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FIS2005 21 IntroductionIn string theory or in conformal �eld theory (See survey of Witten [51] or Gawedzki [18], [19],[20]),people look at a Riemannian surface � (the world-sheet) and at a Riemannian manifold M (thetarget space) and consider the set of maps x(:) from � intoM endowed with the formal probabilitymeasure:(1) d�(x(:)) = Z�1 exp[�I(x(:))]dD(x(:))where I(x(:)) is the energy of the �eld x(:), dD(x(:)) the formal Lebesgue measure on the set of�elds and Z the partition function destinated to get a probability measure.If we consider the case where M = R with the 
at Riemannian structure, we get a Gaussianmeasure, called the free �eld measure. Let G be the green kernel associated to the Laplace-Beltrami operator on �. Let S be the generic element of �. We have, in this case:(2) E[x(S)x(S 0)] = G(S; S 0)and G(S; S) =1 in two dimension. This explains that we consider only smeared �elds, and thatthe Gaussian measure of the free �eld lives on distributions in fact ([46]).There is another way to construct non-linear random �elds, parametrized by surfaces, which arecontinuous. It is the purpose of in�nite dimensional processes on in�nite dimensional manifolds,which comes from the work of Kuo ([23]), Beloposkaya-Daletskii ([8]) and Daletskii ([13]).The simplest geometry for the world sheet is the case where we consider the cylinder: this corre-sponds to di�usion processes on the loop space of the manifold.This can be seen in two ways:-)Either we consider Ornstein-Uhlenbeck process on the loop space, by using Dirichlet forms theory([6], [15], [27], [41]).-)Or we consider Brownian motion on the loop space, in the sense of Airault-Malliavin ([3],[10],[11], [36]).In these two cases, we say that we are in presence of a 1 + 1 dimensional �eld theory, 1 for thedynamical time and 1 for the dimension of the internal time of the theory.Some re�nment of 1 + 1 dimensional �eld theories were done in [12], [37] and [38], where weconsider pants. It is a �nite dimensional constrain, and traditional tools of stochastic analysis asquasi-sure analysis ([2], [48]) can be applied.Until now, in order to understand a more complicated world-sheet, we were obliged to consider a1+2 dimensional �eld theory, that is processes on the set of maps from � intoM ([28], [30], [31],[32], [33], [34], [39]) and the associated heat-kernel measure.Our goal is to understand a more complicated world-sheet, that is the sphere (We start from theconstant loop and we arrive at the constant loop) as a 1+1 dimensional stochastic �eld theory. Sowe construct a process on the loop space of Rd (endowed with a non-trivial Riemannian structure,but without cut-locus!) starting from the constant loop and submitted to coming-up at theconstant loop at time 1. It is an in�nite dimensional constrain, and we cannot apply tools ofquasi-sure analysis in order to do this work ([2], [48]).We refer to the survey of Albeverio ([4]) for the relation between stochastic analysis and mathe-matical physics as well as the 3 surveys of L�eandre about that ([27], [29], [40]).



