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Abstract. A set of theoretical atomic radii corresponding to the principal maximum in 
the radial distribution function, 4πr2

R
2 for the outermost orbital has been calculated for the 

ground state of 103 elements of the periodic table using Slater orbitals. The set of theoretical 
radii are found to reproduce the periodic law and the Lother Meyer’s atomic volume curve 
and reproduce the expected vertical and horizontal trend of variation in atomic size in the 
periodic table. The d-block and f-block contractions are distinct in the calculated sizes. The 
computed sizes qualitatively correlate with the absolute size dependent properties like 
ionization potentials and electronegativity of elements. The radii are used to calculate a 
number of size dependent periodic physical properties of isolated atoms viz., the 
diamagnetic part of the atomic susceptibility, atomic polarizability and the chemical 
hardness. The calculated global hardness and atomic polarizability of a number of atoms are 
found to be close to the available experimental values and the profiles of the physical 
properties computed in terms of the theoretical atomic radii exhibit their inherent 
periodicity.  A simple method of computing the absolute size of atoms has been explored 
and a large body of known material has been brought together to reveal how many different 
properties correlate with atomic size. 

 

Introduction 
The concept of atomic and ionic radii has been found to be very useful in understanding, 

explaining, correlating and even predicting many physico-chemical properties of atoms, ions and 
molecules. The periodicity of chemical and physical properties of the elements has been recognized 
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from the date of early history of chemistry. The atomic volume curve of Lother Meyer was a striking 
example of periodicity of physical properties of elements. The atomic size has been also an important 
periodic property of the elements. The atomic and ionic radii values are important input in many 
calculations of size dependent physico–chemical properties of isolated atoms. The crystal chemists 
have tried for many years to treat atoms and ions as hard spheres and published series of atomic and 
ionic radii with the only significance that such atomic and ionic radii, when added, reproduce the 
minimum distance of separation between atoms and ions respectively in crystal lattices. Approximate 
additivity of atomic and ionic radii were noted by early investigators like Goldschmidt et al [1], 

Pauling [2], Zachariasen [3], and Bragg [4]. However, the inter atomic or inter ionic distance depend 
upon the crystal type, its allotropic modification, co-ordination number, temperature etc. Unfortunately 
this very important property –– the size concept of atoms and ions is heavily underplayed. The text 
books dealing with this size aspects of atoms or ions never make the position distinctly clear as to the 
meaning and purport of the terms ‘atomic’ or ‘ionic’ radii and the term  ‘radii’ is kept vague. But 
invariably the text books display one or the other chart of atomic and ionic radii and recently there has 
been a proliferation of the tables and data of atomic and ionic radii with bewildering array of terms 
including bonded, non-bonded, ionic, covalent and van der Waals radii [5]. But such radii data though 
useful in reproducing the inter atomic/ionic distances for the particular purposes but not useful in 
computing the radial dependent absolute properties of atoms. Also, there is no means of verifying the 
merit of a set of radii determined experimentally or calculated theoretically because, there is no 
experimental value of the sizes of atoms and ions [6]. 

According to quantum mechanical view, the atoms and the ions do not have any rigid shape or size 
and hence the question of atomic and ionic radii simply does not arise in the true sense of the term.  
However, chemical experience suggests that the atoms and ions do have an effective size because, the 
atoms and ions cannot approach each other beyond certain limiting distance under the influence of 
forces encountered in chemical interactions.  The determination of the empirical atomic and ionic radii, 
on the basis of hard sphere approximation model, has a history stretching back to the work of Bragg4 
in 1920’s to the work of Slater [7] in the year 1964.  Attempts of computing theoretical atomic and 
ionic radii within the scope of Self Consistent Field (SCF) theory are also reported [7,8]. 

  The inherent approximation of the SCF method suggests that each electron have its own one-
electron function or orbital in many–electron situation. The fact that each electron in a many electron 
system should have one-electron function is a pre-quantum mechanical thinking [9] when it was 
pointed out that many spectroscopic facts could be rationalized if energy levels were identified with 
those of a single electron moving in a central field.  Slater [7] argued that there must be a connection 
between empirically determined atomic and ionic size with the wave functions of atoms and ions and 
pointed out a good correlation between the atomic radii and the distance of maximum charge density in 
the outermost electron shell of the atom. To be more precise, according to the suggestion of Slater, the 
principal maxima of the radial charge density distribution function of the outermost orbital of the atom 
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may be considered as its theoretical atomic radius. Slater [7] published a set of atomic radii computed 
through comparison of a large number of crystal data and it is claimed that such crystal radii are very 
close to the theoretical atomic radii calculated by Liberman, Waber and Cromer through self–
consistent field wave functions for all the atoms with relativistic correlations according to the Dirac 
equations. Waber and Cromer [8] calculated the theoretical atomic radii of a number of atoms through 
relativistic Hartree–Fock method. In absence of any experimental data [6] regarding the absolute size 
of atoms and ions the question of accuracy of any theoretical or experimental method of computing 
atomic or ionic size cannot be just tested. Sporadic informations of calculations of atomic size by 
sophisticated theoretical methods are found to appear in the literature but such data are mostly 
unpublished. Also it appears that such data has never been applied to compute any property of isolated 
atom or ion. In the premises, we propose a less sophisticated simple technique of computing 
theoretical or absolute radii of atoms and ions. The level of theory is semi-empirical. Slater [10] 
suggested an analytical form of the radial part of one-electron function that provides with a scope of 
computing a number of one–electron and radial properties including the scope of computation of 
theoretical atomic and ionic radii. The computation of theoretical atomic and ionic radii becomes 
tremendously simplified if Slater Orbitals are used in such calculation. 

Slater [10] proposed a much simpler analytical form for the radial part of the one-electron function 
or orbital now widely known as Slater–type orbitals, STO’s. The analytical form of normalized radial 
part of atomic orbital Rnl(r) is given by, 

                    Rnl(r)  = (2ξ)n+1/2[(2n)!]-1/2rn-1exp(−ξr)                                     (1) 

Where,        n  = the principal quantum number of the electron 
                    r  = distance from the nucleus  

                    ξ is the orbital exponent and is given by 

                    ξ  = (Z–S)/n*                                                                               (2) 

 Where, Z= atomic number and S is the screening constant and n* is the effective principal quantum 
number. The quantity, (Z–S) is further identified as effective nuclear charge, Z*. 

 In terms of Slater orbitals the theoretical atomic or ionic radii,  

                    rmax = n / ξ                                                                                  (3) 

 The eqn. (3) is the formula of computation of theoretical atomic and ionic radii in terms of Slater 

orbital. This shows that theoretical radii of atoms and ions can be easily computed only if ξ is known 

and one can know ξ, if the effective principal quantum number of the outermost shell of the atom (n*) 

and the screening constant (S) are known. Although the SCF ξ is also available [11], Slater [10] laid 

down a set of empirical rules for calculating S and n* to give good approximations to the best atomic 
orbitals of this type. The goal of this work has been to explore the possibility of developing a simple 
but effective method of computing the absolute radii atoms and ions relying upon Slater’s definition of 

absolute radii and using Slater’s orbitals. It is well known that orbital exponent, ξ obtained by Slater’s 
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empirical rules are found useful in SCF calculation giving satisfactory results although use of SCF 

optimized ξ is simultaneously in use [11]. 

