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1 Summary

A medium for the storage and transmission of information is an essential prerequisite for organi-
zation. Although the existence of such a medium does not guarantee that meaningful information
and order are present, the absence of such a medium would certainly preclude any possibility of
them. The medium represents a necessary (but not sufficient) capacity for order. Collapse of the
capacity by the kind of senescence and demise described below is one of the inherent limitations
on the lifetime of an information system. Our primary concern is how such a capacity can evolve
in the first place, and, once established, how will it last?

Information tokens are modelled here as the outcomes of an “experiment”. For example, the
numbers from 1 to 6 might arise from rolling a die. The significance of an information token
depends on its probability as an outcome of such an experiment. The minimum storage required
to record the outcomes of the experiment is measured, in terms of the probabilities of its outcomes,
by the entropy of the experiment. A brief, direct approach to the concepts of entropy, probability
and randomness, as they pertain to the analysis of complex systems, is given in Sections 2 and 3
(compare [8]).

Systems complex enough to embody self-organization require energy for their maintenance, and
are thus regarded as dynamical systems. Section 4 outlines the mathematical formulation of a
dynamical system, by a probability-preserving operator T : X → X on a phase space X. The map
T represents the passage of a discrete time unit, and the elements of the phase space represent
the possible histories of an individual particle. As time passes, entropy increases (14), albeit at a
decreasing rate (15). The capacity for organization arises when a system’s microstates are grouped
into macrostates. The micro- and macro-entropies are plotted against time in the Two Curves
Graph. Both curves are non-decreasing (14) and concave (15). However, the macro-entropy is
never greater than the micro-entropy (16). The difference between the two represents the capacity
for information storage and organization.

Section 7 presents a basic class of models exhibiting the Two Curves Graph, namely macrostates
grouping microstates that are the states of a finite, stationary Markov chain. One of the simplest
possible models has four states, visited cyclically in sequence as time passes (18). There are two
non-trivial groupings of microstates into macrostates, grouping either adjacent or opposite pairs
of microstates on the cycle into macrostates. In the opposite grouping, the storage capacity grows
to 1 bit after 1 time unit, and is then maintained. In the adjacent grouping, the capacity again
grows to 1 bit after 1 time unit, but then drops back to zero after the next time unit. The
distinction between these two behaviors is the simplest illustration of the Grouping Principle
that the capacity for information storage and organization depends critically on the grouping of
microstates into macrostates. Subsequent sections illustrate some typical behaviors exhibited by
this capacity: stasis as in the opposite grouping and Section 11, senescence as in Section 12,
demise as in the adjacent grouping and Section 13, and growth as in Section 14. The picture of
stasis provided by Section 11 stands in sharp contrast to Newton’s Law, “Every body continues
in its state of rest or uniform motion unless acted on by an external force.” Newtonian stasis
is passive — the absence of action. The stasis represented by Section 11 is rather an actively
maintained homeostasis in the biological sense.

The concluding section offers some brief observations on biological interpretation and application
of the models that have been presented, including mechanisms for senescence and neoplasia.
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2 Entropy, probability, and randomness

Consider a scientific experiment which may have any one of N possible outcomes. For example,
N = 6 for the experiment of rolling a die. By convention of modern science, a “scientific”
experiment has to be repeatable and reproducible. The experiment is said to be random if no
statistical test available to the experimenter can detect any pattern in repeated outcomes. It is
very important to note that this definition is contingent on the power of the apparatus available.
Rolling a die under casino conditions should be random. On the other hand, if equipment such as
a high speed precision camera was available, it would be possible to predict the outcome of each
roll from the initial motion of the die, and the experiment would no longer be random. A subtler
distinction arises when rolling a very slightly loaded die under casino conditions. If the number of
rolls required for even a sophisticated statistical test to reveal the bias is in excess of the number
of rolls sufficient to wear the spots off the die, then the experiment would still qualify as random.
The basic concepts of entropy and probability follow from the concept of randomness. For a
random experiment with N outcomes, the (natural) entropy is

H = log N (1)

(using natural logarithms) or the (binary) entropy

H = log2 N bits (2)

using logarithms to base 2 and bits as units. (Occasionally logarithms to base 10 are used, with
Hartleys as units.) The probability π(x) of any one particular outcome x of the random experiment
is

π(x) = N−1. (3)

The probability π(x) and natural entropy H are connected by the mutually inverse relationships

(a) H = − log π(x) ; (b) π(x) = exp(−H) .

