
 1
 

FIS2005                                                                                                               http://www.mdpi.org/fis2005
 

 
 

Feynman-Hibbs Quantum Effective Potentials For Molecular Dynamic 
Simulations of Liquid Neon 

 
 
 
N. Tchouar*, M. Benyettou*and S.Benyettou*

 
 
Laboratory of Modelisation of Industrial Systems, Faculty of Science, U.S.T.O, P.O.Box BP 1505 El     
Menaour, Oran-Algeria. Fax : 21341420680. e-mail: tchouar@univ-usto.dz 

 
 

 
 

Abstract:  The quantum characteristics of liquid neon at two state points have been studied by means of 
molecular dynamics simulations involving effective pair potentials arising from the path-integral 
formalism, namely the quadratic Feynman-Hibbs potentials (QFH). Results include thermodynamics, 
structural and transport properties for the QFH and the classical Lennard-Jones models. The data reported 
in the paper are also compared, where possible, with available experimental information. 
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1. Introduction 
 
Systems of spherical molecules, such as the rare gases, have been intensively studied over a broad range 
of temperatures and densities using pair interactions of Lennard-Jones (LJ) type. Extensive calculations of 
the equation of state of the LJ fluid have been performed with Monte Carlo (MC) and molecular 
dynamics (MD) numerical simulations [1]. LJ systems which present quantum effects have also been 
studied by computer simulations based on the Feynman path integral expression of the quantum canonical 
partition function. Quantum effects force liquid neon to disobey the law of corresponding states [2], 
although they are not so large as to make quantum exchange play a dramatic role in its behaviour [3]. So 
far, a number of computer simulations of this system has been performed by using different approaches : 
path-integral Monte Carlo (PIMC)[4-6], path-integral Brownian dynamics (PIBD) [7,8], semiclassical 
molecular dynamics with Gaussian wavepackets [8,9], semiclassical simulations based on the Wigner-
Kirkwood asymptotic expansion in powers of ħ [10,11] and on the Feynman-Hibbs (FH) potentials [4,8], 
and perturbation theory plus simulation [12]. 
The path-integral formalism gives rise to the quadratic Feynman-Hibbs (QFH) quantum effective 
potentials. These model can be used easily in computer simulation schemes for studying the 
thermodynamical and structural properties of LJ systems such as neon, methane, and nitrogen [13,14]. 
More recently, the QFH potential has been applied to the study of light and heavy water by Guillot and 
Guissani [15]. 
The aim of this paper is to study the reliability of QFH potentials to predict quantum features of the liquid 
phase at condition far from exchange. As a probe, liquid neon has been studied at two state points. The 
calculations cover thermodynamic, transport properties and pair distribution functions. 
 
2. Quadratic Feynman-Hibbs potential (QFH) 
 
From the path-integral quantum partition function (without exchange) for a canonical ensemble (N, V, T) 
of atoms, and after some algebra, the Feynman-Hibbs (FH) potentials can be obtained. By keeping 
quadratic fluctuations around the classical path one obtains the QFH potential [16]: 
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This potential is built so as to improve upon a classical interaction model C, normally Lennard-Jones 
(LJ), by taking into account factors related to quantum features (ħ, particle mass m = 2 µ, temperature T 
=1/kBβ). In figure 1, it is worthwhile to point out that at distances r ≤  rm (LJ-minimum) the repulsive 
character of the potentials follows the ordering LJ < QFH, the difference being more pronounced as r and 
T decrease [17]. 
As regards the thermodynamics given by the effective potentials, some discrepancies from the classical 
formulae are expected [18]. In what follows, pointed brackets stand for the canonical average. The energy 
is given by: 
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                    Figure 1: Interaction potential versus r/σ : black line and filled circle: LJ potential,  
                                     red line and triangle: QFH potential. The plot corresponds to liquid neon  
                                     at sp1 (ρ* = 0.6877, T*=0.9517). 
 
where the second term (KEC) on the right-hand side can be interpreted as a quantum correction to the 
classical kinetic energy. The pressure equation remains, however, formally unchanged, because these 
potentials do not depend upon the liquid density ρ = N/V: 
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At a fixed value for temperature, in MC simulations, the quantum effects at the second order in ћ are 
taken into account by substituting the pair potential UC(r) by the UQFH(r). MD simulations, equivalent to 
MC simulations made with a QFH potential, are easily realized by using a MD simulation method at 
constant T where the value of β appearing in the QFH potential must be chosen consistently with T. It is 
clear that the estimate of the quantum effects by the QFH potential is only valid when the quantum 
corrections to classical quantities stay small. The order of magnitude of these corrections is given by the 
value of the parameter ( 2β ħ2/ mσ2 ) where σ is a typical length associated to the size of system molecules 
or atoms, for instance, equal to the σ parameter of the LJ potential modelling the interactions. In table 1, 
the values of this parameter are given for the studied liquid neon at the considered values of T. From 
these values, the next term in the expansion of the QFH potential of the order of ( 2β ħ2/ mσ2) is expected 
to be two order of magnitude smaller than the first order term. 
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3. Computational details 
 
