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1 Introduction

The physics of information has been the focus of intense research efforts in recent years [1-12].
Information-related concepts have been successfully applied to the study of diverse physical prob-
lems ranging from quantum mechanical aspects of the second law of thermodynamics [9] to the
evolution of inhomogeneous cosmological models [10]. Interest in the Physics of Information has
been greatly stimulated by the discovery of novel and counter-intuitive ways of processing and
transmitting information allowed by the laws of quantum mechanics [11, 12]

Some basic features of quantum physics that are relevant for the processing of information admit
of classical counterparts. Classical analogues of entanglement [13] and quantum search algorithms
[14] as well as classical dynamical settings leading to non-Boolean logics [15] have been discovered.
It has also recently been shown [16, 17] that the Liouville dynamics describing the evolution
of classical statistical ensembles exhibits a classical counterpart of the celebrated quantum non-
cloning theorem [18, 19]. Besides quantum cloning, however, there are other important examples of
information-related processes forbidden by the laws of quantum mechanics, e.g., quantum deleting
[20] and quantum disentangling [21]. The physical impossibility of those quantum operations has
profound implications for both quantum information theory and quantum physics in general, being
nowadays the focus of intensive research [22-25].

The aim of this Contribution is to propose a general formalism for the analysis of classical coun-
terparts of some of the aforementioned quantum impossible processes. We focus on classical
analogues of the non-cloning and the no-deleting theorems, which we deduce from the Liouville
dynamics that governs the evolution of statistical ensembles. We will prove that the correspond-
ing classically forbidden operations are not compatible with an important property of Liouville
dynamics: the conservation of the (Kullback-Leibler [26] and related) information distances. The
impossibility of quantum operations such as universal quantum cloning is, no doubt, one of the
most fundamental properties of quantum information. However, not all aspects of the concomi-
tant impossibility theorems are inherently quantum mechanical. Investigating classical analogues
of the alluded to theorems can help to identify their essentially quantum mechanical features, as
opposed to those aspects that may arise within purely classical probabilistic settings. In order to
make progress in this direction, it is useful to study specific probabilistic classical scenarios admit-
ting a no cloning, or a no deleting theorems. Here we consider such an scenario, based upon the
Liouville dynamics governing the evolution of statistical ensembles of classical dynamical systems.
This line of inquiry may contribute to a deeper understanding of the relationship between classical
and quantum mechanical probabilities. On the other hand, the investigation of basic properties
of the solutions of Liouville equation is of general interest, due to the mathematical and physical
importance of this equation.

2 Liouville Equation and Conserved Entropic Distances

We are going to consider general classical deterministic dynamical systems governed by equations
of motion of the form

dx

Pl v(z), with x,v € RY, (1)
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where & denotes a point in the concomitant N-dimensional phase space. Hamiltonian dynamics
constitutes a particular instance of (1). In the case of a Hamiltonian system with n degrees of
freedom we have N = 2n, © = (¢1,---,Gn,P1,---+Pn), v = O0H/Op; (i = 1,...,n), and v;, =
—0H/0q; (i=1,...,n), where the ¢; and the p; stand for generalized coordinates and momenta,
respectively. Note that Hamiltonian dynamics exhibits the important feature of being divergence-
free

V-v=0 (2)

Our present considerations are neither restricted to Hamiltonian systems nor to systems with
divergence-free flows.

The dynamics of a statistical ensemble of systems evolving according to equation (1) is described
by a time-dependent probability distribution P(x,t) whose evolution is given by the Liouville
equation,

9
5P * V- (@P)=0. (3)

The study of time dependent, information-related aspects of Liouville equation, is usually focused
on the time evolution of the entropy,

S[P] = — / P InPdex. (4)

The time derivative of S is given by the mean value of the flow’s divergence [27],

s

— v (5)

Consequently, S is constant only for divergenceless dynamical systems. However, deterministic
dynamical systems with V - v # 0 exhibit a time dependent entropy.