Using binary entropy H, these take the form

(a) H = − log2 π(x) ; (b) π(x) = 2−H . (4)

The probability π(x) represents a fair stake to buy into the following game: win one unit if the
outcome of the experiment is x. Randomness of the experiment means that there are no winning
strategies in this game. The entropies (1) and (2) measure one’s ignorance about the outcome of
the experiment. If you let someone else run the experiment, and instead question them afterwards
as to what the outcome was, then the minimum number of yes/no questions required to elicit the
outcome would be given by (2).
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3 Non-random experiments

The formulae of Section 2 are too narrow to be of general use, where one wishes to deal with
non-random experiments. These may be modelled using an underlying random experiment whose
set of outcomes, called the phase space, has N elements. The phase space is completely partitioned
into a set ξ = {C1, . . . , Cr} of mutually exclusive subsets called states. The partition ξ represents
the non-random experiment (also denoted ξ) of sampling an outcome x from the phase space and
locating the state Ci in which it lies. If the state Ci contains ni outcomes of the underlying random
experiment, each of whose outcomes has probability N−1 according to (3), then the probability
p(Ci) of the state Ci is given as

p(Ci) = niN
−1.

The state Ci may be regarded as a random experiment in its own right: select an outcome from
Ci. The entropy of this random experiment, according to (1), is

H(Ci) = log ni.

If you perform experiment ξ and obtain the result Ci, then your ignorance will have been reduced
by log N − log ni = − log p(Ci). This happens with probability p(Ci). Thus the average loss of
ignorance or gain in knowledge obtained on performing experiment ξ is its entropy

H(ξ) = −
r∑

i=1

p(Ci) log p(Ci). (5)

(Of course, one may take logarithms to base 2 and quote H(ξ) in bits.) The mathematical discipline
of measure theory extends the definitions of probability and entropy to appropriate infinite phase
spaces, where “counting outcomes” may be replaced by “measuring volumes”. The entropy H(ξ)
satisfies the inequality

0 ≤ H(ξ) ≤ log r. (6)

Equality obtains on the left in (6) if and only if p(Ci) = 1 for some i: if you already know
in advance that ξ will come up with state Ci, then you gain no knowledge by performing the
experiment. Equality obtains on the right in (6) if and only if p(Ci) = r−1 for each i: the
most informative experiments are those designed so that all their different outcomes are equally
likely. In particular, randomness of an experiment is characterized by its entropy. Moreover,
the three concepts of entropy, probability, and randomness turn out to be equivalent. Each
leads to the other two. In complexity theory, it is an entropy measure, namely the self-delimiting
algorithmic complexity, which is usually taken as basic. Probability is then obtained via (4) [10].
The complexity class of the algorithms invoked corresponds to the power of the apparatus used
in the statistical tests for randomness discussed in Section 2.
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4 Conditional entropy and dynamical sytems

Let X be a phase space. Two experiment ξ = {C1, . . . , Cr} and η = {D1, . . . , Ds} on X have a
common refinement

ξ ∨ η = {Ci ∩Dj|1 ≤ i ≤ r, 1 ≤ j ≤ s}.
The conditional probability of Ci given Dj is defined to be

p(Ci|Dj) = p(Ci ∩Dj)/p(Dj) (7)

for p(Dj) 6= 0 and 0 otherwise. If the experiment η has already yielded state Dj, then (7) represents
the probability that ξ will yield state Ci. The conditional entropy of ξ given η is defined as

H(ξ|η) = −
s∑

j=1

p(Dj)
r∑

i=1

p(Ci|Dj) log p(Ci|Dj). (8)

