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Since years we are seeking a unified approach putting together the different views of 
information into one concept without great success. There is one main reason for that: the 
absence of a clear and simple phenomenological foundation of the basic concepts together with 
a corresponding mathematical structure describing it. Both have been elaborated by the author 
of that abstract within a doctoral thesis done at university of Berne, Switzerland in 1995 [2]. The 
mathematical part of that work (chapter 4.4. in [2]) was never published or presented within a 
conference. That approach shows a mathematical structure based on set theory that defines 
information as an interdisciplinary concept showing the different facets of it such as 
the structural-attributive information,  
the functional-cybernetic information,  
the information carrier,  
the basic unit of information, and 
the measure of information.  
 
Using some easily equation transformation the second principle of thermodynamics (called first 
principle of information theory) is provable by the formula for the measure of information. 
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The Thing 
 
The author has proposed a definition of the term information, based on knowledge from various 
scientific disciplines such as informatics, anthropology, psychology, situation theory, philosophy, 
etc., as part of a dissertation [2]. The definition is based on the finding that the world consists of 
things which individuals can recognize, describe, imagine, invent, etc. The term thing is 
introduced in greater detail in an another article by the author also published in this volume. 
 
A thing is identified as such when it is recognized or postulated by an individual. Hence, its 
existence is not fundamentally independent of the individual. There is no reason why a thing 
cannot be merely an individual's invention, it need not be based in reality. Since by definition the 
things examined here are intimately related to the individual and, thus, are pragmatic from the 
outset, we differentiate here merely between syntactic and semantic relationships, in contrast to 
the term sign as understood in the field of semiotics. It can consist of other things or itself be a 
part of another thing. Hence, there are relations between things which equally must be seen as 
things because, from an ontological point of view, they have an equivalent structure. Those 
relationships pointing towards the thing are called syntactic, and those pointing away from the 
thing, semantic. Because the question of whether a relationship is syntactic or semantic is 
answered by the direction of the relationship, we have designated the relationships in the 
following discussion respectively as d_syntactic and d_semantic.  
 
Basic Definitions  
 
Firstly, I would like to say that such complex terms as information cannot be satisfactorily 
described by mathematical equations. But laying a mathematical foundation of initially 
phenomenologically determined terms helps in formulating the necessary engineering science 
aspects as a step towards technical realization. For this purpose, the following definitions, 
derived in part from the wording found in the textbooks by Halmos [3] and Wechler [7], are 
designed to form the mathematical foundations for the model of an interdisciplinary information 
theory. The theory is built on six auxiliary definitions, in which the set A of what are called 
apriori-things is developed. These include concrete as well as abstract objects and constructs 
which can be recognized or postulated by individuals. 
 
We will first of all define a broad area of so-called a priori basic units from which the a priori 
things mentioned above are to be selected. The framework of these a priori basic units is begun 
with the definition of a set U0 of a priori atoms that are axiomatic. According to the insights of 
chapter 4.3 in [2] this set has to be supplemented at once in two respects. First of all U0 lacks 
reciprocal relations between the elements of U0. Furthermore, finite subsets of U0 have to be 
included as a priori basic units because only in this way can objects composed of other a priori 
basic units be considered as a priori basic units themselves. These supplements are taken into 
account in a set U1 which is formed by the union of U0 with the set of pairs of elements from U0 
and the finite power set of U0. We have not reached our goal yet, though, because set U1 does 
not contain all the required elements of a set of a priori basic units either. It still lacks the 
relations between the elements of U1 as well as the finite subsets of U1. Thus we have to 
construct, in an analogous way, a set U2, which is again plagued by the same problems as the 
sets U0 and U1. In that way we construct a tower of sets Un (n ∈ N), where the set Un+1 always 
contains those elements that are still missing according to the previously outlined pattern in Un. 
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The set U of all 'a priori basic units' finally results from the union of all sets Un constructed in this 
way. The formal structure of this set U is therefore as follows: 
 
Def 1: =0U  set of all 'a priori atoms' 
 ( )00001 UPUUUU fin∪×∪=  
 ( )11112 UPUUUU fin∪×∪=  
 : 
 : 
 ( )nfinnnnn UPUUUU ∪×∪=+ 1  

 Thus we construct:  

 U
∞

=

=
0n

nUU  the set of all 'a priori basic units', and  

 ( )U
∞

=

−−=
0

0

n

nfinR UPUUU  

 the set of all 'directed relations between elements of U' such that 
from u ∈ UR it follows that: u = (b,c) = {b,{b,c}} with b, c ∈ U. 

