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Abstract: It is demonstrated that the entropy of the ideal mono-atomic gas comprising 
identical spherical atoms is not conserved under the Planck-Einstein like relativistic 
temperature transformation, as a result of the change in the number of atomic degrees of 
freedom. This fact supports the idea that there is no universal relativistic temperature 
transformation. 
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Introduction 

The problems of relativistic thermodynamics and statistics attracted significant attention recently 
[1–4]. The interest to the field was boosted by modern astrophysics investigations. One of the most 
debated problems is the relativistic temperature transformation. The Planck-Einstein (PE) approach to 
the temperature transformation resulted in the well-known relation [5]: 
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early work concluded that the relativistic temperature transformation is at least ambiguous, because the 



Entropy, 2007, 9                            
 

 

114

energy transfer from one relativistic system could be carried out in two ways: under the constant 
velocity and under the constant momentum which are not proportional in the relativity theory [6]. 
Since that the relativistic temperature transformation was debated extensively [7–13]. F. Angulo-
Brown et al in his recent extended study of the problem have summarized the attempts to obtain the 
relativistic temperature transformation in such a way:  
 [ ] 0)()( TuuT aγ= , (3) 

 [ ] 0d)(d QuQ aγ= , (4) 

where a is the Balescu parameter which is not known with certainty and a = –1, if the PE 
transformation is used, and a = 1 under the Ott considerations [1, 6, 8, 11]. The idea that the 
temperature might be invariant was also suggested, thus the situation a = 0, could be considered as 
well [12]. 

On the other hand Landsberg and Matsas in their recent study asserted that a universal continuous 
Lorentz transformation of temperature cannot exist [9, 10]. This was concluded on theoretical grounds 
that an observer moving in a heat reservoir could not detect a blackbody spectrum. In our present letter 
we supply additional arguments holding the viewpoint that the Lorentz transformation of the 
temperature does not exist. 

Entropy of Ideal Gas and Temperature Relativistic Transformation 

One of the basic arguments supporting PE temperature-heat transformations (1)–(2) resided in the 
fact that they remain the entropy of the thermodynamic system constant:  

 ∫ ∫=≥=
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Indeed, the entropy defined according to S = lnW (we use the system of units in which the 
Boltzmann constant kB = 1 [14–15]), is a dimensionless value and has to be invariant relatively to the 
transformations of frames of reference [5]. We will demonstrate that actually situation is more 
complicated and even the entropy of mono-atomic ideal gas is not constant under PE transformations. 

Let us consider the ideal gas, comprising ideal identical spherical atoms (for example Helium or 
Argon) confined within a vessel from the viewpoint of the observer in frame XYZ which rests 
relatively to the vessel (Figure 1 A). An interaction between atoms is neglected, and in this meaning 
the gas is ideal. The entropy of the gas for this observer is given by: 

 constlnln
2

),,( +−= cNTNiicTS , (6) 

where N and c are the number and particles concentration respectively, i –number of degrees of 
freedom of the particle (i = 6 for spheres) [5]. Actually it is established experimentally that the molar 
heat capacity of Helium, Neon and Argon Cv equals (3/2)R in a broad range of at temperatures, with a 
high accuracy, thus, actually for these gases i = 3 [16]. Hence it is clear that rotational degrees of 
freedom are not excited for monoatomic gases. The reason for this could not be explained in the realm 
of classical physics, but instead requires quantum mechanics arguments discussed below.  

I will restrict the treatment with a classical (non-quantum) monoatomic relativistic gas comprising 
ideal spherical particles with i = 6. The entropy of the same gas established by the observer in frame 
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X'Y'Z' moving with velocity u, may be changed for several reasons. First of all, the entropy depends on 
the temperature and concentration of the particles. However, PE transformation provides: 
S'(c',T') = S(c,T) when i = const [5]. For our discussion it is much more important that S = S(i), and the 
entropy will be changed as a result of the change in the quantity of degrees of freedom of the particle.  

The change of i is stipulated by the fact, that the moving observer will see the gas of ellipsoids (as 
depicted in Figure 1B) and not on ideal spheres, (due to the relativistic length contraction), thus for 
this observer i = 5 (three translational and two rotational degrees of freedom, because the orientation of 
ellipsoids central axis is fixed), and i = i(γ(u)). Hence the entropy turns out to be sensitive to the 
frames of reference transformations: S = S(γ(u)).  

