x)U(b∗p(x)O(x)). (13)

Interpretation: (U,O)-entropy is the difference between the expected utility of the payoffs for a

clairvoyant who wins every race and the expected utility under the optimal allocation.

HU,O(p) and DU,O(p‖q) have important properties summarized in the following theorem.

Known Result 1 DU,O(p‖q) and HU,O(p) have the following properties

(i) DU,O(p‖q) ≥ 0 with equality if and only if p = q,

(ii) DU,O(p‖q) is a strictly convex function of p,

(iii) HU,O(p) ≥ 0, and

(iv) HU,O(p) is a strictly concave function of p.

Proof: See Theorem 2 in Friedman and Sandow (2003b).

Note that for U(W ) = log(W ), we recover the entropy and Kullback-Leibler relative entropy

under any system of odds ratios.

We note that, solving (12) for Ep[U(b∗(q),O)] and substituting from (13), one can obtain the

following decomposition for the expected utility, under the measure p, for an investor who allocates

under the (misspecified measure) q:

Ep[U(b∗(q),O)] = Ep[U(O)]− HU,O(p) − DU,O(p‖q). (14)

On the right hand side of (14), the first term is the expected utility of an investor who wins every

bet (a clairvoyant), the second term is the expected utility loss the investor incurs because the

world (characterized by p) is uncertain, and the third term is the expected utility loss related to

the investor’s model misspecification.
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2.4 Connection with Kullback-Leibler Relative Entropy

It so happens that relative (U,O)-entropy essentially reduces to Kullback-Leibler relative entropy

for a logarithmic family of utilities:

Known Result 2 The relative (U,O)-entropy, DU,O(p||q), is independent of the odds ratios, O

for any candidate model p and prior measure, q, if and only if the utility function, U , is a member

of the logarithmic family

U(W ) = γ1 log(W − γ) + γ2 , (15)

where γ1 > 0, γ2 and γ < B are constants. In this case,

DU,O(p||q) = γ1Ep

[

log

(

p

q

)]

= γ1D(p||q) . (16)

Proof: See Friedman and Sandow (2003a), Theorem 3. It follows that relative (U,O)-entropy

reduces, up to a multiplicative constant, to Kullback-Leibler relative entropy, if and only if the

utility is a member of the logarithmic family (16).

3 U−Entropy

We have seen that DU,O(p‖q) ≥ 0 represents the expected gain in utility from allocating under the

true measure p, rather than allocating according to the misspecified measure q under market odds

O for an investor with utility U . One of the main goals of this paper is to explore what happens

when we set q(x) equal to the homogeneous expected return measure,

q(x) =
B

O(x)
. (17)

Readers familiar with finance will recognize this as the risk neutral pricing measure5 generated

by the odds ratios. In finance, a risk neutral pricing measure is a measure under which the price

of any perfectly hedgeable contingent claim is equal to the discounted (by the bank account)

expectation of the payoff of the contingent claim. In the horse race setting, there is only one such

measure, given by (17). We shall see in Section 4 that there are compelling reasons to consider

this case. In this case,

O(x) =
B

q(x)
, (18)

and

DU, B
q
(p‖q) =

∑

x

p(x)U

(

B
b∗p(x)

q(x)

)

−
∑

x

p(x)U(B),

so

DU, B
q
(p‖q) =

∑

x

p(x)U

(

B
b∗p(x)

q(x)

)

− U(B). (19)

5See, for example Duffie (1996). We note that the risk neutral pricing measure generated by the odds ratios

need not coincide with any “real world” measure.
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In this special case, DU, B
q
(p‖q) can be interpreted as the excess performance from allocating

according to the real world measure p over the (risk-neutral) measure q derived from the odds

ratios.6

Likewise, under (18), we have

HU, B
q
(p) =

∑

x

p(x)U

(

B

q(x)

)

−
∑

x

p(x)U

(

B
b∗p(x)

q(x)

)

=
∑

x

p(x)U

(

B

q(x)

)

− DU, B
q
(p‖q) − U(B).

In the special case where q is the uniform distribution, q(x) = 1
|X |

, which we denote by 1
|X |

, we

obtain

HU,|X |B(p) =
∑

x

p(x)U (|X |B)− DU,B|X |

(

p‖
1

|X |

)

− U(B). (20)

For simplicity, we assume that B = 1 and U(B) = 0 from now on.7

3.1 Definitions

Motivated by (19), we make the following definition:

Definition 5 The U-relative entropy from the probability measure p to the probability measure q

is given by

DU (p‖q) = sup
b∈BX

∑

x

p(x)U

(

b(x)

q(x)

)

. (21)

Motivated by (20), we define the U−entropy:8

Definition 6 The U-entropy of the probability measure p is given by

HU (p) = U(|X |) − DU

(

p‖
1

|X |

)

. (22)

Of course, these specializations of (U,O)−entropy and relative

(U,O)−entropy inherit all of the properties stated in Section 2. It is easy to show that for

logarithmic utilities, they reduce to entropy and Kullback-Leibler relative entropy, respectively, so

these quantities are generalizations of entropy and Kullback-Leibler relative entropy, respectively.

