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Abstract: Based on the harmonious unifying hybrid preferential model (HUHPM) network 

proposed by our group, the entropy characteristic of an un-weighted HUHPM-BA network 

and a weighted HUHPM-BBV network are investigated as the total hybrid ratio d/r is 

changed. We derive and compute the general relation of the power exponent of the degree 

distribution with the entropy by using the Boltzmann-Gibbs entropy (BGS) and the Tsallis 

non-extensive entropy (Sq). It is found that the BGS decreases as d/r increases and the 

current of the BGS along with hybrid ratio d/r or exponent γ of power-law is in agreement 

between numerical simulation and theoretical analysis. The relationship between the Sq and 

characteristic parameter q under different d/r is also given. And the Sq approaches to the 

BGS when q→ 1. These results can provide a better understanding for evolution 

characteristic in growing complex networks and further applications in network 

engineering are of prospective potential. 
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1. Introduction 

The discovery of the ubiquity of small world (SW) [1] and scale-free (SF) networks [2, 3] has led to 

many exciting insights into fundamental underlying principles that govern complex systems. It has 

been realized that, despite functional diversity, most real world networks like WWW and Internet 

systems share important structural features, e.g: small average path length, high clustering, and 

scale-free degree distribution. A number of network models have been proposed to embody the 

fundamental characteristics [4-15]. Among them our group led by Fang has proposed the harmonious 

unifying hybrid preferential model (HUHPM) to a certain class of complex networks, which is 

controlled by a total hybrid ratio d/r of deterministic preferential attachment (DPA) to random 

preferential attachment (RPA) [4, 10-12]. The unified hybrid ratio can be defined as 

Time intervals  of 
/

Time intervals  of 

d DPA
d r

r RPA
=  

where d is the number of time intervals (steps) for DPA, and r is the number of RPA. Within this 

model we study both numerically and theoretically. It was found that the HUHPM has a key universal 

topological property and dynamical synchronizability, and one of most important features is that the 

exponents of power γ (node degree, node strength, and edged weight) are sensitive to the d/r or 

depends on the d/r strongly [11,12]. 

As is well known, statistical mechanics have made a great contribution towards the main advances 

of topology and dynamics in complex networks, as emphasized by Albert and Barabási [3]. People 

raise a question here: Entropy as another very important characteristic quantity for statistical 

mechanics, what role does the entropy play in complex networks? Entropy emerges as a classical 

thermodynamical concept in the 19th century with Clausius but it is due to the work of Boltzmann and 

Gibbs that the idea of entropy becomes a cornerstone of statistical mechanics. As a result we have that 

the entropy of a complex system is given by the so-called Boltzmann-Gibbs entropy (BGS) 
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with the normalization condition 
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where P(i) is the probability for the system to be in the i-th microstate, and k is a Boltzmann constant. 

Without loss of generality one can also support normalization k = 1. In 1988 Constantino Tsallis 

introduced the non-extensive entropy Sq [16, 17] 
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as a generalization of the BGS, where q is a characteristic parameter. It can be regarded as a minimal 

extension of Shannon entropy, to which it reduces when q→1. Parameter q describes therefore 

summarily all effects
 
[16, 17]. 

In this paper we use the BGS to measure the relationship of entropy with d/r, as well as power 

exponent γ. Through the numerical simulation and theoretical analysis we validate the correctness of 

our results in reference [4]. It is found that as d/r increases the BGS and Sq decrease, which implies that 

the self-organization of HUHPM is enhanced as hybrid ratio d/r increases. The relationship between 
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the Sq under different d/r is also derived. And the Sq approaches to the BGS when q→1. These results 

can provide a better understanding for evolution characteristic in growing complex networks.  

The whole paper is organized as follows. In the Section 2, some hybrid preferential models are 

firstly described. Then in the Section 3 and Section 4, we respectively investigate two kinds of entropy 

in different HUHPM networks. Theoretical results are verified by several simulation results. We 

conclude the paper and remark in Section 5. 

