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Abstract: A non-endoreversible Curzon and Ahlborn cycle is analyzed by introducing a 
factor of non-endoreversibility. The form of power output and ecological function, and 
the role of this factor is discussed. The Gutkowics-Krusin, Procaccia and Ross method to 
build a general expression for both the power output and the ecological function for this 
cycle is used. A numerical analysis of these expresions is made and the results are 
compared with other kind of approaches found in the literature of finite time 
thermodynamics. 
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1. Introduction 

As it is known the Curzon and Ahlborn cycle [1] is a model of an endoreversible engine, shown 
in Figure 1. The efficiency of this cycle is a bound of real engines and it is written as 
 

                                                            
H

C
T
T

CA −= 1η ,                                                                      (1) 

 
where CT  is the cold reservoir temperature and HT  is the hot reservoir temperature. This 

endoreversible cycle is an engine in which entropy production during the exchange of heat between 
the system and its reservoirs of heat is only taken into account.  
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Equation (1) has been recovered by some procedures [2-9]. Particularly in reference [3] the 
optimal configuration of heat engines was studied. More recently this subject had been also studied 
by other authors [10-14]. On other hand, Gutkowics-Krusin, et al [9] introduced a procedure in 
which the power output of this cycle is took as a function of the compression ratio by using the 
parameter λ ~ [ ] 1

minmax lnln −− VV , where maxV  and minV  are the maximun and the minimum 

volumes spanned in the cycle, respectively. Recently, with this method Ladino-Luna and de la 
Selva [15] by using Newton heat transfer law for ideal gas as working substance, and Ladino-Luna 
[16,17] for a van der Waals gas as working substance and by using Dulong and Petit heat transfer 
law, found the form of the function introduced by Angulo-Brown, named ecological function, 
 
                                                               σCTPE −= ,                                                                      (2) 

 
where P is the power output, CT  is the temperature of cold reservoir and σ  is the total entropy 

production. They shown that ecological function has a similar property as power output when the 
compression ratio is taking into account, e. g. ecological efficiency obtained at maximum ecological 
function, with the definition 

H
C

T
T=ε ,  

 

                                                             2
2

1 εεη +−=E ,                                                                    (3) 

 
is a bound for efficiencies when the Curzon and Ahlborn model is performing at maximum 
ecological function, and when it is taking into account  the time of all the processes in the cycle. 
  
 
 
  
 
 
 
 
 
  

 

Figure 1. Curzon and Ahlborn cycle in the entropy, S, vs temperature, T, plane.  
HWT  and CWT  are the hot and cool temperatures of the isothermic processes of the cycle. 

 

Angulo-Brown proposed an ecological criterion for finite-time Carnot heat engines, Equation 
(3), that represents a compromise between the high power output P and a loss power σCT . 
However Yan [18] showed that it might be more reasonable to use σ00 TPE −=  if the cold 
reservoir temperature CT  is not equal to the enviroment temperature 0T  because in the definition of 
E two diferent quantities, exergy output a non-exergy σCT , were compared together. The criterion 
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function 0E  could be more reasonable than Angulo-Brown criterion. Nevertheless, since EE →0  
when CTT →0  for the goal of this paper it can be used the optimization of E.  

It is important to remark that Curzon and Ahlborn efficiency is an adequate approximation for 
conventional power plants, and ecological efficiency is the adequate approximation for modern 
power plants (nuclear and others) [19]. 
On other hand, except in reference [19], all of above authors consider an endoreversible Curzon and 
Ahlborn cycle; but in nature there is not any endoreversible engine. Thus other authors had analized 
the non-endoreversible Curzon and Ahlborn cycle [20-26].  

Firstly Wu and Kiang [20] introduced a non-endoreversibility parameter, later Chen [21] 
analyzed the effect of thermal resistances, heat leakage and internal irreversibility by this non-
endoreversibility parameter,  
 

                                                                
H

C
S S

S
I

Δ
Δ

≡ ,                                                                        (4) 

 
where CSΔ  is the change of entropy obtained during the exchange of heat from the engine to cold 
reservoir, and HSΔ  is the change of entropy obtained during the exchange of heat from the hot 
reservoir to engine. Chen et al [22,23] carried out the ecological optimization for generalized 
irreversible Carnot engine with heat resistance, heat leakage and internal irreversibility for Newton  
heat transfer law, and linear phenomenological heat transfer law. Zhu et al [24,25] generalized 
convective heat transfer law nTQ )(Δ∝ , and generalized radiative heat transfer law  )( nTQ Δ∝ . 
More recently the ecological optimization for generalized irreversible universal heat engine, 
including Diesel, Otto, Bryton Atkinson, Dual and Miller cycles, with heat resistance, heat leakage 
and internal irreversibility was carried out for newton heat transfer law [26]. The efficiency 
obtained by introducing this parameter, Equation (4), at maximum power output is [21],  
 