Next, we generalize the above definitions to conditional probability measures. To keep our notation

simple, we use p(x) and p(y) to represent the probability distributions for the random variables

X and Y and use both HU(p) and HU (X) to represent the U -entropy for the random variable X

which has probability measure p.

Let

BY = {b :
∑

y∈Y

b(y) = 1} . (23)

6Stutzer (1995), provides a similar interpretation in a slightly different setting.
7It is straightforward to develop the material below under more general assumptions.
8We note that this definition of U−entropy is quite similar to, but not the same as, the definition of u−entropy

in Slomczyński and Zastawniak (2004).
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Definition 7 The conditional relative U-entropy from the probability measure p to the probability

measure q is given by

DU (p(y|x)‖q(y|x)) =
∑

x

p(x)DU (p(y|X = x)‖q(y|X = x)

=
∑

x

p(x) sup
b(·|x)∈BY

∑

y

p(y|x)U

(

b(y|x)

q(y|x)

)

Definition 8 The conditional U−entropy from the probability measure p to the probability mea-

sure q is given by

HU (Y |X) =
∑

x∈X

p(x)HU (Y |X = x)

= U(|Y|) −
∑

x∈X

p(x) sup
b(·|x)∈BY

∑

y

p(y|x)U(|Y|b(y|x))

We note that we could have stated the preceding definitions as special cases of conditional

(U,O)−entropy and conditional relative (U,O)−entropy as in Friedman and Sandow (2003b).

The latter quantities can be interpreted in the context of a conditional horse race.

The following definition generalizes mutual information.

Definition 9 The mutual U-information between the probability measures p and q is defined as

IU(X;Y ) = DU (p(x, y)‖p(x)p(y)) (24)

3.2 Properties of U−Entropy and Relative U−Entropy

As a special case of Known Result 1, we have

Corollary 1 The generalized relative entropy, DU (p‖q), and the generalized entropy, HU (p), have

the following properties

(i) DU (p‖q) ≥ 0 with equality if and only if p = q,

(ii) DU (p‖q) is a strictly convex function of p,

(iii) HU (p) ≥ 0, and

(iv) HU (p) is a strictly concave function of p.

We now establish that many properties that hold for the classical quantities of information theory

also hold in this more general setting.

Theorem 1 HU (Z|X,Y ) ≤ HU (Z|X)
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Proof. By definition,

HU(Z|X,Y ) =
∑

x,y

p(x, y)HU(Z|X = x, Y = y) (25)

=
∑

x,y

p(x, y)

(

U(|Z|) − DU

(

p(z|x, y)‖
1

|Z|

))

= U(|Z|) −
∑

x

p(x)
∑

y

p(y|x)DU

(

p(z|x, y)‖
1

|Z|

)

(26)

≤ U(|Z|) −
∑

x

p(x)DU

(

∑

y

p(y|x)p(z|x, y)‖
1

|Z|

)

(27)

(by convexity of DU (·‖ 1
|Z|

)) (28)

= U(|Z|) −
∑

x

p(x)DU

(

p(z|x)‖
1

|Z|

)

(29)

= HU (Z|X) 2 (30)

Corollary 2 HU (Y |X) ≤ HU (Y ) (Conditioning Reduces Entropy)

Corollary 3 (Shuffles increase entropy). If T is a random shuffle (permutation) of a deck of cards

and X is the initial position of the cards in the deck and if the choice of shuffle T is independent

of X, then

HU(X) ≤ HU (TX) (31)

where TX is the permutation of the deck induced by the shuffle T.

Proof. We follow the proof sketched on Page 48 of Cover and Thomas (1991). First, notice that

for any fixed permutation T = t, from the definition of HU , we have

HU (tX) = HU (X) (32)

(since we have only reordered the states, but we have not changed the probabilities associated

with the states). So

HU (TX) ≥ HU (TX|T )

(by Corollary 2)

=
∑

t

p(t)HU (TX|T = t)

=
∑

t

p(t)HU (tX)

(by (32))

= HU (X) 2
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Theorem 2 If the random variables X,Y,Z form a Markov chain X → Y → Z, then HU (Z|X,Y ) =

HU (Z|Y )

Proof.

HU (Z|X,Y ) =
∑

x,y

p(x, y)

(

U(|Z|) −DU

(

p(z|x, y)‖
1

|Z|

))

= U(|Z|) −
∑

x,y

p(x, y)DU

(

p(z|y)‖
1

|Z|

)

(by the Markov property)

= U(|Z|) −
∑

y

p(y)DU

(

p(z|y)‖
1

|Z|

)

= HU (Z|Y ) 2

Corollary 4 If the random variables X,Y,Z form a Markov chain X → Y → Z, then HU (Z|X) ≥

HU (Z|Y ) and HU(X|Z) ≥ HU (X|Y )

Proof. We prove the first inequality by noting that by Corollary 2,

HU (Z|X) ≥ HU (Z|X,Y ), (33)

and by Theorem 2,

HU (Z|X,Y ) = HU (Z|Y ). (34)

The second inequality follows from the fact that X → Y → Z is equivalent to Z → Y → X. 2

Corollary 5 The conditional entropy HU (Xn|X1) increases with n for a stationary Markov pro-

cess.