In the present venture we have computed the theoretical atomic radii of as many as 103 elements of 
the periodic table by semi-empirical method using Slater’s orbital and involving Slater’s empirical rule 

for the computation of ξ. Since there is no scope of comparing the atomic and ionic radii with the 

experimental values, we have tested the range of validity of calculated sizes in a number of ways. The 
periodicity exhibited by the computed radii is compared with the periodicity inherent in the periodic 
table. In order to explore the internal consistency between the calculated sizes and the size dependent 
properties of the atoms, a comparative study of size vis-a-vis the electronegativity and the 
experimental quantity like first ionization potential of the atoms is made. A comparative study of the 
relative magnitudes of the sizes of the atoms of present calculation and the radii published by other 
workers – both theoretical and experimental is also made. The computed theoretical radii are used to 
calculate a number of size dependent intrinsic physical properties of isolated atoms viz., (1) the 

diamagnetic part of magnetic susceptibility (χdia) of 54 elements, and (2) the atomic polarizability (α), 

and (3) the global hardness (η) of as many as 103 elements of the periodic table. We have compared 

such computed size dependent properties of the atoms with available results of such quantities.  
 

 Method of Computation 

The radial charge density distribution function is defined [5,12,13] as 4πr2 R2  or simply r2R2 where 

R is the radial function. According to Slater [7], theoretical atomic radius is the maximum of the radial 
charge density distribution function of the topmost electron of the atom or ion. 

Radial charge density distribution function ρ(r) is given by   

                                                ρ (r)  = 4πr2R2                                                                       (4) 

Now, putting the normalized form of the R from the eqn.(1) into eqn.(4) we get 

                        ρ (r)  = 4πr2(2ξ)2n+1[(2n)!]-1r2n-2exp(-2ξr) 

                                 = 4πr2n(2ξ)2n+1[(2n)!]-1exp(-2ξr)                                                          (5) 

The parameters n and ξ are explained above. 

Differentiating the left-hand side with respect to r, and equating the result with zero, we get the 
maximum of the radial charge density distribution function, the theoretical atomic radii, 

                      dρ(r)/dr = [4π(2ξ)2n+1[(2n)!]-1exp(-2ξr)][2nr2n-1-2ξr2n]                                  (6) 

Equating the right hand side of the eqn. (6) equal to zero and replacing r by rmax, we obtain,   

                                                          ( nrmax
2n-1 – ξrmax

2n) = 0                                               (7)   

From which it follows that 

n rmax
 –1 = ξ 

 From this relation we obtain the formula for computing the theoretical atomic or ionic radii already 
noted in eqn (3) above, i.e. the theoretical atomic or ionic radii r = rmax 
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                                                                         r = n/ξ                                                           (3) 

the relevant quantities and parameters are defined above.   
 The screening constant (S) may be calculated from Slater’s rule and are profusely available in any 

standard textbook of physical and inorganic chemistry. The values of n* for principal quantum number 
n up to 6 and Z* for about 26 elements are published by Pople [14]. For the rest of the atoms, n* are 
calculated by simple extrapolation. and we have got the extrapolated value of n* = 4.3 for principal 

quantum number 7. The Z* and ξ for required atoms are calculated and for that matter we have relied 

upon the ground state electron–configuration published by Shriver and Atkins [15].  In this work we 
report the theoretical radii of atoms only. The calculated orbital exponents and atomic radii are shown 
in Table 1. The computed theoretical atomic radii are plotted as a function of atomic number in Figure 
1 and Figure 2.   To  explore  the  effectiveness  of  the  present  method  in  exhibiting  the well known  
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Figure 1. Plot of atomic radii (angstrom) as a function of atomic number. 
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Figure 2. Plot of atomic radii (angstrom) as a function of atomic number. 
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Table 1. Calculated  orbital exponents (ξ) and radii of atoms. 
 

Atoms 
 

Orbital 
Exponent 

 
Atomic Radii 

(Å) 

 
Atoms 

 
Orbital 

Exponent 

 
Atomic Radii 

(Å) 

 
Atoms 

 
Orbital 

Exponent 

 
Atomic Radii 

(Å) 
H 1 0.5292 Kr 2.2297 0.9493 Lu 3 1.0583 
He 1.7 0.3113 Rb 0.55 4.8106 Hf 3.15 1.0079 
Li 0.65 1.6282 Sr 0.7125 3.7135 Ta 3.3095 0.9594 
Be 0.975 1.0855 Y 0.75 3.5278 W 3.4643 0.9165 
B 1.3 0.8141 Zr 0.7875 3.3598 Re 3.619 0.8773 
C 1.625 0.6513 Nb 0.825 3.2071 Os 3.7738 0.8413 
N 1.95 0.5427 Mo 0.8625 3.0677 Ir 3.9286 0.8182 
O 2.275 0.4652 Tc 0.9 2.9398 Pt 4.0833 0.7776 
F 2.6 0.4071 Ru 0.9375 2.8222 Au 4.2381 0.7492 

Ne 2.925 0.3618 Rh 0.975 2.7137 Hg 4.3929 3.0636 
Na 0.7333 2.1649 Pd 1.0125 2.6132 Tl 1.1905 2.667 
Mg 0.95 1.6711 Ag 1.05 2.5199 Pb 1.3452 2.3603 
Al 1.1667 1.3607 Cd 1.0875 2.433 Bi 1.5 2.1167 
Si 1.3833 1.1476 In 1.25 2.1167 Po 1.6548 1.9187 
P 1.6 0.9922 Sn 1.4125 1.8732 At 1.8095 1.7546 
S 1.8167 0.8738 Sb 1.575 1.6799 Rn 1.9643 1.6164 
Cl 2.0333 0.7807 Te 1.7375 1.5228 Fr 0.5116 7.2404 
Ar 2.25 0.7056 I 1.9 1.3926 Ra 0.6628 5.5887 
K 0.5946 3.5598 Xe 2.0625 1.2828 Ac 0.6977 5.3091 
Ca 0.7703 2.7479 Cs 0.5238 6.0615 Th 0.7326 5.0569 
Sc 0.8108 2.6106 Ba 0.6786 4.6788 Pa 1 3.7042 
Ti 0.8514 2.4861 La 0.8333 3.8102 U 1.1512 3.2177 
V 0.8919 2.3732 Ce 0.9881 3.2133 Np 1.3023 2.8443 
Cr 0.9324 2.2701 Pr 1.1429 2.778 Pu 1.5698 2.3596 
Mn 0.973 2.1754 Nd 1.2976 2.4468 Am 1.7209 2.1525 
Fe 1.0135 2.0885 Pm 1.4524 2.1861 Cm 1.7558 2.1097 
Co 1.0541 2.008 Sm 1.6071 1.9756 Bk 2.0233 1.8308 
Ni 1.0946 1.9337 Eu 1.7619 1.802 Cf 2.1744 1.7035 
Cu 1.1351 1.8648 Gd 1.9167 1.6565 En 2.3256 1.5928 
Zn 1.1757 1.8004 Tb 2.0714 1.5328 Fm 2.4767 1.4956 
Ga 1.3514 1.5663 Dy 2.2262 1.4262 Md 2.6279 1.4096 
Ge 1.527 1.3862 Ho 2.381 1.3335 No 2.7791 1.3329 
As 1.7027 1.2431 Er 2.5357 1.2521 Lr 2.814 1.3164 
Se 1.8784 1.1269 Tm 2.6905 1.1801    
Br 2.0541 1.0305 Yb 2.8452 1.1159    