Let us now consider a functional depending on two time dependent solutions of Liouville equation,
Pl and PQ,

P

G[P., Py = / dz P g [52} : (6)

where g |- - -| denotes an arbitrary function (we assume that the integral in (6 converges). In turns
out that, for general deterministic dynamical systems (1), the functional (6) is preserved by the
Liouville dynamics [17],

dG
=0 (7)

Hence, depending on the explicit choice of the function g |- - -], the functional G [Py, Ps] provides a
convenient way to measure time-invariant relations (distances) between P; and P,. We stress the
fact that the conservation of G, given by equation (7), holds true for any deterministic dynamical
system, and not only for divergenceless systems (as happens with the entropy S). In this sense,
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the behaviour of G constitutes a clear difference between deterministic and stochastic dynamics. If
we add, as in the Fokker-Planck equation, a diffusion term (originated in stochastic contributions
to the dynamics) to the Liouville equation, functionals like G are no longer conserved [28].

In order to illustrate the functional (6), notice that the special case

1 1 GﬁK
Licy P P, P da Pyin -
I [P2:| P K(PuPo)= / o Ps ®)

gives the Kullback-Leibler distance and that

731 /PQ G—)O O(P., Py) /da: /—,Pl,P2 ()
732 P

corresponds to the overlap between P; and P,. This overlap is closely related to a frequently used
statistical distance between probability distributions [29] given by cos™ {O(Py, Ps)}.

In the present contribution we are going to consider the mono-parametric family of functionals
introduced by Tsallis [30],

_ [Pl/P2]q '
N (10)

parameterized by the real parameter 0 < ¢ < 1. For this range of ¢g-values we have

I,[P1,Py] > 0. (11)

Instead of working directly with I, it is going to prove convenient to use the functional

Dq [Pl,PQ] = 1+ (q— 1) Iq [Pl,PQ]
= / dx P! P, (12)

It is plain from Holder’s inequality that

Dq [P17P2] S 17 (13)

with the equality sign holding only if P; = P, (remember that both probability distributions P;
and P, are normalized to 1). The functionals I, [Py, P2] and D, [Py, P,] are also connected with
the Kullback distance and the overlap,

lim I, [P1, o] = K(Py,P), (14)

and

Dy3 [P1,P2] = O(P1, Pa). (15)

As a matter of fact, the functional I, was originally advanced as a non-extensive generalization
of the standard Kullback-Leibler distance [30]. Classical analogs of the no-cloning and related
theorems were discussed by us in [16, 17] on the basis of the Kullback and the overlap measures.
Here we are going to show that both approaches can be unified an generalized in terms of the
measures I, and D,.
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Suppose we have a composite system consisting of two statistically independent subsystems a and
b described by a factorized joint probability distribution P = P@P®). It follows from (10) that
the I, distance between two such distributions verifies

LPuP = 1, [P0 P9 + 1, [P0, P0] + - 01 [PO.R0] 1 [PR.PP], o)
while the D, functional complies with

D, [P Ps) = D, [P, P| D, [PV, PP]. (17)

That is, for factorized probability distributions the total distance D, is equal to the product of
the individual D, distances between the two subsystems. In the limit case ¢ — 1, equation (16)
reduces to the additivity property of the Kullback distance,

K(P,P) = K (P, P) + K (PO, PP). (18)
On the other hand, the factorizability of the overlap for factorized probability distributions,
O(P1,P,) = 0P, P{) O (P, 7)), (19)

constitutes a particular instance of (17) for ¢ = 1/2.

3 Classical No-Cloning and No-Deleting Theorems

We are now going to apply the distance (12) to formulate a classical analogue of the quantum
no-cloning theorem. The basis of our argument is to study the D, distance between two solutions
j = 1,2 of the Liouville equation of a tri-partite system composed of a machine (m), a source
system (s), and a target system (¢). The concomitant initial states (probability distributions)
read

P; =P (z) P} (=) P (29) (20)

The corresponding final distributions are denoted by Q;. Creating an exact copy of the source
into the target implies that, for instance, the marginal distributions (of the final states) become

[ a1, = PP () P a1, )

Due to (17) and assuming that Ps‘{;?t and Pégnk are normalized, the D, distance between the
initial states (20) results in