Proof. The proof is essentially the same as that given on 36 of Cover and Thomas (1991). 2

In general, the chain rule for relative entropy does not hold, i.e.

DU (p(x, y)‖q(x, y)) 6= DU (p(x)‖q(x)) + DU (p(y|x)‖q(y|x)) (35)

However, we do have the following two inequalities.

Theorem 3

(i) DU (p(x)‖q(x)) ≤ DU (p(x, y)‖q(x, y)), and

(ii) DU (p(y|x)‖q(y|x)) ≤ DU (p(x, y)‖q(x, y)).
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Proof. By definition,

DU (p(x, y)‖q(x, y)) = sup
b∈BX×Y

∑

x,y

p(x, y)U

(

b(x, y)

q(x, y)

)

(36)

≥ sup
b∈BX

∑

x,y

p(x, y)U

(

b(x)q(y|x)

q(x)q(y|x)

)

(37)

(since b(x)q(y|x) ∈ BX×Y ) (38)

= sup
b∈BX

∑

x

p(x)
∑

y

p(y|x)U

(

b(x)

q(x)

)

(39)

= DU (p(x)‖q(x)) (40)

and

DU (p(x, y)‖q(x, y)) = sup
b∈BX×Y

∑

x,y

p(x, y)U

(

b(x, y)

q(x, y)

)

(41)

= sup
b∈BX×Y

∑

x

p(x)
∑

y

p(y|x)U

(

b(x, y)

q(x, y)

)

(42)

≥
∑

x

p(x) sup
b(·|x)∈BY

∑

y

p(y|x)U

(

b(y|x)q(x)

q(y|x)q(x)

)

(43)

(since b̃(x, y) = b(y|x)q(x) ∈ BX×Y ) (44)

= DU (p(y|x)‖q(y|x)) (45)

2

Theorem 4 (More refined horse races have higher relative U−entropies) Let T : X → Y be any

onto function and pT (y), qT(y) be the induced probabilities on Y, i.e.,

pT (y) =
∑

{x:T (x)=y}

p(x). (46)

Then

DU (pT (y)‖qT(y)) ≤ DU (p(x)‖q(x)) (47)

Proof.

DU (pT (y)‖qT(y)) = sup
b∈BY

∑

y

pT (y)U

(

b(y)

qT (y)

)

(48)

= sup
b∈BY

∑

y





∑

{x:T (x)=y}

p(x)



U

(

b(y)
∑

{x:T (x)=y} q(x)

)

(49)
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Define b̃(x) = q(x)b(T (x))∑
{x′:T (x′)=T (x)} q(x′)

Then b̃(x) ∈ BX and

∑

y





∑

{x:T (x)=y}

p(x)



U

(

b(y)
∑

{x:T (x)=y} q(x)

)

=
∑

x

p(x)U

(

b̃(x)

q(x)

)

(50)

≤ DU (p(x)‖q(x)) (51)

2

Theorem 4 can also be regarded as a special case of Theorem 3, part (i).

Theorem 5 (second law of thermodynamics) Let µn and µ′
n be the probability distributions (at

time n) of two different Markov chains arising from the same transition mechanism but from

different starting distributions. Then DU (µn‖µ
′
n) decreases with n.

Proof. Let the corresponding joint mass function be denoted by p(xn, xn+1) and q(xn, xn+1) and

let r(·|·) denote the probability transition function for the Markov chain. Then p(xn, xn+1) =

p(xn)r(xn+1|xn) and q(xn, xn+1) = q(xn)r(xn+1|xn).

DU (p(xn, xn+1)‖q(xn, xn+1)) = sup
b∈BX×X

∑

xn

∑

xn+1

p(xn, xn+1)U

(

b(xn, xn+1)

q(xn, xn+1)

)

= sup
b∈BX×X

∑

xn

p(xn)
∑

xn+1

r(xn+1|xn)U

(

b(xn, xn+1)

q(xn, xn+1)

)

≤ sup
b∈BX×X

∑

xn

p(xn)U

(

∑

xn+1

r(xn+1|xn)
b(xn, xn+1)

q(xn)r(xn+1|xn)

)

(Here, we have used Jensen’s inequality

and the fact that U is concave.)

= sup
b∈BX×X

∑

xn

p(xn)U

(
∑

xn+1
b(xn, xn+1)

q(xn)

)

≤ sup
b∈BX

∑

xn

p(xn)U

(

b(xn)

q(xn)

)

(since b(xn) =
∑

xn+1
b(xn, xn+1) ∈ BX )

= DU (p(xn)‖q(xn))

By Theorem 3,

DU (p(xn, xn+1)‖q(xn, xn+1)) ≥ DU (p(xn+1)‖q(xn+1)), (52)

hence, DU (p(xn)‖q(xn)) ≥ DU (p(xn, xn+1)‖q(xn, xn+1)) ≥ DU (p(xn+1)‖q(xn+1)). 2
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Corollary 6 The relative U-entropy DU (µn‖µ) between a distribution µn on the states at time n

and a stationary distribution µ decreases with n.