FIS2005 32 The modelLet Xi be m+ 1 vector �elds on Rd bounded with bounded derivatives of all orders. We supposethat the quadratic form g(x)�1(3) � ! mXi=1 < Xi(x); � >2is uniformly invertible on Rd. Let wi; i = 1; ::;m a Rm-valued Brownian motion. We can considerthe Stratonovich di�erential equation issued from x:(4) dxt(x) = mXi=1 Xi(xt(x))dwit +X0(xt(x))dtThe law of xt(x) has a smooth density qt(x; y) with respect to the Lebesgue measure on Rd, strictlypositive, and which is smooth in t > 0; x; y. If we constrain the di�usion xt(x) to be x at time 1,it is the solution of the Stratonovitch di�erential equation ([9], [45]):(5) dxt(x; x) = mXi=1 Xi(xt(x; x))d ~wit +X0(xt(x; x))dtwhere(6) d ~wit = dwit+ < Xi(xt(x; x)); grad log q1�t(xt(x; x); x) > dtWe consider the Hilbert space H of free loops h in Rm endowed with the Hilbert structure:(7) ZS1 jh(s)j2ds + ZS1 jd=dsh(s)j2ds = khk2Let  is be the map h! hi(s) where hi is the coordinate of order i of h. It is a continuous linearform. Therefore there exists an element eis of H such that(8) h(s) =< h; eis >Let us consider the Brownian motion Bt(:) with values in H. t! Bt(s) are a family of Rm-valuedBrownian motion indexed by s 2 S1. Moreover,(9) E[Bit(s)Bjt (s0)] = t < eis; ejs0 >We deduce by Kolmogorov lemma ([44]), that the random �eld (t; s) ! Bt(s) is almost surelyHoelder. We consider the solution xt(s; x) of (5) where we replace dwt by dBt(s) and the associatedbridge xt(s; x; x).We suppose in the sequel that the following hypothesis is satis�ed:Hypothesis H: For all multi-index (�) of length equal to 2, we have for t � 1:(10) t(j @(�)@x(�) log qt(x; y)j+ j @(�)@y(�) log qt(x; y)j) < C <1We refer to [22] and to [42] about this hypothesis, which says more and less that the Riemannianmanifold Rd endowed with the Riemannian metric g has no cut-locus.Moreover, we can suppose that the di�usion xt(s; x) is the Brownian motion on Rd endowed withthe Riemannian stucture g(x), by choosing a suitable drift X0.



FIS2005 43 The main theoremTheorem III.1: the multiparameter process (t; s)! xt(s; x; x) has a version which is Hoelder ins and t under Hypothesis H.Lemma III.2: When t! 0(11) Pfsups jxt(s; x; x)� xj > Cg � K 0 exp[�K=t]for K > O depending only from C > 0Proof: We see that if we put(12) Ut(s; s0) = xt(s; x; x)� xt(s0; x; x)that(13) Ut(s; s0) = Z t0 O1uUu(s; s0)du+ Z t0 O2uUu(s; s0)�Bu(s) + Z t0 O3u�(Bu(s)�Bu(s0))where O2u and O3u are bounded continuous adapted processes and jO1uj � C1�u by Hypothesis H.� denotes the Itô di�erential. We deduce by Hoelder inequality and Burkholder-Davies-Gundyineqality that for some k depending of p only:(14) EjUt(s; s0)jp] � Cj log(1� t)jk Z t0 du1� u jUu(s; s0)jp + Cjs� s0jp=2because(15) E[jBt(s)�Bt(s0)j2] = tO(1)js � s0jwhen s! s0Let us recall that for arbitrary small �(16) Z t0 du(1 � u)j log(1 � u)jk0 � C(1� u)��We deduce by Gronwall lemma that:(17) E[jUt(s; s0)jp] � Cjs� s0jp=2 exp[K(1� t)��]We deduce by Kolmogorov lemma ([44]) that s! xt(s; x; x) is 1=2��0 Hoelder with Hoelder normin Lp bounded by exp[K(1� t)��].We consider exp[C1(1 � t)�1] sites si on the circle. It is classical that Pfjxt(si; x; x)� xj > C] isbounded by exp[�D(1 � t)�1] when t! 0. We choose C1 small with respect of D. We get:(18)Pfsups jxt(s; x; x)�xj > Cg �Xi Pfjxt(si; x; x)�xj > Cg+Pfkxt(:; x; x)k1=2��0 > exp[E(1�t)�1]gfor some convenient E > 0 and where k:k1=2��0 denotes the Hoelder norm on the circle withexponent 1=2 � �0.