                                                    1,1 >−= SSm II εη .                                                                (5) 

 
Angulo-Brown et al [19] shown that a general property of endoreversible Curzon and Ahlborn 

cycle previously demostrated [27] can be extended for a non-endoreversible Curzon and Ahlborn 
cycle. Velasco et al [28] follow the idea in references [21], and they found expressions to measure 
possible reductions of undesired effects in heat engines operation. They pointed out that IS is not 
depending of ε  and  rewrote equation (5) as, 
 

                                                10,1,1 <<≡−= I
I

I
S

Im
εη .                                                    (6) 

  
Even more, Angulo-Brown et al [29] applied variational calcuclus to show that both the saving 

function [28] and a modified ecological criteria are equivalent.  
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In present work it is shown that the internal irreversibilities can be taken into account by 
replacing the ratio in the square root for ecological efficiency, Equation (3), by I2

2 εε +  in  case of a 

non endoreversible Curzon and Ahlborn cycle and with instantaneous adiabats. More general 
expressions for non-instantaneous adiabats are presented also by using compression ratio. The 
Gutkowics-Krusin, Procaccia and Ross method [9] is combined with the Chen cyclic model [21] by 
taking into account the parameter of non-endoreversibility SI  to obtain the form of power output 

function and of ecological function. Results are compared with others found in the literature of 
finite time thermodynamics.  

2. Power output and ecological function for instantaneous adiabats 

Consider the non-endoreversible Curzon and Ahlborn cycle model shown in Figure 2. 
 
 
  
 
 
 
 
 
  
 

      

Figure 2. Curzon and Ahlborn cycle in the S-T plane.  
IQ is a heat generated by internal phenomena. 

 

From the second law of thermodynamics the Clausius inequality can be written as,  
 

                                                               0<−
C

C

H

H
T
Q

T
Q ,                                                                    (7) 

 
and by introducing the non-endoreversibility parameter SI , Equation (7) becomes, 

 

                                                              0=−
C

C

H

H
S T

Q
T
QI ,                                                                (8) 

 
so that it is possible to write, 
 

                                                              HS
H

C
C QI

T
T

Q = .                                                                  (9) 
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Let it suppose one mol of ideal gas as working substance in the engine. Thus heat exchange can 
be written for each one of the isothermic branches in Figure 2 as, 
 

                                   
1

2ln V
V

HWH RTQ =   and  
1
2ln V

V
HWS

H

C
C RTI

T
T

Q = ,                                       (10) 

 
where  ,, 21 VV  are the volumes obtained on the first isothermic process in the Curzon and Ahlborn 
cycle shown in Figures 1 and 2, and R is the universal constant of ideal gases. It is obtained the 
work from the engine by using  Equation (9) as, 
 

                                               
1

2ln1 V
V

HW

CW
SHWI T

T
IRTW ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= .                                                       (11) 

 
On other hand, there are some possibilities to write the total time of  cycle. The simplest of them 

is considering this time like in references [9,15,16] with instantaneous adiabats. Assuming the 
exchange of heat obtained by Newton heat transfer law between two environments at temperatures, 

iT  and fT , fi TT > , with rapidity of heat exchange dt
dQ ,  and with α  the heat conductance, one has 

 

                                                               )( if TT
dt
dQ

−=α .                                                             (12) 

 
Each of processes in the cycle occur with a different heat conductance. So, for simplicity let 

assume the same heat conductance in the processes of heat transfer in the Curzon and Ahlborn 
cycle. By ussing Equation (9) the total time of performing of cycle can be written now as, 
 

                               
1
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,                                        (13) 

 
and as a consequence the power output is now, 
 

                                         
( )

HW
CW
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S
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I
I
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P
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−
==

−−
1

1α
.                                                     (14) 

 
Equation (14) can be simplified with the definitions,  

 

                                                
HW

CW
SI T

T
IZ =    and   

H

HW
T

T
u = ,                                                     (15) 

 
and by using the parameter ε  definite since Equation (5). One has the new simplified expression 
for power output as, 
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SI