 

 
d-block and f-block contractions in the periodic table, the computed radii of 3d, 4d, 4f and 5f elements 
are separately plotted as a function of the atomic numbers in Figs. 3, 4, 5, and 6, respectively. The 
methods of computation of absolute size dependent physical properties like (A) the diamagnetic part of 

magnetic susceptibilities (χdia), (B) atomic polarizabilities (α), and (C) the global hardness (η) are 

stated below. 
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              Figure 3.  Plot of atomic radii of first transition sereis (3-d block) elements in angstrom 
                               unit as a function of atomic number. 
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              Figure 4. Plot of atomic radii of second transition series (4-d block) elements in angstrom 
                              unit as a function of atomic number. 
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Figure 5. Plot of atomic radii of lanthanides in angstrom unit as function of atomic number. 
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Figure 6.  Plot of atomic radii of actinides in angstrom unit as a function of  Atomic number. 

 

(A) Diamagnetic part of magnetic susceptibility, χdia. 

The theoretical determination of atomic and ionic radii provides with a scope of a theoretical 
calculation of the diamagnetic part of the atomic susceptibility, which occurs even when an atom 
already has a permanent moment. We have computed the diamagnetic susceptibility of as many as 54 
elements starting from hydrogen. Since atoms after element with atomic number 54 are strongly 
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paramagnetic due to L-S coupling, the computation of diamagnetic susceptibility of atoms of such 
elements is not taken up.    

The induced diamagnetic moment of an atom is opposite to the applied field and is proportional to 
the square of the orbit radius. The classical equation of diamagnetic susceptibility of atom [16,17] per 
mole is given by 

                        χdia = – 2.84 × 10-10 Σn <r2>av                                                 (8) 

Where, <r2>av is the mean square of the actual orbital radius or the average of the square of all the 

orbit radii and Σ implies the summation of <r2>av  for all n electrons in atom as the total moment is 

given by the sum over all the electrons in the atom. 

There can not be any experimental value for Σn <r2>av of an atom as such and quantum mechanics 

can compute it and it is interpreted as the average of the square of the distance from the center for the 
probability distribution [18].   However, it is mentioned that a slight modification of the formula (8) by 
replacing the pre-factor of the RHS by 1.888 in place of 2.84 gives better result [19]. The modified 
formula is 

                            χdia = – 1.888 × 10–10 Σn <r2>av                                                (9) 

 We have calculated the  <r2>av of each atom by calculating the radii of each orbital. We have 
computed the  <r2>av for all the 54 elements. With these values of <r2>av, the molar diamagnetic 

susceptibility is computed through eqn.(9).  The calculated  <r2>av  and χdia are shown in Table 2. The 

computed values of  <r2>av and χdia are plotted as a function of atomic number in Fig.7. 
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              Figure 7. Plot of mean square radii and diamagnetic part of magnetic susceptibility 
                              of atoms as a function of atomic number. 

 

(B) Atomic polarizability, α. 

One more important size dependent physical property of the atoms is the atomic polarizability, α. 

By polarizability, Pearson [20] meant the ease of deforming the valance electron cloud of a chemical 

species.   A  closely  related  experimental  quantity  is  electric dipole polarizability, α, which actually 
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Table 2. Computed mean square radii, < r2 > and diamagnetic part of atomic susceptibility, 
               (χdia) of atoms. 

  
Atom 

 
< r2 > X 10–16 sq.cm

                       
χdia x 10

–6 c.c 
 

Atoms 
 

< r2 >X 10–16 sq.cm 
 

χdia x 10
–6 c.c 

H 0.2801 -0.5287 Ni 1.5669 -82.8339 
He 0.0969 -0.3659 Cu 1.5013 -82.2003 
Li 1.3447 -7.6165 Zn 1.4422 -81.6834 
Be 0.5994 -4.5267 Ga 0.9694 -56.7355 
B 0.3377 -3.1882 Ge 0.7087 -42.8176 
C 0.2164 -2.4513 As 0.5452 -33.912 
N 0.1504 -1.9872 Se 0.4345 -27.8915 
O 0.1106 -1.6698 Br 0.3553 -23.4787 
F 0.0847 -1.4395 Kr 0.2965 -20.1491 

Ne 0.0669 -1.264 Rb 4.9346 -344.7138 
Na 1.5972 -33.1713 Sr 2.9131 -208.9958 
Mg 0.9558 -21.6546 Y 3.8844 -286.0142 
Al 0.6368 -15.6297 Zr 3.6483 -275.519 
Si 0.4549 -12.0238 Nb 3.444 -266.593 
P 0.3413 -9.6652 Mo 3.266 -258.9836 
S 0.2655 -8.0205 Tc 3.1099 -252.4745 
Cl 0.2125 -6.8214 Ru 2.9723 -246.9151 
Ar 0.1741 -5.915 Rh 2.8505 -242.1745 
K 3.2677 -117.2196 Pd 2.7419 -238.1305 
Ca 1.9664 -74.2518 Ag 2.6448 -234.6907 
Sc 2.338 -92.6958 Cd 2.5577 -231.7906 
Ti 2.1789 -90.5027 In 1.6726 -154.7359 
V 2.0413 -88.6433 Sn 1.2015 -113.4178 
Cr 1.9214 -87.0608 Sb 0.9035 -87.9572 
Mn 1.8158 -85.7077 Te 0.7218 -70.8638 
Fe 1.723 -84.5766 I 0.5866 -58.7022 
Co 1.6403 -83.6167 Xe 0.4872 -49.6685 

 
 
describes the linear response of the electron cloud of a chemical species to an external field much 

lower than what would be needed to ionize the system. The static electric dipole polarizability α can 

be determined theoretically and experimentally in various ways.  
The induced dipole moment in an atom or molecule is proportional to the applied electric field [13] 

and the necessary formula can be written as  

                           d  =  α F                                                                              (10) 

where, F = the applied electric field, d = induced dipole moment, and α is the constant of 

proportionality and is called polarizability.                                                          

It has been shown [21] that the polarizability α of a conducting sphere of radius r is equal to r3.  

