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Abstract: It is well known that when chemical reactions occur, the masses of the

participating molecules are not conserved, whereas the masses of the nuclei of the

chemical elements constituting these same molecules, are conserved. Within the con-

text of non-equilibrium thermodynamics, the first fact is expressed by the differential

balance equations, for the densities of the chemically reacting molecules, having a non

zero source term. At the same time the conserved quantities like the total mass, charge

and energy obey differential conservation equations, i.e with zero source term. In this

paper, we show that in fluids with chemical reactions occurring in them, there are ad-

ditional conserved quantities, namely densities associated to the fact that the masses

of the chemical elements are conserved. The corresponding differential conservation

equations are derived. The found out conserved densities, one for each involved chem-

ical element are shown to be linear combinations of the densities of those reacting

molecules containing the element, weighted with the number of atoms of the element

in the species. It is shown that in order to find the conserved densities, it is not nec-

essary to know explicitly the reactions taking place. Some examples are provided.
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1. Introduction

It is common knowledge that the law of conservation of mass holds when chemical reactions occur.

It is also well known that the identity of the atomic nuclei does not change, when, in the occurrence

of a chemical reaction, they pass from one molecule or ion to another. Due to this last fact, the

conservation law of mass can be expressed as algebraic conservation equations of the numbers

of nuclei of each chemical element. These equations are the basis for the algebraic balancing of

chemical reactions.

The algebraic method has been the source of an abundant literature since the pioneering work

by Porges [1] and Standen [2]; the interested reader can find more information on the method

itself and its applications in [3-8].

On the other hand the differential conservation equations of non-equilibrium thermodynamics

for elements when chemical reactions occur in a fluid, have not been shown in the literature,

neither the explicit form of the densities that obey such equations.

In the present paper we obtain these last equations and identify explicitly the additional con-

served quantities associated to the conservation of every chemical element involved in a chemical

reaction.

With respect to the total electric charge, it is also conserved when a chemical reaction takes

place, and its conservation can also be expressed as an algebraic conservation equation for the

charge in each reacting ion. But again, the associated conserved density, within the context of non-

equilibrium thermodynamics has not been shown in the literature. We also show in this paper the

associated differential conservation equation and the corresponding additional conserved density.

In a first section we review the notion of balance and conservation equations [5,9-12] in order

to establish the language and make this paper self consistent. In a second section we present

the general expression of the algebraic equations which embody the conservation of atoms and

electric charge and their corresponding matrix [3-8,13], with whose help, we obtain the sought

for conservation equations of the elements and of the electric charge and identify the associated

densities and their diffusive flows.

2. The Conservation Equation

Let us consider a fluid formed by c components in which one chemical reaction is taking place,

and let us consider in it the quantity Y expressed with the volume integral,

Y =
∫

d3rρy (1)

where ρ is the total mass density, y is Y per unit mass, and whose density is

ρy .
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The quantity Y can only change inside a given fixed volume V either because a flow of Y passes

through the surface S of the volume or because Y is produced or consumed inside the volume.

Thus the quantity Y obeys the balance equation [5,9-12],

d

dt

∫
V

d3rρy = −
∮

S
dA · Jy +

∫
V

d3rφy (2)

Where Jy is the flux or current density of Y per unit area and unit time, integrated over the area

enclosing the volume V and φy is the production of Y per unit volume and unit time inside V .

Its corresponding differential form is the following one:

∂ρy

∂t
+

∂

∂r
· Jy = φy .

Whether the quantity Y is conserved or not, determines if the source φy is to be zero or not and

viceversa. Thus, when the quantity Y is conserved, its density obeys the equation:

∂ρy

∂t
+

∂

∂r
· Jy = 0 . (3)

The continuity equation, expression of the conservation of the total mass is the particular case of

Eq.(2.3), when y = 1, with

Jy = ρv ,

namely:
∂ρ

∂t
+

∂

∂r
· (ρv) = 0 . (4)

where v is the hydrodynamic velocity.

With the help of the continuity equation, Eq. (2.3) is transformed into,

ρ
Dy

Dt
+

∂

∂r
· (Jy − ρyv) = 0 (5)

where D
Dt

is the substantial derivative defined by the operator

D

Dt
≡ ∂

∂t
+ v · ∂

∂r
.