2. Basic network models: the HUHPM 

Based on the Barabási and Albert (BA) scale-free (SF) network [2, 3], Fang and Liang [4] proposed 

a hybrid preferential model (HPM). Furthermore, our group develops the idea to HUHPM model. The 

basic concept and method for the HUHPM can be expressed as the following [4]: 

Deterministic Preferential Attachment ( )

Random Preferential Attachment ( )

DPA

HUHPM

RPA

= +  

This means that the HUHPM can rest on any type of network’s original growth way and RPA pattern 

by adding the DPA pattern according to certain arrangement of the degree distribution to arrive an 

expected topological properties. This implementation combines the random connection with the 

deterministic connection by using the hybrid ratio d/r to request growth scale size of the networks. In 

the process of the network evolution, the hybrid ratio must maintain the same value by combining RPA 

and DPA. Actually, the kind of preferential attachments carried on at first is flexible. This means that 

one can use different order to make the two hybrids grow the network in turn, until the required scale 

size is achieved. Figure 1 illustrates diagrams for evolution of HUHPM growing networks with N=14 

and m=m0=3 under different hybrid ratio d/r=1/6, 1/1 and 6/1. 

 

  (a)            (b)           (c) 

 

Figure 1. The network’s evolution process according to different d/r in HUHPM model. And the 

number of nodes is N=14, m=m0=3. Fig(a) for d/r=1/6, Fig(b) for d/r=1/1and Fig(c) for d/r=6/1. 

 

Barabási and Albert (BA) [5] proposed an un-weighted network model using a famous preferential 

attachment mechanism. Because the weighted networks can more carefully portray the nodes 

connection and mutual interaction, not only reflect the topology of real network, but also reveal 

physical and dynamical characteristics for the real-world networks. Barrat, Barthelemy and Vespignani 
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(BBV) [6,7] proposed a weighted network model with a tunable perturbation parameter δ to rearrange 

the edges’ weights locally using a random preferential attachment mechanism. BBV turns to BA when 

δ=0. BBV model can yield scale-free (SF) properties of the degree, strength and weight distributions 

controlled by weight associated parameter δ. However, both models, BA and BBV, only consider 

random preferential attachment (RPA) and do not consider deterministic preferential attachment (DPA) 

or connection effect. This is in contradiction to a fundamental observation, which has both 

deterministic and random factors extensively exist in the unifying real-world. Therefore, both of RPA 

and DPA in various complex network models should be paid attention to and be investigated carefully. 

Therefore, our group proposed the harmonious unifying hybrid preferential model (HUHPM), and 

applied it to the un-weighted BA and the weighted BBV models, so called HUHPM-BA and 

HUHPM-BBV models. Since BA and BBV can be described as different network statistical 

characterizations. In fact, the HUHPM can be applied to any un-weighted and weighted networks. The 

concrete growth process may refer to the related paper
 
[4-7, 10-11, 18]. It is known that the HUHPM 

network has a series of topological property. 

3. Entropy characteristic in the HUHPM-BA 

In this section, we use the BGS to measure the relationship of entropy and d/r, as well as power 

exponent γ. In reference [10] we theoretically get the approximate degree distribution as follows, 

respectively. For un-weighted network HUHPM-BA, we have 
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where k is the degree of network node and P(k) denotes the probability distribution of nodes whose 

degree is k. The d/r is hybrid ratio and the γ is exponents of power-law. All the coefficients Ai above 

are taken from reference [10], i=1, 2, 3, 4. To compute the entropy, we consider approximately that β 

is a constant for different m and 
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where P(k) satisfying normalization condition 

 ( ) 1P k =∑  

Using formula (1), (3) and (4), we draw the theoretical curves BGS VS d/r and BGS VS γ, as shown 

in figure 2(a) and (c). The corresponding results of numerical simulation are shown in figure 2(b) and 

(d). 
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(a)          (b) 

 

(c) (d) 

Figure 2. BGS versus d/r and γ with network size N=2000, m=1, 3, 5, where (a), (c) are theoretical 

results for BGS and (b), (d) are numerical simulation results respectively. 

 

 

(a) (b) 

Figure 3. The relationship between Sq and q under different d/r, N=2000. The d/r of these plots 

spans from 1/1999 to 1999/1, where (a) is theoretical result and (b) is numerical simulation result. 

 

According to the formula (2), figure 3 gives the relationship between Sq and q under different d/r. It is 

seen from figure 3 that for the fixed q value Sq reduces along with the d/r increase. When q = 1 it turns 

to BGS. Clearly, the tendency of change for two kinds of entropy above with the hybrid ratio d/r are 

similar each other. This means that two kinds of entropy are in consistent with each other basically 
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when q is getting bigger. As mentioned above, however, because parameter q only describes 

summarily all effects [16, 17]. A few differences of two results for two kinds of entropy may not 

avoid. 