Dy (P, P2) = D, (P, PY) (22)

On the other hand, using the inequality of Holder, we find that the distance between the final
states verify,

D@1, Q)] = / dz*)dz dz™ Q1 9,1
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q 1-q
< /dw(s)dw(t) {/dw(m) Ql] [/dw(m) Qz]

@ / az® [P (=0)]" [P ()] e

< Jaa0 [P0 @] [P )]
(22)

=" (Dy[P1,P2])” < Dy[P1, Py (23)

1f P+ P and D, (Pfs),Pés)) > 0, the inequalities in (23) are strict inequalities, and the
cloning process is incompatible with the conservation of the D, distance under Liouville dynamics.
Consequently, the conservation of D, implies that it is not possible to implement a universal
cloning process on the basis of Liouville dynamics. The above argument does not hold when

D, (’Pfs),’PQ(S)) = 0. In other words, the cloning of states with vanishing D, distance (that is,
non-overlapping states) is not excluded.

A similar line of reasoning can be followed using the Kullback distance [17]. It follows from (18)
and (21) that the distance between the final states Q; complies with the inequality

K(Q1,Q,) > QK(PF’,P;S’) — 2K (P1, Ps). (24)

If K (Pfs), 732(5)) #0, this inequality is clearly inconsistent with the conservation of the Kullback

measure — see [16] for more details. The argument based on the D, measure has the advantage,
over the argument based on K, that D, is still well defined when either of the distributions to be
compared (or, even, both of them simultaneously) vanish in some regions of phase space. Summing
up, (23) and (24) are both incompatible with the conservation of (12) and (8), respectively,
provided that the dynamical evolution of the relevant probability distributions is given by the
Liouville equation (3).

Some remarks are here in order concerning our particular choices for the forms of the initial and
the final states of the cloning process. We have assumed initial factorized states (20). It is a
natural assumption that initially the source system, whose state is to be copied into the target
system, is statistically independent of (i.e., uncorrelated to) the target and the copy machine. In
a universal copy machine, the initial states of the target and copy machine have to be independent
of the initial state (to be copied) of the source system. On the other hand, it would be possible
to assume an initial correlation between the initial states of the copy machine and the target
system. But this correlated, joint state of the copy machine-target system has to be independent
of the initial state of the source (and be the same for all possible initial states of the source).
Assuming such an initially correlated state for the copy machine-target system does not affect
our present arguments, since the initial distance D, between two initial states of the complete,
tri-partite system (i.e., copy machine-source-target system) is still given by equation (22). As for
the final distribution of the tripartite system, we are not assuming that the associated (total) joint
distribution is fully factorizable. The distribution corresponding to the copy machine may end
up correlated with the distribution associated with the bipartite source-target system. However,
a successful cloning process must be such that the marginal distribution associated with this
bipartite system is factorizable (see eq. (21)). When cloning the original ensemble distribution
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associated with the source system, we want to end up with two statistically independent systems
(i.e., source and target) described by the same probability distribution. The aim of the cloning
process is to have access to this two copies, in order to be able to get more information about the
original distribution than the one we can get from just one copy. What we have shown is that such
a cloning process is not compatible with the Liouvillian dynamics associated with deterministic
dynamical systems.

An alternative approach to the cloning process is to consider initial states of the source system
belonging to a family of probability distributions functions P (x; A), characterized by a single
parameter A [17]. The distance (6) between two close distributions belonging to this family is
given by [28]

G[P(z; \) , P(z; A+¢)] = Ce’ 1 [P(z; M) + O (€°), (25)

where C' is a constant depending on the form of the function g(---). The form I[---] is Fisher’s
information measure, that reads

I[P (@:0)] = /% (g—f)Q da. (26)

Fisher’s information is a non-negative quantity that plays a key role in statistical estimation theory.
Indeed, if one tries to infer the parameter A from one sample « chosen from the distribution P,
then estimation theory asserts that the mean squared error E? for the (unbiased) estimation of A
obeys the Cramer-Rao bound [4]