Equation (2.5) shows the quantity ρyv known as the convective flux of Y ; in the case of the total

mass, all its flux is convective.

In the next section we obtain the explicit equations in the forms (2.3) and (2.5) due to the

fact that the atoms and the electric charge are conserved in a chemical reaction and in them we

identify which the conserved densities are.
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The chemical reaction in which |ν1| molecules of formula F1 react with |ν2| molecules of formula

F2, with ..., and with |νz| molecules of formula Fz to yield as products |νz+1| molecules of formula

Fz+1, ..., and |νc| molecules of formula Fc is written as

|ν1|F1 + |ν2|F2 + ... + |νz|Fz −→ |νz+1|Fz+1 + ... + |νc|Fc . (6)

Here the |νi| are the magnitudes of the stoichiometric coefficients νi of the species i; it is common

practice to choose the νi, for the molecules appearing in the left-hand side of Eq.(2.6), as negative

integers, while for those species in the right-hand side, as positive integers; in either case their

magnitudes are the smallest integers without a common factor.

While the total mass is conserved in a chemical reaction, the masses of the individual molecules

are not conserved; in the differential of time dt the reaction produces a change dmi in the mass of

the i-th molecule. Let us express the rate of production of mass of the molecule i-th in the fixed

volume V as the volume integral of the time rate of change of the degree of advancement per unit

volume and unit time χ [10-12]:

νiMi

∫
V

d3rχ(r, t), (7)

here Mi represents the molar mass of the i-th molecule; then, for the density of the i-th species

ρi, we have that[10]-[12]:

d

dt

∫
V

d3rρi = −
∮

S
dA · ρivi + νiMi

∫
V

d3rχ(r, t) (8)

where vi is the velocity of species i, ρi its density and where, as in Eq.(2.2), there is a source

term indicating that the density ρi can be increased or diminished because of the reaction, its sign

given by its coefficient νi.

The differential form of Eq.(2.8) is:

∂ρci

∂t
+

∂

∂r
· ρcivi = νiMiχ (9)

where for convenience we have used the mass fractions ci defined as:

ci =
ρi

ρ

which obey
c∑

i=1

ci =
c∑

i=1

ρi

ρ
= 1 .

Equations (2.9) will be the starting point to obtain, in the next section, the conservation equations

associated to the conservation of chemical elements and electric charge in chemical reactions.
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3. The Atom’s Conservation Equations

The algebraic equations that express the conservation of the total number of atoms in chemical

reactions among c molecules are the following ones [3-6,13]:

c∑
i=1

Ajiνi = 0 , j = 1, 2, ...α (1)

where the entries of the matrix Aji represent the number of atoms of type j in the molecule i,

they are therefore positive integers. Equations (3.1) embody the algebraic method of balancing

chemical equations; in them, the νi are the unknowns and when solved, they yield the balanced

chemical equation. Notice that there is no need to specify beforehand the chemical reaction

occurring among the molecules, it is enough to know their composition i.e., the entries of the

atoms-molecule matrix Aji; once equations (3.1) are solved, the signs of the νi tell us which side

of the chemical reaction the corresponding molecule belongs to, all the positive ones belong to

molecules going to one side of the equation and all the others to species going to the other side.

In the case where ions react, the conservation of the total charge can be included in the set (3.1)

by adding one more row in which the Aji representing the charge number of the corresponding

ion can be positive, negative or zero[13].

To deduce the new conservation equations, let us multiply Eq.(2.9) by

Aji

Mi

and let us sum over all the i species; the result,

∂

∂t

c∑
i=1

ρciAji

Mi

+
∂

∂r
·
(

c∑
i=1

ρci

Mi

Ajivi

)
=

c∑
i=1

Ajiνiχ ,

thanks to Eq.(3.1), becomes the conservation equation for atom j:

∂

∂t

c∑
i=1

ρciAji

Mi

+
∂

∂r
·
(

c∑
i=1

ρci

Mi

Ajivi

)
= 0 . (2)