                           α = r3                                                                                     (11) 

And in terms of its volume V, the same formula looks like 

                          α  = 3V/4π                                                                              (12) 

where                 

                           V = 4/3 π r3                                                                                                                  (13) 
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The generality of linear volume–polarizability has been assessed [21] quantum mechanically in case of 
atoms. Although the formula for the polarizability has been laid down in eqn (11),  it is suggested that, 
due to inhomogeneity of the electron cloud, the actual formula [22] should be  

                           α  = Kr3                                                                                   (14) 

where, K is the proportionality constant.  
For atoms, the value of ‘K’ was determined by Dimitrieva and Plindov [23] by ‘Atomic Oscillation 
Theory’ as 0.585.  Dutta and Hati [22] used the value of K= 0.792 which is the arithmetic average of 1 
and the value of Dimitrieva and Plindov [23]. But the exact quantum mechanical calculation [19] of 
polarizability of hydrogen atom derives the formula   

                         α  = (9/2) a0
3                                                                               (15) 

where a0 is the Bohr radius. 
Comparing eqns. (14) and (15) we see that K = 4.5 

Relying more upon the quantum mechanical derivation [19] of the atomic polarizability, we see 
that, the proportional constant K in eqn.(14) is neither 1 nor less than 1, but it is equal to 4.5 for 
hydrogen atom. In absence of any other reliable value of ‘K’, the proportionality constant, we have 
first tried to obtain an optimized the proportionality constant K. We first computed the atomic 
polarizability of as much as 8 elements whose experimental polarizabilities are quoted by Purcell in 
reference [19] using the above quantum mechanical value of K = 4.5. We find that the calculated 
values of atomic polarizability of eight elements with K = 4.5 through the theoretical atomic radii are 
close to the experimental values quoted by Purcell [19]. We have, therefore, computed the atomic 
polarizabilities of the rest of the elements with the same value of the proportionality constant K=4.5. 
The computed atomic polarizability of all the 103 elements are shown in Table 3. We have plotted the 
theoretically computed atomic polarizability as a function of atomic number in Figure 8.  
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Figure 8.  Plot of atomic polarizability (c.c) as a function of atomic number. 
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Table 3. Computed atomic polarizability ( α) and global hardness (η) of atoms. 
 

Atoms 
 

 α x 10–24 c.c 
  

η (ev) 
 

Atoms 
 

α x 10–24 c.c 
 

η (ev) 
 

Atoms 
 

α x 10–24 c.c 
 

 
η (ev) 

H 0.6669 13.588 Kr 3.8497 7.5748 Lu 5.3338 6.7947 
He 0.1358 22.383 Rb 500.9683 1.4948 Hf 4.6075 7.1344 
Li 19.4239 4.4164 Sr 230.4462 1.9364 Ta 3.9739 7.4951 
Be 5.7558 6.6244 Y 197.5715 2.0383 W 3.4643 7.8459 
B 2.428 8.8328 Zr 170.6683 2.1402 Re 3.0385 8.1965 
C 1.2432 11.0407 Nb 148.4397 2.2422 Os 2.6796 8.5472 
N 0.7193 13.25 Mo 129.9126 2.344 Ir 2.3756 8.8973 
O 0.453 15.4574 Tc 114.3315 2.446 Pt 2.1175 9.2474 
F 0.3034 17.6634 Ru 101.1523 2.5479 Au 1.8924 9.598 

Ne 0.2131 19.875 Rh 89.9286 2.6498 Hg 129.646 2.3456 
Na 45.659 3.3215 Pd 80.3028 2.7517 Tl 85.3653 2.6962 
Mg 21 4.303 Ag 72.005 2.8536 Pb 59.1717 3.0466 
Al 11.337 5.2846 Cd 64.8095 2.9555 Bi 42.6767 3.3972 
Si 6.8011 6.2659 In 42.6767 3.3972 Po 31.7858 3.7477 
P 4.3955 7.2473 Sn 29.5777 3.8388 At 24.3079 4.0983 
S 3.0023 8.2293 Sb 21.3335 4.2805 Rn 19.0046 4.4487 
Cl 2.1412 9.2107 Te 15.8906 4.7221 Fr 1705 0.9913 
Ar 1.5808 10.191 I 12.1532 5.0636 Ra 785.4977 1.2867 
K 202.9969 2.02 Xe 9.4993 5.6056 Ac 673.4033 1.3544 
Ca 93.3717 2.6162 Cs 1002.1964 1.1863 Th 581.6815 1.4222 
Sc 80.0633 2.7545 Ba 460.9098 1.5369 Pa 228.7156 1.9413 
Ti 69.1712 2.8924 La 248.9177 1.8873 U 149.9164 2.2348 
V 60.1472 3.03 Ce 149.2883 2.2378 Np 103.5473 2.5281 
Cr 52.6438 3.1676 Pr 96.4738 2.5885 Pu 59.1266 3.0473 
Mn 46.3265 3.3055 Nd 65.9186 2.9389 Am 44.8789 3.3407 
Fe 40.9939 3.443 Pm 47.0135 3.2893 Cm 42.2547 3.4084 
Co 36.4555 3.5811 Sm 34.6984 3.6398 Bk 27.5918 3.9277 
Ni 32.5372 3.7187 Eu 26.3316 3.9905 Cf 22.2453 4.2212 
Cu 29.1769 3.8561 Gd 20.4544 4.341 En 18.1843 4.5146 
Zn 26.2615 3.994 Tb 16.2057 4.6913 Fm 15.0542 4.808 
Ga 17.2917 4.5909 Dy 13.0543 5.0419 Md 12.6038 5.1013 
Ge 11.9864 5.1874 Ho 10.6707 5.3924 No 10.6563 5.3949 
As 8.6443 5.7846 Er 8.8334 5.743 Lr 10.2631 5.4629 
Se 6.4397 6.381 Tm 7.3955 6.0934   
Br 4.9244 6.978 Yb 6.253 6.4439   

 

 

(C) Global Hardness, η. 

 The term hardness,η, as applied to atoms and molecules has no reference to its mechanical physical 

hardness [24]. We are concerned here about the chemical hardness of atoms. The definition of 
hardness has evolved with time from qualitative concept to the rigorous quantum mechanical 
definition [20]. The concept of hardness was first introduced by Mulliken [25] and formalized as a 
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qualitative thumb rule of chemical reactivity known as HSAB principle by Pearson [20].  Using the 
Density Functional Theory (DFT) as basis, the qualitative HSAB principle of Pearson [20] was placed 
on a quantum mechanical basis by Parr, Pearson and others [26-30]. In terms of Density Functional 
Theory, the qualitative idea of hardness and softness was quantified and the terms ‘hardness’ and 
‘softness’ were identified as fundamental theoretical parameters.  Although the hardness was 
rigorously defined in terms of the Density Functional Theory, the operational and approximate 
definition for the purpose of computation was also suggested as follows [27-28,30]. 

The operational definition of hardness, η  

                         η =  (I – A)/2                                                                                 (16)     

where,            η  = the global hardness of atoms or molecules 

                       I  = the ionization potential of atoms or molecules. 
                       A = the electron affinity of atoms or molecules. 