Proof: This is a special case of Theorem 5, where µ′
n = µ for any n. 2

Corollary 7 If the uniform distribution 1
|X |

is a stationary distribution, then entropy HU (µn)

increases with n.

Theorem 6

(i) IU(X;Y ) = IU(Y ;X), and

(ii) IU(X;Y ) ≤ IU(X;Y,Z).

Proof. (i) is obvious. By definition,

IU(X;Y ) = sup
b∈BX×Y

∑

x,y

p(x, y)U

(

b(x, y)

p(x)p(y)

)

(53)

= sup
b∈BX×Y

∑

x,y,z

p(x, y, z)U

(

b(x, y)p(z|y)

p(x)p(y, z)

)

(54)

≤ sup
b∈BX×Y×Z

∑

x,y,z

p(x, y, z)U

(

b(x, y, z)

p(x)p(y, z)

)

(55)

= IU(X;Y,Z) (56)

2

Theorem 7 (Data processing inequality): If the random variables X,Y,Z form a Markov chain

X → Y → Z, then IU(X;Y ) ≥ IU(X;Z).

Proof. We will first show that IU(X;Y ) = IU(X;Y,Z). From the previous result,

IU(X;Y ) ≤ IU(X;Y,Z) (57)

On the other hand,

IU(X;Y,Z) = sup
b∈BX×Y×Z

∑

x,y,z

p(x, y, z)U

(

b(x, y, z)

p(x)p(y, z)

)

(58)

= sup
b∈BX×Y×Z

∑

x,y

p(x, y)
∑

z

p(z|x, y)U

(

b(x, y, z)

p(x)p(y, z)

)

(59)

≤ sup
b∈BX×Y×Z

∑

x,y

p(x, y)U

(

∑

z

p(z|x, y)
b(x, y, z)

p(x)p(y, z)

)

(60)

= sup
b∈BX×Y×Z

∑

x,y

p(x, y)U

(∑

z b(x, y, z)

p(x)p(y)

)

(61)

(since p(z|x, y) = p(z|y), by the Markov property) (62)

≤ sup
b∈BX×Y

∑

x,y

p(x, y)U

(

b(x, y)

p(x)p(y)

)

(63)

= IU(X;Y ) (64)
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so IU(X;Y ) = IU(X;Y,Z) ≥ IU(X;Z). 2

Corollary 8 If Z = g(Y ), we have IU(X;Y ) ≥ IU(X; g(Y )).

3.3 Power Utility

Consider the power utility, given by

Uκ(W ) =
W 1−κ − 1

1 − κ
, κ ≥ 0, κ 6= 1. (65)

We note that for each fixed wealth level, taking limits as κ → 1, the power utility approaches the

logarithmic utility.

In this section, we compute the power utility’s U−entropy and relative U−entropy, explore limiting

behavior and make comparisons with Tsallis entropy. We note that the power utility is commonly

used (see, for example, Morningstar (2002)), since it has desirable optimality properties (see

Stutzer (2003)) and the constant relative risk aversion property. The latter property follows

from the fact that, for the power utility, the relative risk aversion coefficient (see, for example,

Luenberger (1998)) is

Rκ(W ) = −W
U ′′

κ (W )

U ′
κ(W )

= κ . (66)

From Friedman and Sandow (2003b), with O(x) = 1
q(x)

, we have

b∗(p)(x) = q(x)

(

p(x)

λq(x)

)
1
κ

(67)

where

λ =

(

∑

x

q(x)

(

p(x)

q(x)

) 1
κ

)κ

(68)

After some algebra, we obtain

DUκ(p‖q) =

(

∑

x p(x)
1
κ q(x)1− 1

κ

)κ

1 − κ
−

1

1 − κ
. (69)

3.3.1 U−Entropy for Large Relative Risk Aversion

Let us consider the limit of infinite risk aversion, which for the power utility corresponds to κ → ∞,

as can be seen from (66). It follows from (67) and (68), that a power utility investor with infinite

risk aversion invests all his money in the bank account, i.e., allocates according to

b∗(p)(x) = q(x) =
B

O(x)
=

1

O(x)
, (70)
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no matter what his belief-measure, p, is, so that his after-bet wealth is B = 1 with certainty. Such

an investor makes no use of the information provided by the model, so no model can ourperform

another and, therefore,

lim
κ→∞

DUκ(p‖q) = 0 , (71)

for any measures p, q and any utility function U .

What happens if the relative risk aversion of a power-utility investor, i.e., κ, is large but finite?

To answer this question, we expand (69) as follows.