It satisfies the equality
H(ξ|η) = H(ξ ∨ η)−H(η), (9)

and thus represents the additional information gained as a result of experiment ξ if the result
of experiment η is already known. Given a third experiment ζ = {E1, . . . , Et}, the fundamental
inequality

H(ξ|η ∨ ζ) ≤ H(ξ|η) (10)

holds. It may be interpreted as saying: the more you know in advance, the less new information
any subsequent experiment can bring you. It is sometimes useful to be able to consider the entropy
H(ξ) of (5) as a conditional entropy H(ξ|η) as in (8). This may be achieved by taking η to be the
singleton partition {X}. The sum (8) then reduces to (5), so that

H(ξ|{X}) = H(ξ).

A dynamical system is an invertible, probability-preserving map T : X → X of a phase space X.
Intuitively, the space X may be viewed as the set of all possible histories of particles. The map T
represents the passage of (discrete) time: if an element x of X describes the history of a certain
particle, then the element xT of X describes the history of a second particle which is always one
time unit ahead of the first. Thus if the membership x ∈ Ci means that the first particle is in state
Ci at time 0, the equivalent memberships xT ∈ Ci or x ∈ CiT

−1 mean that the second particle is
in state Ci at time 0, or in other words that the first particle is in state Ci at time 1. The history

ξk = ξ ∨ ξT−1 ∨ · · · ∨ ξT 1−k (11)

represents performing the experiment ξ over a period of k−1 time units and recording the evolution
of the system. Preservation of probability by T means that, for any state Ci, one has

p(Ci) = p(CiT ). (12)

This is the expression of Liouville’s Theorem: in classical physics it corresponds to a Hamiltonian
system, and in quantum physics to a unitary evolution operator. As a consequence of (12), one
obtains the preservation

H(ξ) = H(ξT ) (13)

of the entropy of an experiment ξ.
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5 The Two Curves Graph

A hierarchical dynamical system is a dynamical system T : X → X with two experiments ξ and
η such that ξ is a refinement of η, i.e. ξ ∨ η = ξ. The states of ξ are known as microstates and
the states of η are known as macrostates. Thus each macrostate is a grouping of microstates. A
history ξk as in (11) is called a microhistory. It is a refinement of the corresponding macrohistory
ηk. The non-negative real-valued functions H(ξk) and H(ηk) of the discrete time parameter k
are respectively described as the micro-entropy and the macro-entropy. The major characteristic
of hierarchical dynamical systems is the Two Curves Graph, on which the micro- and macro-
entropies are plotted together against time. Several examples are displayed in Sections 9 and
11–14. The key features of the Two Curves Graph are as follows:

1. Both entropy curves should be non-decreasing;

2. Both curves should be concave;

3. The difference between the micro- and macro-entropy should always be non-negative.

These features and their interpretation are discussed in detail in References [1]–[6]. Briefly sum-
marizing that discussion, one may characterize the monotonicity (1) of the entropy curves as an
expression of the Second Law of Thermodynamics. The concavity (2) is interpreted as the effect of
historical constraints retarding the rate of entropy increase (systems with memory are less random
or more predictable than memoryless systems, since potential new states inconsistent with the his-
tory are inaccessible). The non-negative difference (3) between the micro- and macro-entropies is
interpreted as a measure of the capacity for organization or information storage within the
hierarchical dynamical system. Brooks and Wiley wrote that

Information is defined . . . as the difference between the maximum possible entropy and
the entropy of the observed state of a system

[1]. As discussed at the beginning, it is more precise in this context to refer to the information
capacity, necessary rather than sufficient for meaningful information.
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6 Hierarchical dynamical systems

All the features of the Two Curves Graph are demonstrated mathematically within the hierarchical
dynamical system model.

1. Using (9) and the basic inequality (10), one has

H(ξk+1)−H(ξk+1) = H(ξk+1|ξk+1) = H(ξk+1|ξk ∨ ξT−k) ≤ H(ξk+1|ξk) = H(ξk+1)−H(ξk) .