But in case of atoms, Pearson [31] pointed out that a simple formula of computing hardness of atoms 
could be derived from simple electrostatic considerations using atomic size.  Dutta and Hati [22] have 
used the formula derived by Pearson to calculate the global hardness of a series of atoms. The only 
needed quantity for computing global hardness of atoms is the atomic radius. We therefore venture to 

use the atomic radii for the instant calculation to compute the global hardness η of atoms. We have 

derived the formula for computing the global hardness of atoms as follows:   
 The energy, E (q) of charging a conducting sphere of radius R with charge q is classically given by 

[18] 

                     E (q)  = q2/(4πε0) 2R                                                             (17)            (S. I. Unit). 

                               =  q2/2R                                                                        (18)           ( C. G. S. Unit). 
where, q = charge  and R = radius. 

The implication of the eqn (18) is that the E(q) is the energy in ergs, q is the charge in electrostatic 
unit and R should be measured in cm. Now increasing q by one unit and decreasing q by one unit, we 
get the changes in energy which are I and A, the ionization potential and electron affinity of atom 
respectively.  

Now in e.s.u, the one unit of charge, which is associated with the process of ionization I, and the 
electron affinity A, should be e, the electronic charge. Hence,   

             I  =  (q + e) 2/2R – q2/2R 
             A  = q2/2R – (q – e) 2/2R 

Since, the global hardness of atoms η  = 1/2 (I – A)   

    Or,                η =  e2/ 2R                                                                                          (19) 

where, e  = the electronic charge in e.s.u. 
But the formula derived by Pearson [31]  looks a bit different from the  formula in eqn. (19).   

 We have computed the global hardness of atoms, η, through eqn (19) and ultimately it is converted 

to electron volt (eV).  The theoretically computed values of global hardness of as many as 103 atoms 
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are tabulated in Table 3. We have plotted the global hardness of atoms as a function of atomic number 
in Figure 9. 
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Figure 9.  Plot of Global hardness (eV) of atoms as a function of atomic number. 

 
 

 Results and Discussions. 
 

The test of Periodicity of the sizes, and a comparative study of the radii of present calculation vis-a-vis 
other available data on the sizes of atoms. 

The periodicity of elements, along with Darwin’s theory of evolution and Planck’s quantum theory, 
ranks as one of the greatest generalizations in Science [32,33]. Periodicity of atomic and ionic size is 
of utmost importance in chemistry. The phenomenon of contraction of the atomic size among the 
transition metals, lanthanides and actinides are some important periodic relationship of chemistry. 
However, a general trend of atomic size that has to be followed in a row and group of periodic table is 
already laid down [34] and stated as follows: 

i) Atomic and ionic size decreases along the row. 
ii) Atomic and ionic size increases down the main group. 
iii) There is d–block contraction. 
iv) There is f–block contraction. 
v) The periodicity of atomic size should be isomorphic with the periodicity of ionization potential. 
vi) The periodicity of size  should be matched with the periodicity of electronegativity 
The size relationship as a function of vertically downward or horizontally rightward movement will 

be straightforward if the sizes of the atoms are extrapolated as a function of atomic number. We have 
drawn the sizes of atoms as a function of atomic numbers in two different fashions in Figs. 1 and 2. It 
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is distinctly evident that the curve 1 is isomorphic with the periodic curve of Lother Meyer. The 
general features of vertically downward expansion of size in a group and the horizontal contraction 
along a period is more distinct in Fig. 2. From a close examination of the nature of the profiles in Figs. 
1and 2 it is evident that the general pattern of size variation exhibited by the computed atomic radii as 
a function of atomic number conform to the basic demand of periodic law regarding the periodicity of 
atomic volumes.  The general appearance of curves in Figs 3 and 4 show that the d-block contraction is 
distinct in the computed atomic radii.  A close looks at the Figs. 5 and 6 reveals that the f-block 
contraction is distinctly manifest in the computed sizes of the atoms of lanthanides and actinides. Thus 
we see that the calculated sizes of atoms faithfully observe the periodic law and reproduce the periodic 
table. 

Thereafter, in order to explore a correlation between the computed atomic size with the absolute 
periodic properties of atoms we now examine the nature of the curves of the first ionization potential 
and the electronegativities drawn as a function of atomic number in Figs 10 and 11 respectively. The 
correlation between the ionization potential and the size of the atoms is so reliable that Arhen’s35 
method utilized the regularities of the curve found by plotting radii vs. ionization potential for the 
determination of atomic radii of elements from graphical extrapolation. 
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                Figure 10.  Plot of atomic radii and first ionization potential of  atoms as a function of  
                                   atomic number. 

 
A close look at the figure 10 reveals that the ionization potential profile is just maintaining the 

inverse periodic relation with the atomic size curve and the two curves are homomorphic. It transpires 
from the nature of the profiles of the atomic radii and the ionization potential that the calculated atomic 
radii have a good correlation with the experimentally determined size dependent absolute property, the 
ionization potential.  In Fig.11 the Pauling electronegativity [2,15] of as many as 35 elements and their 
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Figure 11.  Plot of atomic radii and electronegativity of atoms as a function of atomic number. 

 
theoretical atomic radii are plotted as function of atomic number. Although the electronegativity is an 
atomic property and depends upon the atomic radii [36], it is not a directly measurable experimental 
quantity of an isolated atom and it has no quantum mechanical operator [6,37]. But the inverse 
relationship between the polarizability and hardness is well established [38]. The inverse relationship 
between the polarizability and the electronagativity is also suggested [6]. From an analysis of the 

evident mutual inter-relationship between η, α and electronegativity and their relation with atomic 

radii, the inverse relationship between electronegativity and atomic size is self-evident.   It is evident 
from Fig.11 that the profile for atomic size and the profile for electronegativity are both periodic and 
mutually homomorphic. Thus it is evident that the calculated sizes of the atoms have a good 
correlation with the electronegativity, and the experimental quantity like ionization potential. 

To make a comparative study of the theoretical radii vis-à-vis the so called experimental radii, we 
have chosen the experimental values of Pauling [2] and have tabulated the radii of as many as 47 
atoms forming crystalline metallic solids in Table 4, the covalent radii of 15 atoms in Table 5, and the 
van der Waal radii of 13 atoms in Table 6.   

The following general observations transpire from a comparative study of the sizes of atoms.    
(i) From Table 4 it is distinct that the Pauling’s radii of the atoms forming the crystalline solids are 

systematically smaller in size than the radii of such atoms of the present calculation. This trend in size 
in the two methods is perfectly justified. The rationale may be as follows:  In the crystalline solids, 
metal atoms do not remain as undistorted atoms rather the valence electrons of the metal atoms form a 
completely delocalized band and the lattice is a giant molecule. The metal ions and not the metal atoms 
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Table 4. Comparative study of theoretical radii and Pauling’s experimental metallic radii of atoms. 
 