DUκ(p‖q) =
1

1 − κ

[

∑

x

(

p(x)

q(x)

) 1
κ

q(x)

]κ

−
1

1 − κ

=
1

1 − κ

[

∑

x

(

1 +
1

κ
log

p(x)

q(x)
+

1

2κ2

(

log
p(x)

q(x)

)2

+ O(κ−3)

)

q(x)

]κ

−
1

1 − κ
( since z

1
κ = 1 +

1

κ
log(z) +

1

2κ2
(logz)2 + O(κ−3) )

=
1

1 − κ

[

1 +
1

κ

∑

x

q(x)log
p(x)

q(x)
+

1

2κ2

∑

x

q(x)

(

log
p(x)

q(x)

)2

+ O(κ−3)

]κ

−
1

1 − κ

=
1 − e

∑
x q(x)log

p(x)
q(x)

κ
+

1 − e
∑

x q(x)log
p(x)
q(x)

[

1 + 1
2
varq

(

log
p(x)
q(x)

)]

κ2
+ O

(

κ−3
)

,

where the last equality follows from the fact that

1

1 − κ

(

1 +
a

κ
+

b

2κ2 +
c

κ3

)κ

−
1

1 − κ
=

1 − ea

κ
+

1 − ea
(

1 + b−a2

2

)

κ2
+ O

(

κ−3
)

.

So

DUκ(p‖q) =
1 − e−D(q‖p)

κ
+

1 − e−D(q‖p)
[

1 + 1
2
varq

(

log
p(x)
q(x)

)]

κ2
+ O

(

κ−3
)

. (72)

Thus, we have related, for large κ, DUκ(p‖q) to Kullback-Leibler relative entropy.

3.3.2 Relation with Tsallis Entropy

Another generalization of entropy, which recently has been a topic of increasing interest in physics,

is the Tsallis entropy (see Tsallis (1988)). The Tsallis entropy provides a theoretical framework

for a nonextensive thermodynamics, i.e., for a thermodynamics for which the entropy of a system

made up of two independent subsystems is not simply the sum of the entropies of the subsystems.

Examples for physical application of such a theory might be astronomical self-gravitating systems

(see, for example, Plastino and Plastino (1999)).

The Tsallis entropy can be generalized to the Tsallis relative entropy (see, for example, Tsallis

and Brigatti (2004)) as follows:

DT
α (p‖q) =

∑

x pα(x)q1−α(x) − 1

α − 1
, α ∈ R. (73)



Entropy 2007, 9, 1-26 17

This entropy recovers the standard Boltzmann-Gibbs entropy α → 1. It turns out that there is a

simple monotonic relationship between our relative U−entropy and the relative Tsallis entropies:

DUκ(p‖q) =

(

DT
1
κ

(p‖q)
(

1
κ
− 1
)

+ 1
)κ

− 1

1 − κ
. (74)

Also note that

HUκ(X) = Uκ(|X |)− DUκ

(

p‖
1

|X |

)

=
|X |1−κ

[

1 −
(

∑

x p(x)
1
κ

)κ]

1 − κ
. (75)

Comparing this to the Tsallis entropy:

HT
α (X) =

∑

x pα(x) − 1

1 − α
; (76)

we have the following simple monotonic relationship between the two entropies

HUκ(X) =

[

1 −
(

HT
1
κ

(X)(1 − 1
κ
) + 1

)κ]

|X |1−κ

1 − κ
. (77)

4 Application: Probability Estimation via Relative U−Entropy Minimization

Information theoretic ideas such as the maximum entropy principle (see, for example, Jaynes

(1957) and Golan et al. (1996)) or the closely related minimum relative entropy (MRE) principle

(see, for example Lebanon and Lafferty (2001)) have assumed major roles in statistical learning.

We discuss these principles from the point of view of a model user who would use a probabilistic

model to make bets in the horse race setting of Section 2.9 As we shall see, probability models

estimated by these principles are robust in the sense that they maximize “worst case” model

performance, in terms of expected utility, for a horse race investor with the three parameter

logarithmic utility (15) in a particular market (horse race).

As such, probability models estimated by MRE methods are special in the sense that they are

tailored to the risk preferences of logarithmic-family-utility investors. However, not all risk prefer-

ences can be expressed by utility functions in the logarithmic family. In the financial community,

a substantial percentage, if not a majority, of practitioners implement utility functions outside

the logarithmic family (15) (see, for example, Morningstar (2002)). This is not surprising – other

utility functions may more accurately reflect the risk preferences of certain investors, or possess

important defining properties or optimality properties.

In order to tailor the statistical learning problem to the specific utility function of the investor,

one can replace the usual MRE problem with a generalization, based on relative U -entropy, as

indicated below. Before stating results for minimum relative U−entropy (MRUE) probability

estimation, we review results for MRE probability estimation.