E* > 1/T[P (x5 )], (27)

in which equality is achieved for the “best” possible or efficient estimator. Coming back to the
cloning problem, we assume that the initial states of the composite system involved in the process
obey the form

Pr = P (&) PV (21 1) Pha (). (28)
A successful cloning operation should yield final states
9, = p™ (w(m); A) P (CU(S); A) PL) (a:(t); A). (29)

Because Fisher’s information is preserved under Liouville evolution, we have [17]

I[P W] =20 [PYN] +1[P™ ()], (30)

which is clearly impossible provided [ [P(s)(/\)];éo. Interestingly, this result can be re-interpreted
in terms of statistical estimation theory: we compare the Fisher measures associated with the
initial state (28) and the final state (29), respectively, and obtain

1[Q] > 2I[Py]; (31)

if the transformation from (28) to (29) were possible, then we would be able to use the final
state Q) to estimate the parameter A\ with an optimum mean squared error (assuming an efficient

estimator)
1 1

P + I[PV = I[Py

E*[Q)] = (32)
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This equation contradicts the Cramer-Rao inequality associated with the initial states Py, because
(27) provides a bound for the mean squared error associated with every (unbiased) estimation
procedure. Note that the conservation of Fisher’s information implies that the “distinguishability”
of phase space ensembles does not change under Liouvillian evolution. On the contrary, final states
generated by a universal cloning machine would be more “distinguishable” than the concomitant
initial states.

The so-called non-deleting theorem also admits of a classical counterpart. In this case we assume
that the initial states of both the source and the target systems are described by the same prob-
ability distribution. Hence, the corresponding initial joint distribution of the tri-partite system
reads

P; = Piw (&™) P () P (2). (33)
The aim of the process is to delete information of the target system against that of the source
system, bringing the probability distribution of the former to a blank state so that final joint
distribution becomes

Qj = 'Pj(m) ((E(m)) Pj(s) (m(s)) Pblank (m(t)) ' (34)

Assuming D, (Pfs), 7?2(3)> # 0, the conservation of the D, measure yields

D, (P, P{") = p, (P{™, ). (35)

implying that the information deleted from the target system is entirely transferred into the final
state of the deleting machine. Similarly, the conservation of the Kullback distance leads to

K(PO,PY) = k(PP . (36)

Again, all the information distance between the to be deleted states is transfered into the informa-
tion distance between the final states of the deleting machine. In this sense, information distance
can not be deleted. If the final state of the target system is given by a standard “blank” state,
the information that was lost goes into the distribution associated with the copy machine. This
is the essence of the classical (and also the quantum; see [20]) no-deleting theorem.

It is of interest to extend the present discussion to the case in which the initial state of the
source-target system cannot be factorized. We consider an initial state

Pj = Pstart (w(m)) P](s,t) (w(S)’ w(t))
Pstart (:c(m)) "P](S) (a:(s)) h (:c(s), :c(t)) , (37)
where 73 ( () ) and h ( (t)) are symmetrical functions of their respective arguments

PJ( *) (cc(s )=/ P 5t) (w(s) x®) da: is the marginal probability distribution for (*) and h (z(*), z®)
denotes the condltlonal probability distribution of &) for a given value of () (irrespective j).
Given these specific assumptions, the transformation from the initial state (37) into a final state
Pﬁnal ( )) 73;5) (a:(s)) Pholank (a:(t)) is not in conflict with the conservation of the Kullback distance.
This result is consistent with Landauer’s assertion that, in classical systems, it is possible to erase
a bit against its copy [31, 32] (see [20] for a detailed discussion of this issue in connection with
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the quantum no deleting theorem). A physical scenario corresponding to the erasure of one bit
against its copy can be represented by an initial ensemble of bi-partite source-target systems, such
that in each one the source and the target are in the same state (representing a bit and its copy).
This ensemble is described by a distribution of the form (37) with A (2, 2®) = ¢ () — ).
To briefly discuss the deleting process in terms of Fisher’s measure, we consider initial states
PA:PS(QBt (2™)PE) (2); X) P (2); X) being defined in terms of the mono parametric family
of distributions P (:c(s); )\). A universal deleting process would lead to final states of the form
Q,=P(m) (:c(m);)\) P (a:(s);)\) Priank (a:(t)). The conservation of Fisher’s information, however,
implies I [P®)(X)]=I[P™())]. That is, the Fisher information associated with the initial states
of the target systems is entirely transferred to the final states of the machine. One may argue
that the “distinguishability” of the initial target states (which is lost during the deleting process)
is completely transformed into an equal amount of “distinguishability” of the final state of the
machine.