 
Thus the set U already includes everything that can be an a priori thing. For example, it is 
possible with Definition 1 to define the material parts of a piano as a priori atoms and to 
reciprocally relate them in such a way that the piano can be described as a structure. This 
structure is then itself an element of set U and thus an a priori basic unit even if it has not been 
defined as an a priori atom.  
 
However, set U contains many more elements than are necessary for the description of a priori 
things. We require not just any subset of Un (n ∈ N), but only those subsets whose elements 
represent a coherent structured unit. It is therefore the aim of the following definitions to 
describe structures from set U, which are themselves composed of elements of this set, 
mathematically. Thus the next definition goes as follows:  
 
Def 2: Direct a priori relatedness: Let the binary relation Eδ ⊆ U x U be defined as:  

(a,b) ∈ Eδ  ⇔  (a,b) ∈ UR or (b,a) ∈ UR for a, b ∈ U 

We say that b is 'directly related a priori' to a and vice versa if (a,b) ∈ Eδ.  
 
The analysis of a network of a priori basic units concerns not only the direct, but also the 
indirect a priori connections between elements of U. In order to capture this aspect in 
mathematical terms, we have to take one step further and describe the indirect relatedness of 
two a priori basic units which are linked via other a priori basic units:  
 
Def 3: Indirect a priori relatedness: Let Eι be the transitive closure of Eδ defined as: 

(a,b) ∈ Eι  ⇔  ∃ P = {p1, ..., pn (n ∈ N), pi ∈ U,  

 so that (a,p1), (p1,p2), ..., (pn-1,pn), (pn,b)  ∈ Eδ, for a, b ∈ U 

If: (a,b) ∈ Eι, then b is 'indirectly related a priori' to a, via the elements of P in the 
order indicated. In that case P is the path from a to b and vice versa.  
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So far only pairs of a priori basic units have been examined as to their reciprocal direct or 
indirect a priori connections. However, this does not yet exhaustively describe a structure 
forming a network of a priori basic units connected in pairs. Thus we have to propose the 
following definition:  
 
Def 4: The set CO ⊂ U is called 'a priori coherent' if for each pair co1, co2 ∈ CO it is the 

case that: (co1,co2) ∈ Eι|CO = Eι ∩ CO x CO. Moreover, for the intervening path  
P = {p1, ..., pn} (n ∈ N) the rules are:  

 - P ⊂ CO  
 - (co1,p1), (p1,p2), ..., (pn-1,pn), (pn,co2) ∈ Eδ|CO = Eδ ∩ CO x CO 
 - (co1,p1), (p1,p2), ..., (pn-1,pn), (pn,co2) ∈ CO. 

 That is, each pair co1, co2 ∈ CO must be indirectly related a priori, via the path, 
including the connections of relatedness, which lie in CO. We call any set CO which 
is a priori coherent an 'a priori structure'.  

 
With this definition, structured a priori objects can be formally described as entities: A structured 
a priori object CO can mathematically be viewed as a finite a priori coherent subset of U. Base 
on this insight, we can now construct the set of a priori things A. In analogy to the set U of all 
a priori basic units, A is based on the set A0 = U0 of all a priori atoms. Following the pattern of 
Definition 1 we construct, on the basis of A0, a tower of sets An+1 (n ∈ N) of which each is 
composed of the union of set An with the set of pairs of elements of An  and the set of all finite 
a priori coherent subsets of An. The set A of all a priori things then results from the union of all 
sets An. The formal definition of this set must be as follows:  
 
Def 5: Let Pco(X) = {CO ∈ Pfin(X) | CO is a priori coherent}, so that for the set A of all a priori 

things: 
 == 00 UA  set of all 'a priori atoms' 
 : 
 : 
 ( )nconnnn APAAAA ∪×∪=+ 1  

 Thus we construct: 
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U  set of all 'a priori things', and  
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 set of all 'directed a priori relations between elements of A' such 
that it follows from a ∈ AR: a = (b,c) = {b,{b,c}} with b, c ∈ A. 

