F1S2005 http://www.mdpi.org/fis2005/
Random spheres as a 1+1 dimensional field
theory.

Rémi Léandre

Institut de Mathématiques. Université de Bourgogne. 21000. Dijon France.
E-mail: Remi.leandre@u-bourgogne.fr

Abstract: We construct non-gaussian Brownian spheres on R? as a 141 dimensional field theory.

Keywords: Brownian bridge; infinite dimensional Brownian motion.

MSC 2000 codes: 60G60. 81T40. 82B31.

(©2005 by MDPI (http://www.mdpi.org). Reproduction for noncommercial purposes permitted.



FI1S2005 2

1 Introduction

In string theory or in conformal field theory (See survey of Witten [51] or Gawedzki [18], [19],[20]),
people look at a Riemannian surface ¥ (the world-sheet) and at a Riemannian manifold M (the
target space) and consider the set of maps «(.) from ¥ into M endowed with the formal probability
measure:

(1) du(x(.)) = 27" expl=I(a()|dD(x(.))

where [(x(.)) is the energy of the field x(.), dD(x(.)) the formal Lebesgue measure on the set of
fields and Z the partition function destinated to get a probability measure.

If we consider the case where M = R with the flat Riemannian structure, we get a Gaussian
measure, called the free field measure. Let (G be the green kernel associated to the Laplace-
Beltrami operator on . Let S be the generic element of ¥. We have, in this case:

(2) Ele(S)x(5)] = G(S,57)

and G(9,5) = oo in two dimension. This explains that we consider only smeared fields, and that
the Gaussian measure of the free field lives on distributions in fact ([46]).

There is another way to construct non-linear random fields, parametrized by surfaces, which are
continuous. It is the purpose of infinite dimensional processes on infinite dimensional manifolds,
which comes from the work of Kuo ([23]), Beloposkaya-Daletskii ([8]) and Daletskii ([13]).

The simplest geometry for the world sheet is the case where we consider the cylinder: this corre-
sponds to diffusion processes on the loop space of the manifold.

This can be seen in two ways:

-)Either we consider Ornstein-Uhlenbeck process on the loop space, by using Dirichlet forms theory
(16, [13], [27], [41))

-)Or we consider Brownian motion on the loop space, in the sense of Airault-Malliavin ([3],[10],
1], [36))

In these two cases, we say that we are in presence of a 1 + 1 dimensional field theory, 1 for the
dynamical time and 1 for the dimension of the internal time of the theory.

Some refinment of 1 + 1 dimensional field theories were done in [12], [37] and [38], where we
consider pants. It is a finite dimensional constrain, and traditional tools of stochastic analysis as
quasi-sure analysis ([2], [48]) can be applied.

Until now, in order to understand a more complicated world-sheet, we were obliged to consider a
1 4 2 dimensional field theory, that is processes on the set of maps from ¥ into M ([28], [30], [31],
[32], [33], [34], [39]) and the associated heat-kernel measure.

Our goal is to understand a more complicated world-sheet, that is the sphere (We start from the
constant loop and we arrive at the constant loop) as a 1 +1 dimensional stochastic field theory. So
we construct a process on the loop space of R? (endowed with a non-trivial Riemannian structure,
but without cut-locus!) starting from the constant loop and submitted to coming-up at the
constant loop at time 1. It is an infinite dimensional constrain, and we cannot apply tools of
quasi-sure analysis in order to do this work ([2], [48]).

We refer to the survey of Albeverio ([4]) for the relation between stochastic analysis and mathe-
matical physics as well as the 3 surveys of Léandre about that ([27], [29], [40]).



FI1S2005 3

2 The model

Let X; be m + 1 vector fields on R? bounded with bounded derivatives of all orders. We suppose
that the quadratic form g(z)™*

) (=) < X >

is uniformly invertible on R?. Let w',7 = 1,..,m a R™-valued Brownian motion. We can consider
the Stratonovich differential equation issued from z:

m

(4) dri(x) =Y Xi(wi(x))dw] + Xo(z,(x))dt

=1

The law of z(z) has a smooth density ¢:(x,y) with respect to the Lebesgue measure on R?, strictly
positive, and which is smooth in ¢t > 0,2, y. If we constrain the diffusion x(x) to be x at time 1,
it is the solution of the Stratonovitch differential equation ([9], [45]):

m

(5) dry(w,2) =Y Xi(as(w,2))di] + Xo(wi(w, x))dt
=1
where
(6) dil = dwi+ < Xi(xi(x, 2)), gradlog ¢ _¢(x,(x,x),x) > dt

We consider the Hilbert space H of free loops i in R™ endowed with the Hilbert structure:
g [ meipas + [ Jayashiopas = ol
st st

Let 1 be the map h — h'(s) where k' is the coordinate of order i of h. It is a continuous linear
form. Therefore there exists an element ¢’ of H such that

(8) h(s) =< h,e’ >
Let us consider the Brownian motion By(.) with values in H. t — By(s) are a family of R™-valued
Brownian motion indexed by s € St. Moreover,

(9) E[Bi(s)Bi(s)] =t < €, ¢, >

s gl

We deduce by Kolmogorov lemma ([44]), that the random field (¢,s) — B:(s) is almost surely
Hoelder. We consider the solution (s, ) of (5) where we replace dw; by dB;(s) and the associated
bridge (s, x, x).
We suppose in the sequel that the following hypothesis is satisfied:
Hypothesis H: For all multi-index («) of length equal to 2, we have for ¢t < 1:

o) o)
(10) 5y log ale, y)l + 5y log g, y)]) < O < o0

Z )

We refer to [22] and to [42] about this hypothesis, which says more and less that the Riemannian
manifold B¢ endowed with the Riemannian metric ¢ has no cut-locus.