As indicated above, even if Liouville dynamics forbids universal cloning or deleting of ensemble
distributions, the cloning or deleting of some particular distributions are not necessarily forbidden.
For instance, if the states to be cloned or deleted are non-overlapping, the Kullback distance is not
defined and our present arguments do not hold. Further, in this case the overlap distance between
two initial states of the cloning process is equal to the distance between the corresponding final
states: both distances vanish. Hence, the conservation of distance is not violated. Similarly, the
overlap distances between initial states and between final states of a successful deleting process
involving two non-overlapping distributions also vanish. Consequently, the distance can be pre-
served without transferring any information into the final states of the deleting machine. Entirely
known classical states described by d-distributions are special instances of this “non-overlapping”
situation.

From the above considerations we can see that the classical and the quantum no-cloning theorems
share an important common feature. In the classical case overlapping probability distributions can
not be cloned. In the quantum case, non orthogonal pure states can not be cloned. What classical
overlapping probability distributions have in common with non-orthogonal quantum states is that
they can not be distinguished with certainty. If we are given one sample zy taken from one of
two overlapping distributions p;(z) and po(z) we can not tell with certainty which one of the
probability distributions p; o was used to generate xy. Similarly, if we are given one realization
of a quantum system prepared in one of two non-orthogonal states |¢1), |@2), there is no way to
determine with certainty which of these two states the system was prepared in. Summing up. we
can say that both classically and quantum mechanically, non-distinguishable states can not be
cloned.

4 Conclusion

Information distances between time dependent solutions of the Liouville equation constitute in-
variants of the concomitant dynamics. The conservation of these quantities imposes rather strong
constraints on possible universal operations in classical ensemble dynamics. These constraints
allow for the identification of classical analogues of information-related, quantum mechanical im-
possible operations such as universal quantum cloning and universal quantum deleting. The Fisher
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information measure provides an interesting interpretation of these classically forbidden operations
in terms of statistical inference theory. The physical impossibility of universal cloning or deleting
is a basic feature of classical probabilistic settings arising from an incomplete knowledge of the
system’s state. However, complete knowledge of classical states is possible, at least in principle,
and cloning and deleting are not forbidden in such cases (they are possible even in the more gen-
eral case of non-overlapping probability distributions). In this regard, the quantum mechanical
situation is more strict since universal cloning or deleting are impossible even within the set of
completely determined states, that is, for pure states [18, 19, 20]. The present formalism may
be applied to investigate classical counterparts of other quantum impossible processes. Possible
links between our results and the classical analogue of entanglement analyzed in [13] also deserve
further investigation. As a final remarck we want to stress that the existence of classical analogs
of the quantum no cloning and related theorems does not imply that these quantum impossibility
theorems can be completely reduced or understood in terms of classical concepts.

Acknowledgments
We thank the University of Pretoria for financial support. A.D. is grateful for the hospitality of
the Physics Department of the University of Pretoria.

References

[1] W.H. Zurek (ed.), Complexity, Entropy, and the Physics of Information, (Addison- Wesley,
Redwood City, California, 1990).

[2] C. Beck and F. Schlogl, Thermodynamics of Chaotic Systems, (Cambridge University Press,
Cambridge, 1993).

[3] J.D. Barrow and F.J. Tipler, The Antropic Cosmological Principle, (Oxford University Press,
Oxrord, 1996).

[4] B.R. Frieden, Physics from Fisher Information, (Cambridge University Press, Cambridge,
1998).

[6] B.R. Frieden, Science from Fisher Information, (Cambridge University Press, Cambridge,
2004).