 
Now the set A includes all elements that are eligible as a priori things: Apart from the a priori 
atoms, A also comprehends all directed a priori relations as well as all possible a priori 
structures. In [2] (chapter 3.1) we found that every non-atomic thing and thus every non-atomic 
a priori thing has an internal structure that is determined by so-called d_syntactic relations. 
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Moreover, every thing has a meaning space which is delimited by d_semantic relations. This 
state of affairs can be represented in the following definition: 
 
Def 6: Let c = (a,b) ∈ AR with a, b, ∈ A, then we call c a 'd_semantic relation a priori' with 

reference to a and a 'd_syntactic relation a priori' with reference to b.  

 Furthermore let DSEA(a) = {c ∈ AR | ∃ b ∈ A with c = (a,b)} be the 'd_semantic 
closure a priori' of a ∈ A and DSYA(b) = {c ∈ AR | ∃ a ∈ A with c = (a,b)} the 
'd_syntactic closure a priori' of b ∈ A. 

 
Definition 6 represents the thesis proposed in [2] whereby a directed relation, depending on 
whether its beginning or its end is the centre of interest, can either be interpreted as d_semantic 
or as d_syntactic1. Thus we now have all we need to define the thing as the basis of a 
mathematically constituted definition of information. 
 
Information as a Structured Object  
 
The thing as a structured object, relevant to the information theory, is then defined in definition 7 
in the following manner as 4-tuple: 
 
Def 7: Let I ⊂ A be a set which we can interpret as the set of all organic individuals 

capable of grasping, i.e. of constructing as such, the a priori things postulated in 
Definition 5. Further, let ℜ+0 be the set of positive real numbers including 0 and N0 
the set of all natural numbers including 0. The 'set TH of all things' is then 
defined as: 

 TH  =  {th | th ∈ A x I x ℜ+
0 x N0}  

A thing th ∈ TH is thus a 4-tuple (a, i, t, s), with: 
a = the a priori thing corresponding to th,  
i = the individual who constructs th (i.e. recognizes or postulates),  
t = the time when th is constructed, with the origin t0 = 0 set arbitrarily to the 

origin of the universe, the so-called Big Bang, and 
s = the selection counter with an initial value of 0, which indicates how often the 

thing th has been used to generate a message (cf. further down).  

Moreover for the set THR ⊂ TH of all relations: 

 THR =  {th | th ∈ AR x I x ℜ+
0 x N0} holds. 

 
With definition 7 we can derive the relevant set of all things that can be constructed (i.e. 
recognized or postulated) by an individual:  
 

                                                 
1 Note that in mathematical logic the use of the terms syntax and semantics is different from the use in the present 
study. 
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Def 8: Let i0 ∈ I, then the 'set TH(i0) of all things that can be constructed by an 
individual i0' is defined as: 

TH(i0) = TH  ∩  A x {i0} x ℜ+
0 x N0 

or in other terms: 

TH(i0) = {th ∈ TH | th = (a, i0, t, s) for suitable a ∈ A, t ∈ ℜ+
0, s ∈ N0} 

Furthermore the set THR(i0) ⊂ TH(i0) of all relations that can be constructed by i0 is 
defined as: 

THR(i0) = TH  ∩  AR x {i0} x ℜ+
0 x N0 

 
Because the set TH(i) contains all things that can be constructed by the individual i, TH(i) in a 
way represents the knowledge of i. The set TH(i) can basically contain one or more things  
th ∈ TH(i) for each a priori thing a ∈ A. Thus the existence of structures in TH(i) on the pattern 
of the a priori structures in Definition 4 becomes conceivable. Yet since TH(i) is more complex 
than A, Definitions 2-4 and Definition 6 have to be adapted to the new situation. First of all the 
direct relatedness between two things has to be redefined: 
 
Def 2*: Direct relatedness: Let b, c ∈ TH(i) with b = (ab, i, tb, sb) and c = (ac, i, tc, sc). Let the 

binary relation E∆(i) ⊆ TH(i) x TH(i) with i ∈ I be defined as:  
 (b,c) ∈ E∆(i)  ⇔ ((ab,ac), i, t, s) ∈ THB(i) or  
  ((ac,ab), i, t, s) ∈ THB(i)  

 We say that c is 'directly related' to b and vice versa if (b,c) ∈ E∆(i).  
 