4. Entropy characteristic in the weighted HUHPM-BBV 

HUHPM-BBV model generates weighted graphs exhibiting the statistical properties observed in 

several real world systems. Considering a network grown by HUHPM-BBV model, its degree 

distribution is shown below. 
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where k is the degree of network node and P(k) denotes the probability distribution of nodes whose 

degree is k. The d/r is total hybrid ratio and the γ is exponents of power-law. All the coefficients Ai 

above are taken from reference [10], i=1, 2, 3, 4.  δ is the weighted parameter associated with 

perturbation of model. 

To compute the entropy, we consider approximately that β is a constant for different m and 
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where P(k) satisfying normalization condition 

 ( ) 1P k =∑ . 

Using formula (1), (5) and (6), we obtain the curves between BGS and d/r, BGS versus γ, as shown 

in figure 4(a) and (c). The corresponding results of numerical simulation are shown in figure 4(b) and 

(d). And the results of m=5 in figure 3 are the states of δ=0 corresponding to figure 4. 
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(a)          (b) 

 

(c) (d) 

Figure 4. BGS versus d/r and γ with N=2000, m=5, where (a), (c) are theoretical results for BGS 

with δ=2 and (b), (d) are numerical simulation results respectively. δ is parameter in BBV model. 

 

According to the formula (2), figure 5 gives the relationship between Sq and q under different d/r. If 

we consider the fixed q value, Sq reduces along with the d/r increasing, and does not associate with m. 

When q = 1 it turn to BGS. 

 

(a) (b) 

Figure 5. The relationship between Sq and q under different d/r for N=2000, m=5, δ=2. The d/r of 

these plots spans from 1/1999 to 1999/1, where (a) theoretical results and (b) numerical simulation 

results. 
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5. Conclusion and potential of application 

Based on the networks grown by HUHPM-BA model and HUHPM-BBV model, we derive and 

compute the general relation of the power exponent of the degree distribution with the entropy using 

the BG entropy (BGS) and the Tsallis entropy (Sq). It is found that the BGS decreases as d/r increases 

and the current of the BGS along with hybrid ratio d/r or exponent γ of power-law is in consistent. The 

relationship between the Sq and q under different d/r is also given. And the Sq approaches to the BGS 

when q→1. These results can provide a better understanding for evolution characteristic in growing 

complex networks and further applications in network engineering are of prospective potential. 

It is found that the BGS decreases as d/r increases and the current of the BGS along with hybrid 

ratio d/r or exponent γ of power-law is in consistent according to numerical simulation and theoretical 

analysis in both models. The entropy of a network provides an average measure of network’s 

heterogeneity, since it measure the diversity of the degree distribution. In theoretical analysis, P(k) is 

power exponent functions and it cut off the long tails(diversity) observed in simulations. So BGS in the 

simulations takes higher values than in the theory for both models. Also as exponent γ increases, the 

network becomes less heterogeneous and as a result lower entropy is observed. These results are good 

consistent with reference [19]. On the other hand, there still have some factors unconsidered while the 

values of BGS and Sq existing errors drawing from figure 2 – figure 5. One of reasons produced error is 

that because parameter q only describes total all effects in global and ignored detail factor, thus a few 

theoretical error for two kinds of entropy may be understood. Therefore, the form of P(k) and exact 

entropy theory are still needed to improve deeply. So this subject is still open and challenge in network 

science for us. 

Self-organization is an evolution process from disorder to order. In HUHPM networks, BGS and Sq 

decrease as d/r increases, which mean that states of disorder tend to order. This situation is easily 

understood that, since the total hybrid ratio d/r ≥ 1 implies that determinism takes up the dominance 

and much more order is taken place within HUHPM networks. So the decrease of entropy for a 

complex system implies the self-organization of HUHPM networks is enhanced with total hybrid ratio 

d/r increases. 

However, we believe that the HUHPM networks reveal one of essential mechanisms to the actual 

network to produce the SF and SW effects as well as entropy characteristic, therefore further 

applications in more widespread types of network are possible. For example, because the exponents of 

the three power law for the HUHPM networks have high sensitivity to the hybrid ratio d/r change, this 

may make a corresponding encryption method that applies to the cryptology and privacy 

communication domain. That means that based on track to initiate sensitive disposition, further 

experiments can be explored combining corresponding network theory. On the other hand, due to the 

fact that the power exponent, entropy, average path length and average clustering coefficient can adjust 

by the hybrid ratio d/r, one may design the required network architecture to satisfy different special 

requirements in network engineering. 
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