Subtracting H(ξk+1) from each side and multiplying by −1 gives the inequality

H(ξk) ≤ H(ξk+1) (14)

showing that the micro-entropy is non-decreasing. A similar calculation shows that the
macro-entropy is non-decreasing.

2. Using (9), (10) and (13), one has

H(ξk+1)−H(ξk) = H(ξT−k|ξk) = H(ξT−k|ξ ∨ ξk−1T )

≤ H(ξT−k|ξk−1T ) = H(ξk−1T ∨ ξT−k)−H(ξk−1T )

= H(ξk−1 ∨ ξT 1−k)−H(ξk−1) = H(ξk)−H(ξk−1) ,

i.e. the inequality
H(ξk+1)−H(ξk) ≤ H(ξk)−H(ξk−1) (15)

showing that the micro-entropy is a concave function of time. A similar calculation
shows that the macro-entropy is concave.

3. Using (9) and the non-negativity of conditional entropies that is immediate from their defi-
nition (8), one has

H(ξk) = H(ξk ∨ ηk) = H(ηk) + H(ξk|ηk) ≥ H(ηk) ,

so that
H(ηk) ≤ H(ξk). (16)

The non-negative difference H(ξk)−H(ηk) measures the capacity for organization.
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7 Markov chains

Some of the simplest hierarchical dynamical systems illustrating the Two Curves Graph as pre-
sented above come from finite stationary Markov chains. The microstates C1, . . . , Cr are the states
of the chain. Stationarity corresponds to equation (12). The microhistory

ξ2 = ξ ∨ ξT−1 = {Ci ∩ CjT
−1|1 ≤ i, j ≤ r}

determines the transition matrix as follows. The (i, j)-th coefficient of the transition matrix, giving
the probability of passing to state Cj in one time unit conditional on starting from state Ci, is
specified according to (7) as

p(CjT
−1|Ci) = p(Ci ∩ CjT

−1)
/ r∑

k=1

p(Ci ∩ CkT
−1) .

Conversely, if the transition matrix is the stochastic matrix

Π = (πij)r×r ,

so that
r∑

j=1

πij = 1

for 1 ≤ i ≤ r, and if there is a non-negative eigenvector

π = [π1π2 . . . πr] (17)

of Π such that
πΠ = π ,

then the probabilities of the microhistories are determined. Namely

p(Ci) = πi ,

while
p(Ci1 ∨ Ci2T

−1 ∨ · · · ∨ CikT
1−k) = πi1πi1i2 . . . πik−1ik .

The micro-entropy values may then be calculated by (5).
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8 The Grouping Principle

This principle summarizes the most important characteristic of hierarchical dynamical systems:

The self-organization inherent in a hierarchical dynamical system depends
critically on the grouping of microstates into macrostates.

The simplest illustration of the Grouping Principle is obtained from a finite stationary Markov
chain whose transition matrix is the permutation matrix

Π =




0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


 (18)

of a cycle of length 4. The eigenvector of (17) is

π =
[1

4

1

4

1

4

1

4

]
.

There will be two macrostates, denoted by 4 and ¤, each comprising two microstates. The
opposite grouping groups diametrically opposite microstates on the cycle,

¤ −−−→ 4x
y

4 ←−−− ¤

while the adjacent grouping groups adjacent microstates on the cycle:

4 −−−→ 4x
y

¤ ←−−− ¤

.
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9 Adjacent and opposite groupings

The corresponding macro- and micro-entropies for the groupings of Section 8 are plotted below.
Binary entropies have been used to give integer values. In the opposite grouping,
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the capacity for organization grows to 1 bit after 1 time unit, and is then maintained at that value.
In the adjacent grouping,
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the capacity for organization again grows to 1 bit after 1 time unit, but then dies back down to
zero after the next time unit.

In the language of the following sections, the adjacent grouping displays demise, while the oppo-
site grouping displays stasis.
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10 Model behaviors

Consider a long sequence of symbols from a finite set. Such a sequence . . .