In a similar way, we adapt the definition of indirect relatedness: 
 
Def 3*: Indirect relatedness: Let EΙ(i) be the transitive closure of E∆(i) defined as: 
 
 (b,c) ∈ EΙ(i) ⇔ ∃ P = {p1, ..., pn} (n ∈ N), pi ∈ TH(i) with i ∈ I, so that (b,p1), (p1,p2), ..., 

(pn-1,pn), (pn,c) ∈ E∆(i) for b, c ∈ TH(i) 

 If: (b,c) ∈ EΙ(i), then c is 'indirectly related' to b via the elements of P in the order 
indicated and vice versa. In that case P is the path from b to c or from c to b 
respectively.  

 
Thus the definition of an information structure follows almost naturally : 
 
Def 4*: The set CO ⊂ U is called 'coherent', if for every pair co1, co2 ∈ CO the following 

holds: (co1,co2) ∈ EΙ(i)|CO = EΙ(i) ∩ CO x CO. Moreover for the intervening path  
P = {p1, ..., pn} (n ∈ N) it is true that:  

 - P ⊂ CO  
 - (co1,p1), (p1,p2), ..., (pn-1,pn), (pn,co2) ∈ E∆(i)|CO = E∆(i) ∩ CO x CO 
 - (co1,p1), (p1,p2), ..., (pn-1,pn), (pn,co2) ∈ CO. 
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 Thus every pair co1, co2 ∈ CO has to be indirectly related and the path including the 
relations of relatedness has to lie in CO. We call every coherent set CO an 
'information structure'.  

 
The knowledge of i represented by TH(i) is thus composed of structured things, the so-called 
information structures. We are now left with the adaptation of Definition 6 which describes the 
internal structure and the meaning space of a thing: 
 
Def 6*: Let th = (ath, i, tth, sth) ∈ TH(i) with i ∈ I, then 

 - DSE(th) = {e = (ae, i, te, se) ∈ THB(i) | ae ∈ DSEA (ath)}  
   is the 'd_semantic closure' of th.  

 - DSY(th) = {c = (ac, i, tc, sc) ∈ THB(i) | ac ∈ DSYA (ath)}  
   is the 'd_syntactic closure' of th.  

 It is self-evident that every e ∈ DSE(th) is always a d_semantic relation pointing 
away from th towards another thing and every c ∈ DSY(th) is a d_syntactic relation 
pointing from another thing towards th.  

 
Definition 6* makes it possible to mathematically describe the thing in the way outlined in [2]: All 
things th ∈ TH(i) with i ∈ I thus have a d_syntactic and a d_semantic closure. Moreover the 
reflections on pragmatics in [2] (chapter 3.1) also have their mathematical correspondence in 
the series of definitions proposed here. The fact that according to Definition 7 every thing  
th ∈ TH(i) contains, apart from the reference to the a priori thing ath, references to a constructing 
individual i and a construction time tth, might - together with the selection counter sth which in a 
way expresses a 'tendency of the individual i to make th known' - be taken to point to the 
pragmatic aspect of a thing.  
 
With Definitions 1-8 we have created a general framework to describe the structural-attributive 
view of information. The new findings now necessitate the following two notes: 
 
Note 1: Every thing x ∈ TH which is an information structure will be considered as an 

'information carrier' if and only if DSE(x) ≠ ∅.  

Note 2: If a thing x ∈ TH is an information carrier according to Note 1, then every relation c 
∈ DSE(x) is an 'information element'.  

Thus a thing th is an information carrier if and only if a d_semantic relation is pointing away from 
th. From this the fact that the d_semantic relation is an information element follows trivially. With 
other words: structural-attributive information can be called a non-trivial information structure 
whose d_semantic closure is not empty. In this way we can formalize both the structure of the 
external world and the structure of individual knowledge. The cardinality of such an information 
structure CO, i.e. the number of elements in CO, is expressed according to [3] as CARD(CO) = | 
CO |.  
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Information as process 
 
Functional-cybernetic information theories describe information as a process IP which over time 
modifies information structures in general and knowledge in particular. A structure Y, for 
example, which has been transmitted at a time t1 has a greater cardinality at the time t2 > t1 than 
at the time t0 < t1. This process IP is to be elucidated on the basis of the model of a universal 
communication system of C.E. Shannon [6] ; it is to be understood as a process during which a 
message is produced by an information source and transmitted to a destination which then 
integrates the structure of this message in its own structure. All the components of this model - 
message, information source, channel and destination - are considered as reciprocally 
independent information structures according to Definition 4* in [2] constructed by an individual i 
∈ I in its role as an external observer of a situation.  
 