9It is possible to consider more general settings, such as incomplete markets, but a number of results depend in

a fundamental way on the horse race setting.
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4.1 MRE and Dual Formulation

The usual MRE formulation (see, for example, Lebanon and Lafferty (2001) and Kitamura and

Stutzer (1997)) is given by:10

Problem 1 Find

p∗ = arg min
p∈Q

D(p||p0) (78)

s.t. Ep[f
j] − Ep̃[f

j] = 0 , j = 1, . . . , J , (79)

where each f j represents a feature (i.e., a function that maps X to R), p0 is a probability measure,

p̃ represents the empirical measure, and Q is the set of all probability measures.

The feature constraints (79) can be viewed as a mechanism to enforce ”consistency” between the

model and the data. Typically, p0 is interpreted as representing prior beliefs, before modification

in light of model training data. Below, we discuss what happens when p0 is a benchmark measure

or the pricing measure generated by the odds ratios. The solution to Problem 1 will be the measure

satisfying the feature constraints that is closest to p0 (in the sense of relative entropy).

In many settings, the above (primal) problem is not as easy to solve numerically as the following

dual problem:11

Problem 2 Find

β∗ = arg max
β∈RJ

L(p̂β) , (80)

where L(p) =
∑

x

p̃(x) log(p(x)) (81)

is the log-likelihood function,

p̂β(x) =
1

Z
p0(x)eβT f(x) (82)

and Z =
∑

x

p0(x)eβT f(x) , (83)

and p̃(x) denotes the empirical probability that X = x.

We note that the primal problem (Problem 1) and the dual problem (Problem 2) have the same

solution, in the sense that p∗ = p̂β∗.

10MRE problems can be stated for conditional probability estimation and with regularization. We keep the

context and notation as simple as possible by confining our discussion to unconditional estimation without regu-

larization. Extensions are straightforward.
11See, for example, Lebanon and Lafferty (2001).
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4.2 Robustness of MRE when the Prior Measure is the Odds Ratio Pricing Measure

In a certain circumstance, the MRE measure (i.e., the solution of Problem 1) has a desirable

robustness property, which we discuss in this section. First we state the following minimax result

from Grünwald and Dawid (2004).

Known Result 3 If there exists a probability measure π ∈ K, with πx > 0,∀x ∈ X , then

inf
p′∈K

(−H(p′)) = inf
p∈K

sup
p′∈Q

Ep [log p′] = sup
p′∈Q

inf
p∈K

Ep [log p′] , (84)

where Q is the set of all possible probability measures, K is a closed convex set, such as the set of

all p ∈ Q that satisfy the feature constraints, (79). Moreover, a saddle point is attained.

Replacing log p′ with log p′− log p0 in (84) doesn’t change the finiteness or the convexity properties

of the function under the infsup or the supinf. Since the proof of Known Result 3 relies only on

those properties of this function, we have

inf
p∈K

sup
p′∈Q

Ep

[

log p′ − log p0
]

= sup
p′∈Q

inf
p∈K

Ep

[

log p′ − log p0
]

, (85)

and a saddle point is attained here as well. Further using the fact that

D(p||p0) = sup
p′∈Q

Ep

[

log p′ − log p0
]

, (86)

which follows from the information inequality (see, for example, Cover and Thomas (1991)), we

obtain

inf
p∈K

D(p||p0) = sup
p′∈Q

inf
p∈K

Ep

[

log p′ − log p0
]

= sup
p∈Q

inf
p′∈K

Ep′

[

log p − log p0
]

. (87)

Using further b∗(p) = p,12 for U(W ) = log W , we see that (87) leads to the following corollary:

Corollary 9 If U(W ) = log W , and

p0(x) =
B

O(x)
=

1

O(x)
,∀x ∈ X , (88)

then

p∗ = arg min
p∈K

D(p||p0) = arg max
p∈Q

min
p′∈K

Ep′[U(b∗(p),O)], (89)

where Q is the set of all possible probability measures and K is the set of all p ∈ Q that satisfy

the feature constraints, (79).13

12See, for example, Cover and Thomas (1991), Theorem 6.1.2.
13For ease of exposition, we have proved this result for U (·) = log(·). The same result holds for utilities in the

generalized logarithmic family (15).
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Thus, if p0 is given by pricing measure generated by the odds ratios, then the MRE measure, p∗,

is robust in the following sense: by choosing p∗ a rational (expected-utility optimizing) investor

maximizes his (model-based optimal) expected utility in the most adverse environment consistent

with the feature constraints.

Here, p0 has a specific and non-traditional interpretation. It no longer represents prior beliefs about

the real world measure that we estimate with p∗. Rather, it represents the risk neutral pricing

measure consistent with the odds ratios. If a logarithmic utility investor wants the measure that

he estimates to have the optimality property (89), he is not free to choose p0 to represent his prior

beliefs, in general. However, if he sets p0 to the risk neutral pricing measure determined by the

odds ratios, then the optimality property (89) will hold. In this case, p∗, can be thought of as a

function of the odds ratios, rather than an update of prior beliefs.

It is this property, (89), that we seek to generalize to accommodate risk preferences more general

than the ones compatible with a logarithmic utility function.

4.3 General Risk Preferences and Robust Relative Performance

In this section, we state a known result that we will use below to generalize the robustness property

(89).