Atoms 
 

Theoretical 
atomic radii (Å) 

 
Single bond metallic 

radii  (Å) 

 
Atoms 

 
Theoretical 

atomic radii (Å)

 
Single bond metallic 

radii  (Å) 
Li 1.6282 1.225 Mo 3.0677 1.296 
Be 1.0855 0.889 Tc 2.9398 1.271 
Na 2.1649 1.572 Ru 2.8222 1.246 
Mg 1.6711 1.364 Rh 2.7137 1.252 
Al 1.3607 1.248 Pd 2.6132 1.283 
K 3.5598 2.025 Ag 2.5199 1.339 
Ca 2.7479 1.736 Cd 2.433 1.413 
Sc 2.6106 1.439 In 2.1167 1.497 
Ti 2.4861 1.324 Sn 1.8732 1.399 
V 2.3732 1.224 Cs 6.0615 2.35 
Cr 2.2701 1.176 Ba 4.6788 1.981 
Mn 2.1754 1.171 La 3.8102 1.69 
Fe 2.0885 1.165 Hf 1.0079 1.442 
Co 2.008 1.162 Ta 0.9594 1.343 
NI 1.9337 1.154 W 0.9165 1.304 
Cu 1.8648 1.173 Re 0.8773 1.283 
Zn 1.8004 1.249 Os 0.8413 1.26 
Ga 1.5663 1.245 Ir 0.8082 1.265 
Ge 1.3862 1.223 Pt 0.7776 1.295 
Rb 4.8106 2.16 Au 0.7492 1.336 
Sr 3.7135 1.914 Hg 3.0656 1.44 
Y 3.5278 1.616 Tl 2.667 1.549 
Zr 3.3598 1.454 Pb 2.3603 1.539 
Nb 3.2071 1.342    

 

 

Table 5. Comparative study of theoretical radii and Pauling’s experimental covalent radii of atoms.  

 
Atoms 

 
Theoretical 

atomic radii (Å) 

 
Experimental 

covalent radii  (Å)

 
Atoms

 
Theoretical 

atomic radii (Å)

 
Experimental 

covalent radii (Å) 
B 0.8141 0.88 Cl 0.7807 0.99 
C 0.6531 0.77 As 1.2431 1.18 
N 0.5427 0.7 Se 1.1269 1.14 
O 0.4652 0.66 Br 1.0305 1.11 
F 0.4071 0.64 Sb 1.6799 1.36 
Si 1.1476 1.17 Te 1.5228 1.32 
P 0.9922 1.1 I 1.3926 1.28 
S 0.8738 1.04    
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Table 6.  Comparative study of absolute radii and covalent radii of Politzer-Parr-Murphy. 

 Atoms    Covalent radii (Å) Absolute radii  (Å) 

Li 1.357 1.6282 
Na 1.463 2.1649 
Al 1.487 1.3607 
K 1.802 3.5598 
Cr 1.494 2.2701 
Ni 1.3 1.9337 
Cu 1.166 1.8648 
Rb 1.924 4.8106 
Ag 1.28 2.5199 
Sn 1.492 1.8732 
Te 1.381 1.5228 
B 1.091 0.8141 
C 0.912 0.6513 
N 0.814 0.5427 
O 0.764 0.4652 
F 0.671 0.4071 
Si 1.296 1.1476 
P 1.185 0.9922 
S 1.12 0.8738 
Cl 0.999 0.7807 
As 1.258 1.2431 
Se 1.209 1.1269 
Br 1.116 1.0305 
Sb 1.433 1.6799 
I 1.299 1.3926 

 

 
occupy the positions of atoms and held by strong cohesive force. Therefore, because of the strong 
cohesive force of metallic bonding in the lattice, the metal ions become very close and the inter nuclear 
distance between two immediate neighbours must be considerably smaller compared to a sum of the 
absolute radii of two atoms. Hence Pauling’s determination of atomic radii by the apportionment of the 
distance of inter nuclear separation to the atoms in crystalline lattice does not refer to the absolute size 
of the atoms at all. Thus the smaller magnitude of Pauling’s radii, compared to the absolute radii of 
present calculation is quite justified. We have one more precedent example [39] where theoretical 
absolute radii of atoms are greater than the so-called experimental radii. Waber and Larson [39] 
independently used the principal maximum of the charge densities as the orbital radii of the rare earth 
atoms and they used the nonrelativistic Hartree- Fock eigen functions to compute the orbital radii of 
free lanthanide atoms. They also concluded that the radii corresponding to these outer orbitals were 
significantly larger than the atomic or metallic radii. The Pauling’s radii do not really represent the 
absolute radii of atoms rather such radii should be used to reproduce the distance of closest approach 
of two atoms in crystalline solid.    

(ii) From Table 5 we see that, out of 15 elements, the covalent radii of as many as 6 elements are 
very close in both methods. The rest of the elements cited in Table 5 have radii both smaller and larger 
than the absolute radii of the present calculation. The covalent radii depend upon the force of covalent 
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binding and the bond order. Since the type of covalent bonding is not uniform rather atoms may be 
bonded by single, double and triple bond depending upon the chemical situation, no general trend of 
correlation of theoretical absolute radii and covalent radii of atoms can be predicted.  

(iii) A comparative study is also made between theoretical covalent radii of atoms of Politzer, Parr 
and Murphy [40] and the corresponding absolute radii of present calculation. Based on density 
functional theory, DFT, Politzer, Parr and Murphy [40] enquired into the relationship between atomic 
chemical potentials, electrostatic potentials and covalent radii and observed that the points at a certain 
radial distance at which electrostatic potential is equal to the chemical potential corresponds to the 
covalent radii. These covalent radii may be defined as theoretical covalent radii. Politzer et al [40] 
published the theoretical covalent radii of atoms of as many as 25 elements. We have arranged the 
theoretical radii and the corresponding absolute radii in the Table 6. A close look at the Table 6 reveals 
a strange behavior of the absolute radii vis-à-vis the theoretical covalent radii of atoms of 
corresponding elements. Absolute radii of the metallic atoms are consistently larger while the absolute 
radii of the non-metallic atoms are consistently smaller than the theoretical covalent radii of the atoms. 
However, the absolute radii of a few elements are also close to the theoretical covalent radii. This 
strange pattern of variation of the two sets of radii cannot be correlated unless the fundamental 
relationship between the covalent radii and the absolute radii is explored.  

(iv) The van der Waal’s radii.  
It is sporadically sprinkled impression in the chemical literature that the inert gas atoms are 

unusually big in size. The published data very often shows that radii of the inert gas atoms is the 
biggest in the row where it occurs and that too, in violation of periodic law. Looking at the Table 7 we 
see that the van der Waal’s radii in Pauling’s determination are considerably larger than the absolute 
radii of the present calculation. In this connection we feel pertinent to make a more critical survey and 
study of the van der Waal radii of inert gas elements. The periodic law demands that the atomic size 
should be a monotone decreasing function of atomic number in a horizontal row and the size of the end 
element, the inert gas atom, must be smallest in the row. The formula of computing the theoretical 
radii  shows that the absolute size of the atoms  of  the inert gas  elements  must be smallest in the row.  

 
Table 7. Comparative study of theoretical radii and Pauling’s experimental van der Waal’s 
               radii of atoms. 