Of course, the successful completion of such an information process requires that the 
destination have a certain internal structure, since the destination must always have certain 
structural similarities to the message. It would, for example, be extremely difficult to inform an 
English-speaking individual by means of a message in Chinese. In other words, the question 
arises how the qualities of any two information structures can be compared so that differences 
and similarities become visible: 
 
Def 9: Let X, Y ∈ TH(i) with i ∈ I be two information structures, and let further x = 

(ax,i,tx,sx) ∈ X and y = (ay,i,ty,sy) ∈ Y, then: 
- The two things x and y are called 'equivalent', if ax = ay, that is if x and y refer 

to the same a priori thing. We note this fact with x ∼ y. 

- The set SCX,Y ⊂ X is called the 'structural community' of X relative to Y, if it is 
true that: SCX,Y = {x ∈ X | ∃ y ∈ Y with x ∼ y}. 

- Finally the set SDX,Y = X - SCX,Y is called the 'structural difference' of X 
relative to Y. 

 
Of course, the statements of Definition 9 apply to all information structures in TH. Now, if the 
two information structures X and Y represent intelligent beings, this definition can be interpreted 
as follows: The set SCX,Y stands for the a priori knowledge of X with respect to Y and SDX,Y for 
the difference in knowledge of X relative to Y. On the other hand, SCY,X designates the a priori 
knowledge of Y relative to X and SDY,X the difference in knowledge of Y relative to X.  
 
In the course of the information process, the message M plays a central part. It transmits a 
structural part S of an information source X to a destination Y in coded form. Such a message 
need not correspond directly to S, but there must be an unambiguous translation rule from S 
into M and vice versa which must be known both to the information source and the destination. 
Further, the message M must not differ structurally from S, since M cannot in any case contain 
more than the information source X knows about the fact S to which M refers. Moreover each 
instances of the generation of a message M increments the selection counter sS of information 
structure S by the value of 1. Finally, M as a product of information structure X is always linked 
to S by a directed relation r ∈ THR(i). Thus we get the following definition of a message:  
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Def 10: Let M, S ∈ TH(i) with i ∈ I, where both M and S are information structures. We call 
M a 'message' of S, if it is true that: 

- There is a relation r ∈ THR(i) with r ∈ DSE(S) ∧ r ∈ DSY(M). 
- SDM,S = ∅. 
- The selection counter sS of information structure S is incremented by the value 

1. 

Further let MA(S) = {M ∈ TH(i) | M is a message of S } be the set of all messages 
of S and further let MB(S) = {r ∈ THR(i) | r ∈ DSE(S) ∧ r ∈ DSY(M) ∀ M ∈ MA(S)} 
⊆ DSE(S) be the set of all relations of S to its messages. 

 
Definition 10 only stipulates formal conditions for a message, not conditions that concern its 
content. Since moreover Definition 10 only posits that the structural difference of M relative to S 
must be empty and not vice versa, any element of S can basically be generated as a message. 
This agrees very well with the observation that a living being can at all times transmit anything it 
knows in any combination as a message to its environment.  
 
An information structure M ∈ TH(i) is a possible message of another information structure S 
∈ TH(i) if there is a relational element r ∈ DSE(S) such that at the same time r ∈ DSY(M) . This 
leads one to assume that all information structures T ∈ TH(i) that are referred to by an element 
r' from DSE(S) can also be considered as possible messages of S. This would mean that for 
each of these T it is true that: SDT,S = ∅, which is generally not likely. Nevertheless there will be 
an information structure T' ∈ T for every such T that satisfies that criterion. If T' ⊃ ∅, then T' 
stands for a possible message. But if T' = ∅, for example because SCT,S = ∅, then no non-
empty message can be generated on the basis of r' ∈ DSE(S) ∩ DSY(T'). This need not disturb 
us. It simply marks a limit case. We can now formulate the following theorem: 
 
Theorem 1: Let S ∈ TH(i) with i ∈ I be an information structure and let further be r ∈ DSE(S) 

and r ∈ DSY(T) for a suitable T ∈ TH(i), then there is an information structure 
T' ∈ T with SDT’,S = ∅. 