Comparison of this conservation equation with Eq.(2.3) allows us the identification of the specific

quantity y, in the present case,

y =
c∑

i=1

ciAji

Mi

, (3)

and of its total flux (density times the velocity of species i):

Jy =
c∑

i=1

ρci

Mi

Ajivi . (4)
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In fact, the quantity
c∑

i=1

ρciAji

Mi

=
c∑

i=1

ρi

Mi

Aji

represents the molar density of atoms j. A look to the integral form of Eq.(3.2) namely,

d

dt

∫
V

d3r
c∑

i=1

ρci

Mi

Aji = −
∮

S
dA ·

c∑
i=1

ρci

Mi

Ajivi ,

inmediately reveals that inside any fixed volume V the molar density of atoms j is conserved since

it can only change because of their flux through the surface S spanning the volume V .

Upon rewriting Eq.(3.2) in the form (2.5) we obtain:

ρ
D

Dt

c∑
i=1

ciAji

Mi

+
∂

∂r
· ρ
(

c∑
i=1

ciAji

Mi

vi −
c∑

i=1

ciAji

Mi

v

)
= 0 , (5)

where we identify the convective flux as:

ρ
c∑

i=1

ciAji

Mi

v .

The quantity that is conserved when a chemical reaction takes place in the fluid is therefore:

∫
V

d3r
c∑

i=1

ρi

Mi

Aji . (6)

Thus one can plainly see that although the individual masses of the reacting species are not

conserved, Eq.(2.9), nevertheless linear combinations of them are indeed conserved, Eq.(3.2), one

for every involved element.

Taking advantage that the molar density of a species Ni is given by

Ni =
ρi

Mi

(7)

the quantity that is conserved, one for every chemical element, is none other then a linear combi-

nation of the molar densities of the species containing the element, weighted by the entries of the

atom-molecule matrix Aji: ∫
V

d3r
c∑

i=1

NiAji (8)

Coming back to Eq.(3.5), notice from the argument of the divergence operator, that the diffusive

flow of atoms of element j is given by a linear combination of the diffusive flows of the molecules
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Ji containing the element, weighted by the entries of the matrix Aij/Mi, in fact, Eq.(3.5) can be

written as:

ρ
D

Dt

c∑
i=1

ciAji

Mi

+
∂

∂r
·

c∑
i=1

Aji

Mi

Ji = 0 . (9)

As a first example, let us consider the mixture formed by the following molecules: N2, i =

1; NH3, i = 2 and H2, i = 3; and let us assign to the element nitrogen j = 1, and to element

hydrogen j = 2. The matrix in the set of equations (3.1) is the following one:(
2 1 0

0 3 2

)
(10)

Thus, in a fluid with a chemical reaction occurring among the molecules, reading from matrix Aji

(3.10), there are, additional conserved quantities: because nitrogen is conserved∫
V

d3r [2N1 +N2] , (11)

and because hydrogen is conserved ∫
V

d3r [3N2 + 2N3] . (12)

The diffusive flows of atoms are given, according to Eq.(3.9), by

JN =
2

M1

J1 +
1

M2

J2 , or JN = 0.071J1 + 0.059J2 (13)

for nitrogen and

JH =
3

M2

J2 +
2

M3

J3 , or JH = 0.176J2 + 0.992J3 (14)

for hydrogen.

The diffusive flows of atoms are seen to be independent upon recalling that the diffusive flows

of molecules obey,
c∑

i=1

Ji = 0

from where anyone of the flows of molecules in (3.13) and (3.14) can be eliminated in favor of the

remaining ones.

Let us consider now the mixture formed by the following ions and molecules: NO−2 , i =

1; NO, i = 2; H+, i = 3; NO−3 , i = 4 and H2O, i = 5. Let us assign the index j as 1 to nitro-

gen, 2 to oxygen, 3 to hydrogen and 4 to the charge. In this case the matrix of equations(3.1)

becomes: 
1 1 0 1 0

2 1 0 3 1

0 0 1 0 2

−1 0 1 −1 0

 (15)
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If a chemical equation is taking place in the fluid, the following three linear combinations of

molar densities are conserved because of the conservation of nitrogen, oxygen and hydrogen:∫
V

d3r (N1 +N2 +N4) , (16)

∫
V

d3r (2N 1 +N2 + 3N4 +N5) , (17)

and ∫
V

d3r (N3 + 2N5) , (18)

respectively. The corresponding diffusive flows are found in the same way as before. Due to the

conservation of electric charge, we find from the last row in the matrix Aji that the following

linear combination is an additional conserved quantity:∫
V

d3r (−N1 +N3 −N4) , (19)

the corresponding diffusive flow of charge being given by

J = − 1

M1

J1 +
1

M3

J3 −
1

M4

J4 .