Moreover, we can suppose that the diffusion z,(s,z) is the Brownian motion on R? endowed with
the Riemannian stucture g(x), by choosing a suitable drift Xj.
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3 The main theorem

Theorem III.1: the multiparameter process (t,s) — x4(s, x, x) has a version which is Hoelder in
s and ¢ under Hypothesis H.
Lemma II1.2: When ¢t — 0

(11) P{sup |z(s,z,2) — x| > C} < K'exp[—K /1]

for K > O depending only from ' > 0
Proof: We see that if we put

(12) Ui(s,s') = ay(s,2,2) — (s, 2, )

that

(13) Ut(s,sl):/ OiUu(S,S/)du—l-/ OZUu(S,S/)(SBu(S)—I-/ O25(By(s) — Bu(s"))

0 0 0

where O? and O are bounded continuous adapted processes and |O}] < & by Hypothesis H.
d denotes the Ité differential. We deduce by Hoelder inequality and Burkholder-Davies-Gundy
ineqality that for some & depending of p only:

t

(14) BIU(s, ) < Cllog(1 = ) [ {2 U s, 4 Cls = o
0 - u

because

(15) BIB(s) — Bi(s)] = t0(1)}s —

when s — &'
Let us recall that for arbitrary small ¢

¢ du .
(16) A(l—mu%u—uw~§0“‘“>

We deduce by Gronwall lemma that:

(17) ElU(s, )] < Cls — 5'|p/2 exp[K (1 —1)7]

We deduce by Kolmogorov lemma ([44]) that s — x4(s, x,x) is 1/2— ¢’ Hoelder with Hoelder norm
in L? bounded by exp[K (1 —t)~].

We consider exp[C(1 — t)™!] sites s; on the circle. It is classical that P{|z(s;,z,z) — x| > O] is
bounded by exp[—D(1 — ¢)~!] when ¢ — 0. We choose (; small with respect of D. We get:

(18)

P{sup |zi(s,z,2)—x| > C} < ZP{|:1;,5(3¢,:1;,:1;)—:1;| > CY-P{||lze(ey 2z, 2)|[1j2—0 > exp[E(1—t)7"]}

for some convenient £ > 0 and where |[[.||1/2—« denotes the Hoelder norm on the circle with
exponent 1/2 — ¢
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We deduce the estimate
(19)
P{sup |zi(s,z,2)—z| > O} <exp[Ci(1—#)"exp[—D(1—t) ] +exp[—E(1—t) ] exp[K(1—1)77]

The result because € is small and because (' is strictly smaller than D.

¢

We consider a smoth function A from R into R equal to 0 in a neighborhood of 0 and equal to 1
in a neighborhood of co. We denote

(20) Zy = h(sgp |z(s, @, 2) — x|)

From Lemma III.2, we deduce:

Lemma II1.3: 7 = fol (lz_tt)dt is almost surely finite.

Let us denote:

(21) sup |z¢(s,x,x) — x| ANC =z}

By a small modification of Lemma III. 2, we have if o < 1/2
(22) Pl > (1 1) < expl—C(1— )]

such that 7’ = fol %dt is almost surely finite.
Lemma II1.4: If 7 4+ 7' < n, there exist a constant C'(n, p) still denoted by C' such that:

(23) Blled(s,z,2) = wo(s a, o) TP < Ofls = 5[V 4 [t =112
Proof: We look at (13). We write
(24) Ou= 0wz + O, —=) = Vi + V)

We have |V!| < C(1—u)~'z,. We work in in normal system of coordinates of « for the Riemannian
structure such that when ¢ — 0 we have the asymptotic expansion ([21], [26], [25], [50])

(25) aly, x) =tV exp[—d*(x, y)/2t] Z cily, o)t

if | —y| < C. This asymptotic expansion works for the derivatives of ¢:(x,y) too, by taking
derivatives in « and y of the asymptotics expansion (This implies that ¢;(x,y) is smooth in 2 and
y). We write in normal coordinates d*(z,y) ~ |x — y|* where d*(z,y) is the Riemannian metric
on R? for the Riemannian structure g. We deduce that

1 A
(26) ‘/uz(Ut(Sv‘S/)) = _mUt(‘SvS/) + 1 _ttUt(Sv‘S/)

where

(27) A < Csup aa(s,2,2)a] A C) = C2,
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We deduce that U,(s,s’) satisfies
(28)

§U(s,8") = —

A
— tUt(s, Sl)dt—l—1 _ttUt(s, s dt+V, U (s, 8" )dt+O02 U (s, 8" )5 By(8)+075( Bi(s)—By(s'))
We put U(s,s") = (1=1)Cy(s, s"). Co(s,s’) = 0such that Cy(s, s') satisfies the differential equation:

A &
gy o S 4 VAl )t 4 02 )8B) +

We deduce by Gronwall inequality since Z 4+ 7’/ < n that

(29) 6Cy(s,s") = 8(Bi(s) — By(s"))

3
(30) |Ci(s,8")] < C! sup | 02 (s,8")0B(s) + O“

v<t

—0(Bu(s) — Bul(s))])

By Gronwall lemma and Burkholder -Davis-Gundy inequality, we deduce that

(31) 1Cu(s,8) e < C7uls = §'[V2(1— 1)
Therefore
(32) [Ui(s, ') ||lw < C7ls — 57

Moreover, we have clearly the inequality:
(33) l2e(s, 2, 2) = wo(s, @, 2) |0 < Cft = ¢''?

¢
Proof of Theorem IIL.1: If 7 4+ Z' < n, we have an Hoelder version of the random field
(t,s) = x¢(s,x,2). Since Z + 7' is almost surely finite the result arises.

%
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