Proof: It follows from Definition 9 that 

 ∃ T' ∈ SCT,S with SDT’,S = ∅ QED 
 
An information process whereby a destination Y ∈ TH(i) is informed by an information source X 
∈ TH(i) can now be viewed as a process that reduces the structural difference SDX,Y of the 
destination relative to the information source and at the same time integrates the new elements 
in the knowledge structure of Y in such a way that Y is again an information structure. Therefore 
the next definition is: 
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Def 11: Let X(t1), Y(t1) ∈ TH(i) with i ∈ I be two information structures at a time t1 with 
SDX,Y(t1) ≠ ∅, then we can say that: 

- An element x ∈ X(t1) at the time t2 > t1 is called 'integrated' in Y(t2) if: Y(t2) is 
an information structure and x ∈ SDX,Y(t1)  and  x ∉ SDX,Y(t2). We note this as 
Y(t2) = Y(t1) ↵ {x}.  

- The set X(t1) at the time t2 > t1 is called 'partially integrated' in Y(t2) if: Y(t2) is 
an information structure and SDX,Y(t1) ⊃ SDX,Y(t2) ≠ ∅.  
We note this as Y(t2) = Y(t1) ↵ (X(t1) - SDX,Y(t2)).  

- The set X(t1) at the time t2 > t1 is called 'completely integrated' in Y(t2) if: Y(t2) 
is an information structure and SDX,Y(t2) = ∅. We note this as Y(t2) = Y(t1) 
↵ X(t1).  

 
The complete integration of a set X(t1) in the set Y(t2) with t2 > t1 can thus be interpreted as 
meaning that all elements of X(t1), that have no equivalent in Y(t1) yet, will acquire one by a 
complete integration. Thus the information process can be represented as follows:  
 
Def 12: Let X(t1), Y(t1) ∈ TH(i) with i ∈ I be two information structures at the time t1 and let 

M ∈ TH(i) be a message of X(t1). The 'information process' IP(M,Y(t1)) which 
transmits the message M from X(t1) to Y(t1) at the time t1 has the following effect at 
the time t2 > t1: 

- Y(t2) = Y(t1) ↵ M.  
- ∃ r ∈ THR (i) with r ∈ DSE(Y(t2)) ∧ r ∈ DSY(M) as well as r ∉ DSE(Y(t1)).  
We designate by SG(IP(M,Y(t1))) = Y(t2) - Y(t1) the 'real structural growth' of Y(t2) 
due to the information process IP(M,Y(t1)).  

 
Definition 12 captures two important features of information: First of all it shows that a message 
which is integrated by the information process of a destination can be reproduced as a message 
by this destination. Secondly, Definition 12 makes clear that an information process is only non-
trivial, i.e. can only modify a structure, if: M, SG(IP(M,Y(t1))) ≠ ∅. We can now derive the 
following theorem: 
 
Theorem 2: Let X(t1), Y(t1) ∈ TH(i) with i ∈ I be two information structures at the time t1 and let 

M ∈ TH(i) be a message produced by X(t1). After every information process 
IP(M,Y(t1)) which transmits the message M from X(t1) to Y(t1) at the time t1:  

CARD(DSE(Y(t2)))   ≥   CARD(DSE(Y(t1))) with t2 > t1 
Thus the information process IP(M,Y(t1)) entails that the cardinality of the 
d_semantic closure of information structure Y(t) and thus the capacity to form 
messages increases or remains the same.  

Proof: According to Definition 12 it follows that: 

DSE(Y(t2))  ⊇  DSE(Y(t1))  ∪  {r}   (with r ∈ DSE(Y(t2)) ∧ r ∈ DSY(M) ) 
From this the proposition of Theorem 2 follows trivially! 
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Thus Theorem 2 means that with each information process the cardinality of the destination 
structure increases or remains the same. For this reason the knowledge of the destination 
system always increases or at least remains constant in this kind of information process, but 
never decreases.  
 