IS
IuZ

ZI
u

IH
I

ZTP
ε

α

−− +

−
=

1
1

)1( .                                                                (16) 

 
As well as it is made for the work obtained from the engine, the change of entropy in the cycle 

is, 
 

                                       
1

3ln)( V
V

I
C

H

C

C

H

H
I Z

T
TR

T
Q

T
QS −−=+−=Δ ε ,                                             (17) 

 
and the corresponding ecological function is now written as, 
 

TOT

I
CIICII t

STPTPE Δ
−=−= σ , 

 
or with the changes of variables taken previously in power output, one has, 

                                                           
SI

IS
IuZ

ZI
u

IH
I

ZTE
ε

εα

−− +

+−
=

1
1

)21( .                                                       (18) 

 
Notice the similar algebraic structure of both power output and ecological function compared 

with these obtained in references [9,15,16]. Function IZ  depends on the parameters ε  and SI , as a 

consequence the efficiency will be a function of the same variables. Now, it has to obtain the 
efficiencies at maximum power output and at maximum ecological function from a general 
expression in a similar form as in references [9,15,16],   
 
                                                              ),(1 SII IZ εη −= .                                                             (19) 

 

3. Curzon and Ahlborn efficiency and ecological efficiency 
 

Function IZ  could be obtained for both maximization of power output and maximization of 
ecological function. Taking the derivative of both power output and ecological function for u at IZ  

constant, ( ) 0
.
=

=∂
∂

constZu
P

I

I  and  ( ) 0
.
=

=∂
∂

constZu
E

I

I , it is obtain ),( SI IZuu =  as, 

 

                                                       
)1(

)(

SI

SSI

IZ
IIZ

u
+

+
=

ε
.                                                             (20) 

 
Now, from the derivative of power output at .constu = , ( ) 0

.
=

=∂
∂

constuZ
P

I
I , it is obtain,  

 
                        [ ] 0)1)(1()()1()( 2 =−−+−−+−− uZIIuZuIZIuZ ISSISISI εεε ,                         (21) 
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which relate the variables u and  IZ ; and by substituting (20) into (21) it follows that, 
 
                                                               εSI IZ = ,                                                                      (22) 

 
and it is obtain the efficiency at maximum power output, namely, 
 

εη Sm I−= 1 , 
 

whose is the result obtained in references [21]. 
 

Similarly, in case of ecological function, by taking the derivative ( ) 0
.
=

=∂
∂

constuZ
E

I
I , one can find a 

relation between the variables IZ  and u, that is the following one, 
 
                     [ ] 0)1)(21()()1()(2 2 =−+−+−−+−− uZIIuZuIZIuZ ISSISISI εεεε ,                  (23) 
 
and by substituting Equation (20) into (23) it is obtain the expression of IZ , 

                                                    )( 2
2
1 εε += SI IZ ,                                                                   (24) 

 
and the efficiency at maximum ecological function, Equation (18), is,  

 

                                                 )(1 2
2
1 εεη +−= SEI I .                                                                (25) 

 
As in the paper of Velasco et al [28], it is  introduced the change ,1

SII ≡  where 10 << I ,  for 

case of ideal gas as working substance, and because it is found that the parameter I  has values into 

the range [0.8,0.9] for real engines, Table 1 shows a comparison between values of efficiencies 
from reference [28] and efficiencies calculated by Equation (25) in the range [0.8,0.9] of parameter 
I. Furthermore, Figure 3 shows that Equation (25) improve the values of theoretical efficiencies 
respect to the values calculated in reference [28]. The parameter SI  appears into (1.11,1.25). 

The parameter I permits a more realistic evaluation of performance of power plants as it could be 
appreciate in Figure 4, in wich is compared the endoreversible ecological efficiency, Equation (3),  
vs the non-endoreversible ecological efficiency, Equation (25). For power output one obtains the 
same comparison. Also the parameter I is not depend of working substance, only it is necesary to 
take a fluid as it. In addition to, as it can be verified, in the limit 1→I  it is recovered the 
endorreversible behavior of Curzon and Ahlborn cycle, so that CANm ηη →  and EEI ηη → . Figure 

4 also shows this assumption.  
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Table 1. Comparison of efficiencies obtained by  
Velasco et. al. [28] with efficiencies from Equation (25). 