The MRE problem is generalized in Friedman and Sandow (2003a) to a minimum relative (U,O)

entropy problem. The solution to this generalized problem is robust in the following sense:

Known Result 4

arg min
p∈K

DU,O(p||p0) = arg max
p∈Q

min
p′∈K

{

Ep′ [U(b∗(p),O)] − Ep′

[

U(b∗(p0),O)
]}

,

where Q is the set of all possible probability measures, K is the set of all p ∈ Q that satisfy the

feature constraints, (79).

This is only a slight modification of a result from Grünwald and Dawid (2002) and is based on

the logic from Topsøe (1979). A proof can be found in Friedman and Sandow (2003a).

Known Result 4 states the following: minimizing DU,O(p||p0) with respect to p ∈ K is equivalent

to searching for the measure p∗ ∈ Q that maximizes the worst-case (with respect to the potential

true measures, p′ ∈ K) relative model performance (over the benchmark model, p0), in the sense

of expected utility. The optimal model, p∗, is robust in the sense that for any other model, p, the

worst (over potential true measures p′ ∈ K) relative performance is even worse than the worst-

case relative performance under p∗. We do not know the true measure; an investor who makes

allocation decisions based on p∗ is prepared for the worst that “nature” can offer.

4.4 Robust Absolute Performance and MRUE

We now address the following question: Is it possible to formulate a generalized MRE problem

for which the solution is robust in the absolute sense of (89), as opposed to the relative sense in

Known Result 4? This is indeed possible, as the following Corollary, which follows directly from

Known Result 4, indicates:
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Corollary 10 If

p0(x) =
B

O(x)
=

1

O(x)
,∀x ∈ X , (90)

then

p∗ = arg min
p∈K

DU (p||p0) = arg max
p∈Q

min
p′∈K

Ep′[U(b∗(p),O)], (91)

where Q is the set of all possible probability measures and K is the set of all p ∈ Q that satisfy

the feature constraints, (79).

This Corollary states that, by choosing p∗, a rational (expected-utility optimizing) investor maxi-

mizes his (model-based optimal) expected utility in the most adverse environment consistent with

the feature constraints. Therefore, an investor with a general utility function, who bets on this

horse race and wants to maximize his worst case (in the sense of (91)) expected utility can set p0 to

the risk neutral pricing measure determined by the odds ratios and solve the following problem:14

Problem 3 (MRUE Problem)

Find

p∗ = arg min
p∈Q

DU (p||p0) (92)

s.t. Ep[f
j ]− Ep̃[f

j] = 0 , j = 1, . . . , J , (93)

where each f j represents a feature (i.e., a function that maps X to R), p0 represents the prior

measure, p̃ represents the empirical measure, and Q is the set of all probability measures.

As before, p0, here, has a specific and non-traditional interpretation. It no longer represents prior

beliefs about the real world measure that we estimate with p∗. Rather, it represents the risk

neutral pricing measure consistent with the odds ratios. If an investor wants the measure that he

estimates to have the optimality property (91), he is not free to choose p0 to represent his prior

beliefs, in general. To attain the optimality property (91), he can set p0 to represent the risk

neutral pricing measure determined by the odds ratios. The MRUE measure, p∗, is a function of

the odds ratios (which are incorporated in the measure p0).

In order to obtain the dual to Problem 3, we specialize, in Problem 3 of Friedman and Sandow

(2003a), relative (U,O)-entropy to relative U−entropy by setting the “prior” measure to the risk

neutral pricing measure generated by the odds ratios, p0(x) = 1
O(x)

. We obtain

Problem 4 (Dual of MRUE Problem)

14As noted above, we keep the context and notation as simple as possible by confining our discussion to uncon-

ditional estimation without regularization. Extensions are straightforward.
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Find

β∗ = arg max
β

∑

x

p̃(x)U (b∗(p̂β)(x)O(x)) , (94)

where b∗(p̂β)(x) =
1

O(x)
(U ′)−1

(

λ∗

p̂β(x)O(x)

)

(95)

and p̂β(x) =
λ∗

O(x)U ′ (U−1(βTf(x) − µ∗))
, (96)

where µ∗ solves 1 =
∑

x

U−1
(

βTf(x) − µ∗
)

O(x)
, (97)

and λ∗ =

{

∑

x

1

O(x)U ′ (U−1(βTf(x) − µ∗))

}−1

. (98)

Problem 4 is easy to interpret.15 The objective function of Problem 4 is the utility (of the

expected utility maximizing investor) averaged over the training sample. Thus, our dual problem

is a maximization of the training-sample averaged utility, where the utility function, U , is the

utility function on which the U−entropy depends.

We note that the primal problem (Problem 3) and the dual problem (Problem 4) have the same

solution, in the sense that p∗ = p̂β∗.