[6] B. Piechocinska, Information Erasure, Phys. Rev. A 61, 062314 (2000).

[7] P.T. Landsberg, Seeking Ultimates, (Institute of Physics Publishing, Bristol and Philadelphia,
2001).

[8] H.C. von Baeyer, Information: The New Language of Science, (Weidenfeld and Nicolson,
London, 2003).

[9] J. Gemmer, A. Otte, and G. Mahler, Quantum Approach to a Derivation of the Second Law
of Thermodynamics, Phys. Rev. Lett. 86, 1927-1930 (2001).

[10] A. Hosoya, T. Buchert, and M. Morita, Information Entropy in Cosmology, Phys. Rev. Lett.
92, 141302 (2004).



FIS2005 11

[11] M. Nielsen and I. Chuang, Quantum Computation and Information, (Cambridge University
Press, Cambridge, 2000).

[12] H.S. Leff and A.F. Rex (eds.), Mazwell’s Demons 2: Entropy, Classical and Quantum Infor-
mation, Computing, (Institute of Physics Publishing, Bristol and Philadelphia, 2003).

[13] D. Collins and S. Popescu, Classical Analog of Entanglement, Phys. Rev. A 65, 032321 (2002).

[14] L.K. Grover and A.M. Sengupta, Classical Analog of Quantum Search, Phys. Rev. A 65,
032319 (2002).

[15] M.D. Westmoreland and B.W. Schumacher, Non-Boolean Derived Logics for Classical Sys-
tems, Phys. Rev. A 48, 977-985 (1993).

[16] A. Daffertshofer, A. R. Plastino, and A. Plastino, Classical No-Cloning Theorem, Phys. Rev.
Lett. 88, 210601 (2002).

[17] A.R. Plastino and A. Daffertshfer, Liouville Dynamics and the Conservation of Classical
Information Phys. Rev. Lett. 93, 138701 (2004).

[18] W.K. Wootters and W. H. Zurek, A Single Quantum Cannot Be Cloned Nature 299, 802-803
(1982).

[19] D. Dieks, Communication by EPR Devices, Phys. Lett. A 92, 271-272 (1982).

[20] A.K. Pati and S.L. Braunstein, Impossibility of Deleting an Unknown Quantum State Nature
404, 164-165 (2000).

[21] T. Mor, Phys. Rev. Lett., Disentangling Quantum States while Preserving All Local Prperties,
83, 1451-1454 (1999).

[22] V. Buzek and M. Hillery, Quantum Copying: Beyond the No-Cloning Theorem Phys. Rev. A
54, 1844-1852 (1996).

[23] N. Gisin and S. Massar, Optimal Quantum Cloning Machines, Phys. Rev. Lett. 79, 2153-2156
(1997).

[24] N. Gisin, Quantum Cloning Without Signaling, Phys. Lett. A 242, 1-3 (1998).

[25] A.K. Pati, General Impossible Operations in Quantum Information, Phys. Rev. A 66, 062319
(2002).

[26] T.M. Cover and J.A. Thomas, FElements of Information Theory, (Wiley-Interscience, New
York, 1991).

[27] L. Andrey, The Rate of Entropy Change in Non-Hamiltonian Systems, Phys. Lett. A 111,
45-46 (1985).

[28] L. Borland, A.R. Plastino, and C. Tsallis, Information Gain Within NonExtensive Thermo-
statistics, J. Math. Phys.39, 6490-6501 (1998).

[29] W.K. Wootters, Statistical Distances and Hilbert Space, Phys. Rev. D 23, 357-362 (1981).



FIS2005 12
[30] C. Tsallis, Generalized Entropy-Based Criterion for Consistent Testing, Phys. Rev. E 58,
1442-1445 (1998).

[31] R. Landauer, Irreversibility and Heat Generation in the Computing Process, IBM J. Res. Dev.
5, 183-191 (1961).

[32] C.H. Bennett, Notes on Landauer’s Principle, Reversible Computation, and Mazwell’s De-
mon, Studies in history and Philosofy of Modern Physics, 34 501-510 (2003).