FIS2005 5We deduce the estimate(19)Pfsups jxt(s; x; x)�xj > Cg � exp[C1(1�t)�1] exp[�D(1�t)�1]+exp[�E(1�t)�1] exp[K(1�t)��]The result because � is small and because C1 is strictly smaller than D.}We consider a smoth function h from R into R+ equal to 0 in a neighborhood of 0 and equal to 1in a neighborhood of 1. We denote(20) zt = h(sups jxt(s; x; x)� xj)From Lemma III.2, we deduce:Lemma III.3: Z = R 10 zt(1�t)dt is almost surely �nite.Let us denote:(21) sups jxt(s; x; x)� xj ^ C = z0tBy a small modi�cation of Lemma III. 2, we have if � < 1=2(22) Pfz0t > (1 � t)�g � exp[�C(1� t)��"]such that Z 0 = R 10 z0t(1�t)dt is almost surely �nite.Lemma III.4: If Z + Z 0 < n, there exist a constant C(n; p) still denoted by C such that:(23) E[jxt(s; x; x)� xt0(s0; x; x)jp]1=p � C(js� s0j1=2 + jt� t0j1=2)Proof: We look at (13). We write(24) O1u = O1uzu +O1u(1 � zu) = V 1u + V 2uWe have jV 1u j � C(1�u)�1zu. We work in in normal system of coordinates of x for the Riemannianstructure such that when t! 0 we have the asymptotic expansion ([21], [26], [25], [50])(25) qt(y; x) = t�d=2 exp[�d2(x; y)=2t]X ci(y; x)tiif jx � yj < C. This asymptotic expansion works for the derivatives of qt(x; y) too, by takingderivatives in x and y of the asymptotics expansion (This implies that ci(x; y) is smooth in x andy). We write in normal coordinates d2(x; y) � jx � yj2 where d2(x; y) is the Riemannian metricon Rd for the Riemannian structure g. We deduce that(26) V 2u (Ut(s; s0)) = � 11� tUt(s; s0) + At1 � tUt(s; s0)where(27) jAtj � C(sups jxt(s; x; x)xj ^ C) = Cz0t



FIS2005 6We deduce that Ut(s; s0) satis�es(28)�Ut(s; s0) = � 11� tUt(s; s0)dt+ At1� tUt(s; s0)dt+V 1t Ut(s; s0)dt+O2tUt(s; s0)�Bt(s)+O3t �(Bt(s)�Bt(s0))We put Ut(s; s0) = (1�t)Ct(s; s0). C0(s; s0) = 0 such that Ct(s; s0) satis�es the di�erential equation:(29) �Ct(s; s0) = At(1 � t)Ct(s; s0)dt+ V 1t Ct(s; s0)dt+O2tCt(s; s0)�Bt(s) + O3t(1 � t)�(Bt(s)�Bt(s0))We deduce by Gronwall inequality since Z + Z 0 � n that(30) jCt(s; s0)j � C 0n supv�t (jZ v0 O2uCu(s; s0)�Bt(s) + O3u1� u�(Bu(s)�Bu(s0))j)By Gronwall lemma and Burkholder -Davis-Gundy inequality, we deduce that(31) kCt(s; s0)kLp � C"njs� s0j1=2(1� t)�1Therefore(32) kUt(s; s0)kLp � C"njs� s0j1=2Moreover, we have clearly the inequality:(33) kxt(s; x; x)� xt0(s; x; x)kLp � Cjt� t0j1=2}Proof of Theorem III.1: If Z + Z 0 < n, we have an Hoelder version of the random �eld(t; s)! xt(s; x; x). Since Z + Z 0 is almost surely �nite the result arises.}4 References[1] Airault H. Malliavin. P: Int�egration g�eom�etrique sur l'espace de Wiener. Bul. Sci. Math. 112(1988), 3-52.[2] Airault H. Malliavin P.: Quasi-sure Analysis. Publication University Paris VI. (1990).[3] Airault H. Malliavin P.: Analysis over loop groups. Publication of University Paris VI. (1991).[4] Albeverio S.: Loop groups, random gauge �elds, Chern-Simons models, strings: some recentmathematical developments. In "Espaces de lacets" R. L�eandre, S. Paycha, T. Wuerzbacher edt.Publ. Uni. Strasbourg (1996), 5-34.[5] Albeverio S.: Theory of Dirichlet forms and applications. Ecole d'�et�e de Saint-Flour XXX.Lect. Notes. Math. 1816 (2003), 1-106.[6] Albeverio S. L�eandre R. Roeckner M.: Construction of a rotational invariant di�usion on thefree loop space. C.R.A.S. Serie I. 316, (1993), 287-292.[7] Baxendale P.: Gaussian measures on Function spaces. Amer. J. Math. 98 (1976), 891-952.[8] Belopolskaya Y.L., Daletskii Y.L.: Stochastic di�erential equation and di�erential geometry.Kluwer (1990).
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