A measure for information  

In conclusion to the formal definition of the concept of information the question arises what is 
the formal measure of information. To be more precise, we would like to know what is the 
measure for the amount of information of an information carrier. Since according to Note 2 an 
information structure S is called an information carrier if and only if DSE(S) ≠ ∅, i.e. if its 
d_semantic closure is not empty, and because according to Theorem 1 it is precisely the 
elements of DSE(S) that refer to the possible messages of S, this measure must logically make 
a quantitative statement about the d_semantic closure of S. Such a measure must increase in 
line with the cardinality of DSE(S), and it must be capable of taking into account the elements of 
DSE(S) weighted according to the probability that an element will be part of a message. These 
requirements are fulfilled by Shannon's formula for the amount of information H (cf. [6] as well 
as below in Def 14).  
 
One problem that still awaits its solution is the definition of the above-mentioned selection 
probability for the elements of the d_semantic closure of an information structure S. The basis 
for a solution is already there in the structure of these elements, for the selection counter sr for 
every relation r ∈ DSE(S) contains an empirically produced value that expresses the selection 
frequency of r as part of a message. The selection probability q(r) relative to the other elements 
of DSE(S) can now be calculated by dividing sr by the sum of all sc with c ∈ DSE(S) , as can be 
seen from the following definition: 
 
Def 13: Let S ∈ TH(i) with i ∈ I be an information structure and let further r = (ar, i, tr, sr) ∈ 

DSE(S). Let the function q: DSE(S) → [0,1] be defined as follows: 

 ( )
( )

∑
∈

=

SDSEc
c

r

s
srq  

 We call q(r) the 'selection probability' of the relation r ∈ DSE(S) relative to the 
other relations c ∈ DSE(S).  

 
Thus we have a basis for the definition of the measure for the amount of information: 
 
Def 14: Let S ∈ TH(i) with i ∈ I be an information structure and let further r = (ar, i, tr, sr) ∈ 

DSE(S), then: 

 ( ) ( ) ( )
( )

∑
∈

−=
SDSEr

rqrqKSH log   

H(S) is the 'amount of information' or the entropy of the thing S.  
 
Thus it is possible to calculate the amount of information for each information structure S, 
regardless of the part it plays in an information process. According to Definition 14, the amount 
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of information of S calculated in this way is primarily a measure for the cardinality of the 
d_semantic closure of S, which could be understood as a measure for the 'semantic content' of 
an information structure. Thus with his formula for the calculation of the amount of information, 
Shannon unknowingly created the basis for a measure for the 'semantics' of an information 
structure. According to that finding we may now formulate the following conclusion entitled the 
'Law of Information Theory’: 
 
Theorem 3: Let X(t1), Y(t1) ∈ TH(i) with i ∈ I be two information structures at the time t1 and let 

M ∈ TH(i) be a message of X(t1). Let further IP(M,Y(t1)) be an information process 
which transmits the message M from X(t1) to Y(t2) at the time t1 with t2 > t1, so that 
an r' ∈ TH(i) results, with  
r' = (ar’, i, t r’, s r’) ∈ DSE(Y(t2)) ∧ r' ∈ DSY(M). To such an information process the 
following formula applies: 

 ∆H ≥ 0   
 

Proof:   
 

 
 
 
 
 
 
 
 
Thus the non-trivial information processes according to Definition 12 show an affinity to 
irreversible physical processes and accordingly the trivial information processes an affinity to 
reversible physical processes.  
 
Conclusions 
 
We have established that it is possible to bring together the most disparate approaches of 
existing information theory under one umbrella and to formalize them with a single mathematical 
model. It turned out that applying Shannon's term of entropy to derive a mass of information, in 
contradiction to the differing opinions of many information theorists, is highly suitable for all 
information theories based on the term thing. The entropy proved itself as a mass of the 
cardinality of the r_semantic shell around the thing. Thus, it represents, so to speak, an 
estimate of the semantic contents of a thing as a unit of information. The larger its contents are, 
the greater in turn is the probability of the individual interacting with its environment, which 
indicates a close correspondence with the thermodynamic term of entropy. For these reasons 
we postulate the application of the Second Law of Thermodynamics as the fundamental law of 
information theory.  
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