Power Plant 2T  (K) 1T
(K) 

optη ,  9.08.0 ≤≤ I  obsη EIη ,  
9.08.0 ≤≤ I  

Doel 4 (Belgium), 1985. 283 566 0.297 to 0.357 0.35000 0.31535 to 
0.3545 

Almaraz II (nuclear 
pressurized water reactor) 
Spain 

 
290 

 
600 

 
0.315 to 0.373 

 
0.34500 

 
0.3306 to 
0.36889 

Sizewell B (nuclear 
pressurized water reactor) U. 
K. 

 
288 

 
581 

 
0.302 to 0.361 

 
0.36300 

 
0.3198 to 
0.35821 

Cofrentes (nuclear boiling 
water reactor) Spain  

 
289 

 
562 

 
0.282 to 0.343 

 
0.34000 

 
0.30238 to 

0.34228 
Heysham (nuclear advanced 
gas cooled reactor) U. K. 

 
288 

 
727 

 
0.410 to 0.460 

 
0.40000 

 
0.41206 to 

0.44568 
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                                                a)                                                                                                    b) 

Figure 3. Comparative graphics between efficiencies optη  and EIη .  
a) Difference of extreme values one by one for 9.08.0 ≤≤ I .  

b)  Difference EIopt ηη − , in the  extreme of range of values for I. 
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Figure 4. Comparison graphics between efficiencies Eη  and EIη . a) For 8.0=I . b) For  9.0=I .  
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4. More general expressions for power output and for ecological function 

To introduce the compression ratio it is neccesary to take into account the time of the adiabatic 
processes in the cycle. There is not a direct procedure to calculate this time, so that it is assume a 
similar procedure used in references [9,15,16]. Suppousing the adiabatic processes as multiple of 
the time of isothermic processes, the time of the first and the second adiabatic processes 
respectively are, 
 

                                
4

3ln
)(3 V

V

HWH

HW
TT

RT
t

−
=
α

  and   
4
1ln

)(4 V
V

CCW

HWT
T

S

TT

RTI
t HW

CW

−
−=
α

.                             (26) 

 
The negative sign in 4t  is introduced because the time has to be positive. Suppousing one mol of 

working substansce, now the total time of the cycle is,  
 

                                             
1
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TT
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RT
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⎥
⎥
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⎤

⎢
⎢
⎣

⎡
+= −−α

.                                             (27) 

 
The relation for volumes in adiabatic processes, .1 constTV =−γ , is used. So the power output of 

the cycle could be written by taking into account the changes of variables shown in Equation (15) 
as,  
 

                                      
SI
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IuZ

IZ
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SIIH
I
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P

ε
λ
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−− +

−+−
=

1
1

)lnln1)(1(
,                                                 (28) 

 
and it could be verified that Equation (28) reduces to Equation (16)  when 0→λ . Similarly 
ecological function can be written as, 
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IuZ

ZI
u
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IZZ
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ε
λ
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α

−− +

−++−
=

1
1

)lnln1)(21(
.                                          (29) 

 
Similar results found in references [9,15] could be obtained now. On other hand, it is interesting 

to point out that power output and ecological function can be obtained for instantaneous adiabats 
and a non-linear heat transfer law, like  kTQ )(Δ∝ , as 
 

k
SI
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5. Concluding remarks 
 

A first interesting feature of the above results is that from the procedure to build power output 
and ecological function used in references [9,15,16], one can obtain similar expressions of the 
corresponding power output and ecological function for case of a non endoreversible Curzon and 
Ahlborn cycle. One has to introduce appropiate changes to obtain Equation (16) and Equation (18) 
in case of instantaneous adiabats. Numerical results obtained by other authors could be improve as 
it is shown in Table 1. Even more one has to hope a more improve if it is taking into account 
compression ratio by using a linear approximation of efficiencies obtained from maximization of 
Equation (28) and Equation (29). In case of a non ideal gas as working substance is important to 
point out that parameter SI  appears by equation of state as was enphazised in reference [16] when 

the total heat is calculated. Also for case of non linear heat transfer law this parameter appears in a 
similar way. Notice that the Gutkowics-Krusin et al procedure [9] could be took as a methodology 
to take into account internal irreversibilities of the cycle.  The relation of  non-endoreversibilty 
parameter with physical quantities of power plants exceeds this paper, in which it is shown the 
plausibility of  the propoused optimization method, and it deserves a special treatment in a further 
paper.  
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