LJ and QFH molecular dynamics simulations have been performed with canonical ensemble, with a 
sample size Ns = 5324 particles in a cubic box surrounded by the usual toroidal boundary conditions [19]. 
The particle mass is m = 20.183 a.m.u and the basic LJ potential parameters for neon have been taken 
from the work by Morales and Singer [7], ε/kB =36.83K, σ = 2.789 A°. A spherical cut-off potential 
truncation at half the box length has been employed in all simulations. The units of energy, length , and 
mass were chosen to be, repectively, ε, σ and m. The corresponding time unit is ( 2/12 εστ m= ) . The 
thermodynamical state of the system is specified through the reduced density and temperature ρ* = ρσ 3   

and     T * = kB T/ε. Τhe simulations were carried out at constant volume and temperature using the Verlet 
algorithm and Hoover’s thermostatting method [19], with the time step ∆t = 0.005τ. The two state points 
selected have been sp1 (ρ* = 0.6877, T*=0.9517) and sp2 (ρ* = 0.6938, T*=0.9792), and their ρ, Τ data 
have been taken from the work by Singer and Smith [5]. 
By using the Einstein formula, the diffusion coefficients D is obtained from the time dependent mean-
square displacement of the molecules, expected linear at large time, 
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where ri(t) are the positions of the particles at time t. The shear viscosity coefficient is computed through 
its Green-Kubo expression 
 
 

                                               ∫ ∑∫
∞ ∞

==
0 0

)()0(
3

)( dt
N

tJJ
Tk

dtt
xyxy

B

ρηη                                (5) 

 
where the sum is to be made on the circular permutation of the indices xy. Jxy is the component of the 
microscopic stress tensor, given by 
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where vi are the particle velocities 
Typical simulations runs correspond to 10000-20000 equilibration time steps followed by 50000 to 2 
millions time steps during which the equilibrium properties and time dependent correlation functions are 
computed. 
 
 
4. Results 
 
4.1 Thermodynamic and transport quantities 
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Table 1: shows the average results for the following quantities: total energy E, pressure P, diffusion 
coefficients D and shear viscosity η. They are given in dimensionless reduced units: energies are divided 

by Nε, pressures by ε/σ3, diffusion coefficients by ε
m  / σ and shear viscosities by  σ3 /εLJτ . For ease of 

comparison, available experimental data (exp)[5,20] are quoted. 
 

State 
Point  System 

 
T*

 
ρ* Method 

 
E* 

 
P* 

 
D*

 
η*

 

 
2β ħ2/ mσ2

sp1 Ne(l) 0.9517 0.6877 DMLJ 
QFH 
Exp  

-3.41 
-3.12 

 

-0.370 
0.081 
0.093 

0.0967 
0.0989 

 
1.190 
1.430 

 

 

0.01763 

sp2 Ne(l) 0.9792 0.6938 DMLJ 
QFH 
Exp  

-3.39 
-3.10 
-3.03 

-0.309 
0.206 
0.135 

0.1071 
0.1001 

 
1.329 
1.370 

 
   0.01713 

 
 
            Table 1: Thermodynamical properties, energy, pressure, diffusion coefficients and shear                      
                           viscosities for neon. ρ*: reduced density. T*: reduced temperature. E*: total energy 
                           in reduced units.  P*: Pressure in reduced units. D* : diffusion coefficients in reduced 
                           units. η *: shear viscosity in reduced units . 2β ħ2/ mσ2: quantum correction factor in  
                           the QFH potential. LJ and QFH results: this work; thermodynamical experimental 
                           data: Singer and  Smith [5] ; and experimental shear viscosities : NIST[20]. 
 
 
 
FH quantum effects increase total energies as compared with the LJ values, the quantum potentials 
models giving less strongly bound fluids than LJ. At sp2, the agreement between the reported quantum 
total energies and the experiment is remarkably good. As regard quantum pressures, they are much better 
than the classical LJ estimates and close to the experimental values (sp1). At sp2, the FH pressures are, 
however, far from the experimental values. It turns out that the higher the density the larger are the 
pressure discrepancies.  
As regards the diffusion coefficients values, there are no important differences between QFH and LJ. It is 
worth pointing out that the η values seem to be in good agreement with the experiment leading to QFH 
potentials that is η (QFH) ≤ η (exp). In addition, at sp1, the η behaviour can be understood by involving 
the low densities. From the foregoing results it can be concluded that: (a) the FH methods afford 
thermodynamic and transport properties remarkably close to experiment; (b) QFH and LJ approaches 
yield similar results, QFH being somewhat superior. The agreement deteriorates as the density increases, 
which can eventually lead to very poor estimates for some properties (e.g., pressure at sp2). 
 
4.2 Pair distribution functions 
 
The figure 1 presented in what follows is only illustrative of the data that can be obtained through our 
calculations (r* = r/σ denote distances in reduced units).  
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                     Figure 1: Classical (LJ) and quantum (QFH) pair distribution function  
                                      for liquid neon  at sp1 (ρ* = 0.6877, T*=0.9517). 
 
On the scale of the graphs there are no significant differences between the LJ and QFH pair distribution 
functions. Figure 1 shows the relevant structural information for one representative point sp1 of liquid 
neon. The function g(r) becomes firstly zero at short distances, where repulsive forces prevent 
overlapping of molecules. When r is close to the collision diameter σ, g(r) increases rapidly to a 
maximum r = rm corresponding to the first peak. As r increases gradually, g(r) decreases showing that 
influence of the central molecule is disappearing and there is no order at long distances. 
 
5. Conclusion 
 
This paper has dealt with the Feynman-Hibbs potential (QFH) applied to the molecular dynamic 
simulation of liquid neon over a ρ, T range. The QFH thermodynamics and QFH shear viscosities 
obtained are in very good accordance with experiment. As seen in table 1, and putting aside the role 
played by a factor of corrections (2β ħ2/ mσ2), the influence of P on the behaviour of the FH models is 
much more important than that of T. The QFH version appears to be better than LJ for computing 
thermodynamic quantities, as the latter is much too repulsive at short distances.  
As regards the structural and the diffusion coefficients results, there are no important differences between 
QFH and LJ. In the light of the present results, it can be concluded that the reliability of the QFH 
potential is greater than the LJ potential. 
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