Notice that in order to find the conserved quantities, it is not necessary to know which is the

balanced chemical reaction that is actualy taking place, it is enough to know the composition of

the components of the reacting mixture, and from it, the entries Aji.

In the case of two or more independent reactions present in the mixture, a case that happens

when the number of chemical elements (rows) j, is less than the number of species (columns) i,

by two or more, Eq.(3.1) holds for every reaction namely,∑
i=1

Ajiν
l
i = 0 , (l = 1, ...r) (20)

where the superindex l denotes the reaction number. This carries over to Eq.(2.9) which becomes

modified on its right-hand side as follows:

∂ρci

∂t
+

∂

∂r
· ρcivi =

r∑
l=1

νl
iMiχl (21)

here χl is the degree of advancement per unit volume and unit time in the l reaction.

When subjected to multiplication by Aji

Mi
and subsequent sum over all the species as before,

because of Eq.(3.1) we obtain again a zero in the right-hand side of Eq.(3.21), i.e., we recover

Eq.(3.2). Therefore, Eq.(3.2) also applies for every element in the case of several reactions; in
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consequence, it does not matter how many the reactions are, provided that one knows the matrix

Aji.

We finish this paper by presenting an example of a mixture in which there are two independent

chemical equations. Consider the mixture formed by the molecules: KMnO4, i = 1; H2SO4, i =

2; H2O2, i = 3; K2SO4, i = 4; MNSO4, i = 5; H2O, i = 6; O2, i = 7. Upon tagging the elements as

follows, K, j = 1; Mn, j = 2; O, j = 3; H, j = 4 and S, j = 5, the following system of algebraic

equations is obtained:



1 0 0 2 0 0 0

1 0 0 0 1 0 0

4 4 2 4 4 1 2

0 2 2 0 0 2 0

0 1 0 1 1 0 0





νl
1

νl
2

νl
3

νl
4

νl
5

νl
6

νl
7


=



0

0

0

0

0

 (l = 1, 2) (22)

From the entries of the atom-molecule matrix Aji we find, associated to the conservation of each

of the elements K, Mn, O, H and S, the following conserved quantities: because conservation of

potassium atoms: ∫
V

d3r (N1 + 2N4)

because conservation of manganese atoms:∫
V

d3r (N1 +N5)

because conservation of oxygen atoms:∫
V

d3r (4N1 + 4N2 + 2N3 + 4N4 + 4N5 + 1N6 + 2N7)

because of conservation of hydrogen atoms:∫
V

d3r (2N2 + 2N3 + 2N6)

and because of conservation of sulphur atoms:∫
V

d3r (N2 +N4 +N5)

These masses are conserved whatever the independent chemical equations one might found with

the algebraic method and whatever the chemical reactions are actually taking place among the
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components of the given mixture in the fluid. As for the diffusive flows of atoms, they are found

as before.

Notice finally that in the example at hand[14], the solution of Eqs.(3.22) yields the following

particular independent reactions:

2H2O2 = 2H2O + O2

which involves ν3, ν6, ν7, and

2KMnO4 + 3H2SO4 + 2H2O = K2SO4 + 2MnSO4 + 5H2O2

which involves ν1, ν2, ν6, ν4, ν5, ν3. Any chemical reaction presented to be balanced among the

componentes of the given mixture is a linear combination of these two given reactions as mathe-

matics tells us. However, in order to find the conserved quantities the specification of the reactions

is unnecessary. Notice that that the coefficients νi of both the above found chemical equations

satisfy Eqs.(3.22) with the same matrix Aji.
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