 
Atoms 

 
Theoretical 

atomic radii (Å) 

 
Experimental van 

der Waal's radii (Å)

 
Atoms

 
Theoretical 

atomic radii (Å) 

 
Experimental van der 

Waal's radii (Å) 

N 0.5427 1.5 Se 1.1269 2 
P 0.9922 1.9 Te 1.5228 2.2 

As 1.2431 2 F 0.4071 1.35 
Sb 1.6799 2.2 Cl 0.7807 1.8 
H 0.5292 1.2 Br 1.0305 1.95 
O 0.4652 1.4 I 1.3926 2.15 
S 0.8738 1.85    
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The available data regarding the size of the inert gas atoms in the chemical literature are all van der 
Waal radii. Since the van der Waal force of attraction is very weak, the gap between the atoms bonded 
by van der Waal bond is large and the van der Waal radii so computed must be very large. Thus, there 
is no reason of mysterious swelling of size of inert gas atoms as implied by their experimental radii. 
Justifiably, the absolute sizes of such atoms must be considerably smaller than their van der Waals 
radii. The radii of inert gas atoms in the present calculation are in conformity with the periodic law.  

 
Lanthanide Contraction. 
From the Table 1 and Figs. 1 and 2 we see that the present method of atomic radii calculation 

reproduces the “lanthanide contraction”.  To make the position more distinct and self-evident we have 
plotted the radii of atoms of 14 elements after lanthanum as a function of atomic number in Fig. 5. Fig. 
5 demonstrates that the size of the lanthanide atoms decreases fairly regularly and steadily. Most of the 
textbooks speak about the sharp rise of the atomic radii of Eu and Yb. Instead of being contracted, 
atomic radii of these two elements are reported to be extremely large compared with other atoms of the 
series. The stated situation is self-evident in the curve reproduced in figure 14.4 at page 601 of the 
reference [5]. However, no rationale of abrupt increase in size of these two elements is put forward. 
The sharp increase in atomic size of Eu and Yb is missing in the curve of the calculated radii (Fig 5) 
and Table 1 shows that the orbital exponents of the outermost orbital of the atoms of the elements of 
lanthanide series steadily increase and as a consequence, the sizes of the atoms are bound to decrease 
steadily. Therefore, there is no scope of sudden increase in the size of Eu and Yb. However, we may 
try to rationalize the mystery of sudden increase in the reported crystal radii of Eu and Yb. These two 
metal atoms form metallic bonds with two ‘s’ electrons compared to the other lanthanides, which form 
metallic bonds with more than two electrons. Hence lanthanides other than Eu and Yb have more 
valance electrons for metallic binding and as a result such atoms become closer by stronger force of 
attraction reducing the inter nuclear distance and hence their smaller size. But Eu and Yb with fewer 
numbers of valence electrons form solids with relatively weaker force of attraction and hence the inter-
atomic distance between two similar atoms in metallic state should be comparatively large. The fault 
lies in the method of determination of radii of atoms of such elements.  So the apparent difference in 
the general appearance of atomic radii curve of lanthanides of the present calculation and that in 
reference [5] is rationalized. Thus the present theoretical determination of the sizes of the lanthanide 
elements is internally consistent and physically justified. 

 

Actinide Contraction. 
We know that according to the suggestion of Seaborg [41], known as actinide hypothesis, the 

elements following Ac form a new inner transition series analogous to the lanthanide elements. The 
Figs. 1 and 2 reveal that there is a steady decrease in sizes of the atoms of elements after actinium and 
the Table 1 shows that the orbital exponents of the outermost orbital of all such elements increase 
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monotonically. To have a clearer view of the matter of actinide contraction in the present calculation, 
the radii of all 14 elements from Th to Lr are plotted as function of atomic number in Fig.6. The Fig.6 
demonstrates distinctly the actinide contraction where the atoms of actinide elements undergo slow but 
steady decrease in size. Thus the physical reality of periodic size contraction among the lanthanide and 
actinide elements of the periodic table is realistically reproduced in the present set of theoretical 
atomic radii.  

Waber and Cromer [8] calculated the theoretical radii of a number of atoms through the same 
formalism of radial charge density function but the orbitals are computed by the relativistic Hartree-
Fock method. The trend of regular variation of atomic size in the d-block contraction, lanthanide 
contraction was reproduced in their work.   

 

Diamagnetic part of the atomic susceptibility. 
Partington [42] remarked that the Lother Meyer’s atomic volume curve shows the periodicity of a 

number of physico-chemical properties including magnetic susceptibility. The diamagnetic part of 
magnetic susceptibility of as many as 54 elements is computed through the eqn. (9) and the computed 

values of <r2>av and χdia are shown in Table 2 and plotted in Fig. 7 as a function of atomic number. A 

comparison of the Figs.7 and 1 reveals that the nature of the curve for <r2>av is quite periodic in nature 
and mimics pattern of the atomic size curve and it further transpires that the diamagnetic part of 

magnetic susceptibility of the atoms, χdia, basically a size property, varies periodically like other 

periodic properties of elements.  The study of the nature of the profiles of the two curves in Fig. 7 

reveals that the curve of χdia, and the curve of <r2>av are homomorphic to each other. Now comparing 

the pattern of the profile of the diamagnetic susceptibility of atoms in Fig.7 with the pattern of the 
curve of the magnetic susceptibilities of atoms published in American Institute of Physics Handbook 
[43], it is apparent that the general appearance of the two curves have some resemblance. We further 
note that the position of occurrence of the inert gas elements in the curve of Figure 7 and the curve of 
the American Institute of Physics Handbook [43] are similar. It is also apparent from a comparative 

study of the values of the χdia of the present calculation (Table 2) and that published in CRC Handbook 

[44] that the trend of variation of the magnitude of the values of χdia, of inert gas atoms as calculated 

by the present method and that published in the CRC Handbook [44] is similar in nature. 
 

The Periodicity of Atomic Polarizability (α) and Global Hardness (η) 

Chattaraj and Maity [45]  have recently pointed out that the hardness and polarizability of atoms are 
periodic properties of the elements and the periodicity of these properties can be justified and 
formulated on the basis of maximum hardness principle, MHP [24,28,46] and  the minimum 
polarizability principle, MPP [47]. It follows from MHP and MPP that an atom with a closed-shell 
structure is the most stable, hardest,and least polarizable among all the atoms in a given period and in 
general, the  polarizabilty decreases along a period and increses along a group while the hardness has 
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the reverse trend. The hardness  increases  along a period and decreases along a group. Thus, like other 
periodic physico-chemical properties, the global hardness and polarizability of elements are the 
periodic functions of the atomic number. The trend of variation of atomic polarizability in groups and 
periods set in this work was also predicted earlier [19]. 

 

Atomic polarizability (α). 

From the eqn.14 we find that the atomic polarizability,α is directly proportional to the size of the 

atoms. Comparing the experimental [19] atomic polarizability of as many as nine elements with the 
corresponding theoretical polarizability in Table 8 we see that the theoretical values are close to the 
experimental results of as many as eight elements. The Fig. 8 reveals that the polarizability profile 
mimics the atomic size curve of Fig.1. Thus the computed atomic polarizability is a perfect periodic 
physical property having the nature of variation similar to the atomic volume curve of Lother Meyer.  