This problem is a J -dimensional (J is the number of features), unconstrained, concave maxi-

mization problems (see Boyd and Vandenberghe (2004), p. 159 for the concavity). The primal

problem, Problem 3, on the other hand, is an m-dimensional (m is the number of states) convex

minimization with linear constraints. The dual problem, Problem 4, may be easier to solve than

the primal problem, Problem 3, if m > J . For conditional probability models, the dual problem

will always be easier to solve than the primal problem.

As we have seen above, in cases where odds ratios are available, the MRUE problem yields a

solution with the optimality property (91). However, in real statistical learning applications, as

mentioned above, it is often the case that odds ratios are not observable. In this case, the builder

of a statistical learning model can use assumed odds ratios, on which the model will depend.

Given the relation

p0(x) =
B

O(x)
=

1

O(x)
,∀x ∈ X , (99)

as a perhaps more convenient alternative, the model-builder can directly specify a risk neutral

pricing measure consistent with the assumed odds ratios. Either way, the model will possess the

optimality property (91) under the odds ratios consistent with the assumption. The necessity

of providing a risk neutral pricing measure, perhaps, imposes an onus on the MRUE modeler

comparable to the onus of finding a prior for the MRE modeler. However, we note that, as for

MRE models, the importance of p0 will diminish as the number of feature constraints grows.

For logarithmic-family utility functions, as a practical matter, even though the MRE and MRUE

models require different interpretations and, possibly, different choices for p0, the numerical im-

plementations will be the same under the appropriate assumptions.

15A version that is more easily implemented is given in the Appendix.
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5 Conclusions

Motivated by decision theory, we have defined a generalization of entropy (U−entropy) and a

generalization of relative entropy (relative U−entropy). We have shown that these generaliza-

tions retain a number of properties of entropy and relative entropy that are not retained by the

generalizations DU,O and HU,O presented in Friedman and Sandow (2003a).

We have used relative U−entropy to formulate an approach to the probability measure estimation

problem (Problem 3). Problem 3 generalizes the absolute robustness properties of the solution to

the MRE problem, incorporating risk preferences more general than those that can be expressed

via the logarithmic family (15).

Depending on the situation, the model builder may prefer one of the methods listed below:

I General Risk Preferences (not expressible by (15)), real or assumed odds ratios available

(i) MRUE, Problem 3: If p0 is the pricing measure generated by the odds ratios, we get

robust absolute performance (in the market described by the odds ratios) in the sense

of Corollary 10.

(ii) Minimum Relative (U,O)−entropy Problem from Friedman and Sandow (2003a): If p0

represents a benchmark model (possibly prior beliefs), we get robust relative outperfor-

mance (relative to the benchmark model, in the market described by the odds ratios)

in the sense of Known Result 4.

II Special Case: Logarithmic Family Risk Preferences (15), odds ratios need not be available

MRE, Problem 1: If p0 represents a benchmark model (possibly prior beliefs), we get

robust relative outperformance with respect to the benchmark model, under any odds

ratios.

6 Appendix

If we specialize relative (U,O)-entropy to relative U−entropy, substituting

p0(x) =
B

O(x)
=

1

O(x)
,∀x ∈ X , (100)

in Problem 4 of Friedman and Sandow (2003a), we obtain a version of the dual problem that is

easier to implement, though the objective function is not as easy to interpret as the objective

function in Problem 4.

Problem 5 (Easily Implemented Version of Dual Problem)

Find β∗ = arg max
β

{βTEp̃[f ] − µ∗} , (101)

(102)

where µ∗ solves 1 =
∑

x

p0(x)U−1
(

βTf(x) − µ∗
)

. (103)
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Once Problem 5 is solved, the solution to Problem 3 is simply,

p∗(x) = λ∗ p0(x)

U ′
(

U−1(β∗T f(x) − µ∗)
) (104)

where λ∗ is the positive constant that makes
∑

x p∗(x) = 1.
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W. Slomczyński and T. Zastawniak. Utility maximizing entropy and the second law of thermo-

dynamics. Annals of Probability, 32(3A):2261, 2004.

W. Stummer. On a statistical information measure of diffusion processes. statistics and decisions,

17:359–376, 1999.

W. Stummer. On a statistical information measure for a Samuelson-Black-Scholes model. statistics

and decisions, 19:289–313, 2001.

W. Stummer. Exponentials, Diffusions, Finance, Entropy and Information. Shaker, 2004.

M. Stutzer. A bayesian approach to diagnosis of asset pricing models. Journal of Econometrics,

68:367–397, 1995.

M. Stutzer. Portfolio choice with endogenous utility: A large deviations approach. Journal of

Econometrics, 116:365–386, 2003.

F. Topsøe. Information theoretical optimization techniques. Kybernetika, 15(1):8, 1979.

C. Tsallis. Possible generalization of Boltzmann-Gibbs statistics. Journal of Statistical Physics,

52:479, 1988.



Entropy 2007, 9, 1-26 26

C. Tsallis and E. Brigatti. Nonextensive statistical mechanics: A brief introduction. Continuum

Mechechanics and Thermodynanmics, 16:223–235, 2004.

c©2007 by MDPI (http://www.mdpi.org). Reproduction for noncommercial purposes permitted.