• . . .may be the result of discretizing a time series;

• . . .may describe the behavior of an automaton running through different states, the n-th
symbol in the sequence locating the state of the automaton at time n;

• . . .may arise from symbolic dynamics in chaos [7], or by the related indexing procedure used
in the subsequent sections;

• . . .may be a DNA sequence, or a codon sequence;

• . . .may come from a finite Markov chain.

For example, the sequence
0 1 2 3 0 1 2 3 0 1 2 3 0 1 . . .

corresponds to the Markov chain (18). The symbols of the finite set determine microstates. A
microhistory as in (11) is then determined by k-tuplets of successive symbols in the sequence.
Probabilities may be simulated by relative frequencies within the sequence, and a micro-entropy
may then be calculated on the basis of these relative frequencies. (In certain cases it may be
appropriate to start with r-tuplets from the original sequence as the basic symbols or microstates.
For instance, codons may be more appropriate than base pairs from a DNA sequence. To achieve
subsequent non-trivial groupings of microstates into macrostates with a sequence of zeroes and
ones from symbolic dynamics in chaos, one will have to start at least with doublets.)

Now suppose that the symbols or microstates are grouped into macrostates. Using relative fre-
quencies to simulate probabilities again, a macro-entropy can be calculated. The micro- and
macro-entropies may then be plotted on a Two Curves Graph. Of course, in concrete cases the
relevance of the interpretation of the difference between the micro- and macro-entropies as a mea-
sure of the capacity for organization will depend on the significance of the grouping used. The
kinds of behavior to be expected are illustrated by the examples in the following sections. These
examples are the result of computer experimentation conducted by Dan Ashlock.
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11 Stasis

Stasis occurs if an approximately constant difference between the entropies is maintained for a
considerable time. The following graph displays entropy counts for microstates obtained from
cyclic repeats of the sequence 000000000012112122123333333333, while the two corresponding
macrostates are {0, 1, 3} and {2}. The homeostatic state has a storage capacity of just under 1.5
bits
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12 Senescence

Senescence occurs if the difference grows for a time, but then decays. The following graph dis-
plays entropy counts for microstates that have been obtained from cyclic repeats of the sequence
000000000001111111122223333344, while the three corresponding macrostates are {0, 2, 4}, {1}
and {3}.
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13 Demise

Demise occurs if decay brings the difference down to zero. The following graph displays entropy
counts for microstates obtained from cyclic repeats of the sequence 01001000100001234555, while
the two corresponding macrostates are {0, 1, 2, 3, 5} and {4}.
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14 Growth

Growth occurs if the difference increases for a considerable time. The following graph displays
entropy counts for microstates obtained from cyclic repeats of the sequence 01010101010202020202,
while the two corresponding macrostates are {0} and {1, 2}.
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15 Biological applications

The Grouping Principle and the features displayed by the Two Curves Graph invite speculation
on their relevance as abstract models of biological phenomena. Here are two examples.

• One might expect to observe grouping leading to senescence or demise (as displayed by
Sections 12–13) in biological clocks responsible for the aging of cells, populations, etc. In
this case the fact that the difference between the micro- and macro-entropies only measures
the capacity for organization would not matter, since the organization itself would vanish
once there was no capacity for it.

• In another direction, the Grouping Principle suggests an underlying general mechanism
for neoplasia. Beneath a fixed micro-entropy, a change in the grouping of microstates into
macrostates may change the behavior from stasis or senescence (as in Sections 11–12) to
growth (as in Section 14). The change might occur randomly, or as a result of the action
of a carcinogen. In this case the growing difference between the micro- and macro-entropies
would not be accompanied by a growth in organization beneficial to the host organism.

In the hierarchical dynamical systems discussed above, the hierarchy has just consisted of two
levels: microstates and macrostates. Biological systems are (by definition) much more complex.
It will thus become necessary to extend the models to cover such cases, including the possibility
of multiple time scales (compare [9], for example).
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