It has to be emphasized that involving quantum mechanics arguments comes to help and remedies 
the paradox. Indeed entropy defined according to the well-known Sackur-Tetrode formula still 
depends on the number of degrees of freedom of the particle: S = S(i) [14–15]. However the rotational 
degrees of freedom will be excited only for temperatures greater than I

hTr 2
2

4π=  where h is the 

Planck's constant, I is the moment of inertia of the particle (the Boltzmann constant kB = 1). These 
temperature are unrealistically high for real gaseous systems, thus for monoatomic gases i =3 for both 
spherical and ellipsoidal particles, hence S turns out to be insensitive to the frames of reference 
transformations 

There exist several ways to surmount the difficulty under discussion within frameworks of special 
relativity: 1) to assume that the PE transformation and transformations (3)–(4) are applicable for point 
particles only, thus no realistic thermodynamic system could be described with them; 2) to suggest that 
the quantity of degrees of freedom is somewhat like “magic number” and it is insensitive to the 
transformations of frames of references; 3) to introduce artificial relativistic temperature 

transformation 2
2

0 1)(
c

uTifT −= , taking into account change in the degrees of freedom of the 

particles; 4) to assume that there is no universal relativistic temperature transformation.  
We incline to suppose that the last suggestion coinciding with the approach reported recently by 

Landsberg [9–10] is true. Indeed relativistic temperature transformation is faced with multiple 
principle difficulties, already described, which seem to be insuperable. On the other hand invoking 
quantum mechanics arguments brings to the conclusion that number of atomic degrees of freedom is 
insensitive to the frames of reference transformations for monoatomic systems. Thus it could be 
concluded that consistent classical relativistic thinking becomes impossible in this case. 
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Figure 1. Scheme illustrating entropy jump stipulated by 
the change in the number of degrees of freedom. 

Acknowledgements 

The author is thankful to Professor A. Voronel, Dr. G. Whyman, Mr. A. Sheshnev for fruitful 
discussions, and to Mrs. Albina Musin for her help in the preparing of the manuscript. The author is 
thankful to anonymous referees for thoughtful refereeing of the manuscript. 

References 

1. Ares de Parga, G.; López-Carrera, B.; Angulo-Brown, F. A proposal of relativistic 
transformations in thermodynamics. J. Phys. A: Math. Gen. 2005, 38, 2821–2834. 

2. Lavagno, A. Relativistic nonextensive thermodynamics. Physics Letters A 2002, 301, 13–18. 
3. Banach, Z. An extended Gibbs relation for the relativistic Boltzmann entropy: classical and 

quantum gases. Physica A 2000, 275, 405–428. 
4. Banach, Z.; Larecki, W. Decomposition of entropy and the choice of non-equilibrium variables 

for relativistic classical and quantum gases. Physica A 2001, 293, 485–507. 

x 

z 

y O 

x′ 

z′ 

u 

y′ O′ 

A 

B 



Entropy, 2007, 9                            
 

 

117

5. Tolman, R.C. Relativity, Thermodynamics and Cosmology, Oxford University Press: Oxford, 
1934. 

6. Ott, H. Z. f. Phys. 1965, 175, 70. 
7. Öttinger, H. C. Beyond Equilibrium Thermodynamics, Wiley & Sons: Hoboken, New York, 2005. 
8. Sieniutycz, S. Thermodynamic and relativistic aspects of thermal inertia in fluids. Physical 

Review E 1998, 58(6), 7027–7038. 
9. Landsberg, P.T.; Matsas, G.E.A. The impossibility of a universal relativistic temperature 

transformation. Physica A 2004, 340, 92–94. 
10. Landsberg, P.T.; Matsas, G.E.A. Laying the ghost of the relativistic temperature transformation. 

Physics Letters A 1996, 223, 401–403. 
11. Balescu, R. Relativistic statistical thermodynamics. Physica 1968, 40 (3), 309–338. 
12. Landsberg, P. T. Does a moving body appear cool? Nature 1967, 214, 903-904. 
13. Arias-Hernández, L.A.; Angulo-Brown, F. A general property of endreversible thermal engines. J. 

Appl. Phys. 1997, 81, 2973–2979.  
14. Landau, L.D.; Lifshitz, E.M. Statistical Physics, Butterworth-Heinemann: Oxford, 2000. 
15. Kittel, C. Elementary Statistical Physics, John Wiley & Sons: New York, 1960. 
16. Pohl, R. W. Mechanic, Akustik and Wärmelehre, Springer: Berlin, Göttingen, 1964. 

© 2007 by MDPI (http://www.mdpi.org). Reproduction is permitted for noncommercial purposes. 


	Abstract
	Introduction
	Entropy of Ideal Gas and Temperature Relativistic Transformation
	Acknowledgements
	References