A close look at Fig.8 shows the set trend of variation of the atomic polarizability, α. The polarizability 

increases steadily with increasing atomic number in a group, and it gradually decreases and ends at the 
atom of inert gas element in a period.  But the trend of polarizability of the inert gases within the 
family must be increasing with increasing atomic number [45]. It is distinct from the Fig.8 that the 
alkali metal atoms appear at the top and the inert gas atoms occur at the bottom of the polarizability 
curve. Apparently, the alkali metal atoms, as a class, can be easily deformed by an electric field. The 
easy polarizability of the alkali metal atoms is due to the loosely bound outer or valance electrons in its 
structure. But the electronic structures of the noble gas atoms are much stiffer or hard. The expected 
pattern of variation of polarizability of the inert gas atoms within the group is also reproduced in the 
polarizabilities of atoms calculated in terms of theoretical atomic radii.  From the above it transpires 
that the polarizabilities atoms computed in terms of the theoretical radii is quantitatively close to the 
experimental values and qualitatively reproduce the expected periodicity. Therefore, we can say that 
the theoretical atomic radii of the present calculation can be used to effectively compute the periodic 
physical property of atoms of the elements – the atomic polarizability.  

 
 Table 8. Comparative study of theoretical and experimental atomic  
                polarizability of some elements.  

Atoms Theoretical Atomic 
Polarizability (x 10–24 cc.) 

Experimental Atomic 
Polarizability (x 10–24 cc.) 

H 0.6669 0.66
He 0.1358 0.21 
Li 19.4239 12 
Be 5.7558 9.3 
C 2.4279 1.5 

Ne 1.2432 0.4 
Na 45.659 27 
Ar 1.5808 1.6 
K 202.9969 34 
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Global Hardness (η). 

  The hardness is an intrinsic periodic physical property of atoms [45]. The global hardness of 103 
elements is computed through eqn.(19) using the values of theoretical atomic radii and shown in Table 

3. Pearson [31] correlated the global hardness, η, with the polarizability of the atoms. Although the 

global hardness has been rigorously defined by Density Functional Theory, the qualitative idea is still a 
valuable guide. We see from eqn.19 that, since e, the electronic charge is constant, the global hardness 

of the atoms, η is inversely proportional to R, the radius of the atoms. Thus the hardness is determined 

by the size factor of atoms only.  We have plotted the computed global hardness of atoms as a function 
of atomic number in Figure 9. The general appearance of the profile of global hardness of atoms as 
revealed in Fig. 9 is periodic in nature and has resemblance to the atomic volume curve of Lother 
Meyer in Fig. 1. The alkali metals have the smallest hardness and the inert gas atoms have the largest 
hardness and the hardness increases monotonically horizontally in a period. The hardness decreases 
vertically in a group. The same pattern is repeated in all the periods and groups. Thus, it is transparent 
that the hardness values of atoms computed in terms of the atomic radii of the present work 
meaningfully exhibit its qualitative periodic nature. Now we seek a quantitative correlation of the 
computed hardness of the atoms. A number of informations have appeared regarding the numerical 
values of global hardness of atoms [6,22, 27,31,48] of which the hardness values of Parr and Pearson 
[27], and Pearson [31]  were calculated from the experimental ionization potential and electron 
affinity. It appears that the values of hardness of atoms calculated by Pearson [31] are absolute. In the 
Table 9 we have tabulated, side by side, the hardness values of atoms of 63 elements calculated by 
Pearson [31] and the hardness values of the corresponding atoms calculated through eqn.19. A close 
look at the values of the hardness calculated by Pearson [31] on the basis of experimental ionization 
potential and electron affinity reveals that in a significant number of cases the expected relative order 
of the hardness and radii are inverted and the atoms of smaller radii has smaller hardness and the atoms 
of larger radii has larger hardness   in violation of periodic law. However, comparing the values of 
hardness of present calculation vis-à-vis and those published by Pearson [31], we find that the 
theoretically computed values of global hardness of as many as 26 of atoms are close (within 0.1 to1.0 
eV) to that of Pearson’s values.  Thus we conclude that the result is encouraging both qualitatively and 
quantitatively.   

 
Conclusion. 
The terms atomic and ionic radii are very popular in chemical literature and the concept has been 

largely employed in rationalizing various physico-chemical properties of atoms and molecules and is a 
useful parameter of electronic structure theory. We have explored a simple method of computing the 
absolute size of atoms and brought together a large body of known material to reveal how many 
different properties correlate with atomic size. Although a large body of scattered information on sizes 
of atoms and ions has appeared in the literature, a critical analysis of the status of a reported set of radii  
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Table 9. Comparative study of theoretical and absolute global hardness (atoms having theoretical 
               hardness close within 0.1–1.0 eV to the experimental are given asterisks). 

 
Atoms 

 
Theoretical Global 
hardness of atoms 

(eV) 

 
Absolute Global 

hardness of atoms 
(eV) 

 
Atoms

 
Theoretical Global  
hardness of atoms 

(eV) 

 
Absolute Global 

hardness of atoms 
(eV) 

H 13.588 6.43 Rb* 1.4948 1.85 
Li 4.4164 2.39 Sr 1.9364 3.7 
Be 6.6244 4.5 Yb 2.0383 3.19 
B 8.8328 4.01 Zr 2.1402 3.21 
C 11.0407 5 Nb* 2.2422 3 
N 13.25 7.23 Mo* 2.344 3.1 
O 15.4574 6.08 Ru* 2.5479 3 
F 17.6634 7.01 Rh* 2.6498 3.16 

Na* 3.3215 2.3 Pd 2.7517 3.89 
Mg* 4.303 3.9 Ag* 2.8536 3.14 
Al 5.2846 2.77 Cd 2.9555 4.66 
Si 6.2659 3.38 In* 3.3972 2.8 
P 7.2473 4.88 Sn* 3.8388 3.05 
S 8.2293 4.14 Sb* 4.2805 3.8 
Cl 9.2107 4.68 Te 4.7221 3.52 
K* 2.02 1.92 I 5.1636 3.69 
Ca 2.6168 4 Cs* 1.1863 1.71 
Sc* 2.7545 3.2 Ba 1.5369 2.9 
Ti* 2.8924 3.37 La* 1.8873 2.6 
V* 3.03 3.1 Hf 7.1344 3 
Cr* 3.0676 3.06 Ta 7.4951 3.79 
Mn* 3.3055 3.72 W 7.8459 3.58 
Fe* 3.443 3.81 Re 8.1965 3.87 
Co* 3.5811 3.6 Os 8.5472 3.8 
Ni* 3.7187 3.25 Ir 8.8973 3.8 
Cu 3.8561 3.25 Pt 9.2474 3.5 
Zn* 3.994 4.94 Au 9.598 3.46 
Ga 4.5909 2.9 Hg 2.3456 5.54 
Ge 5.1874 3.4 Tl* 2.6962 2.9 
As 5.7846 4.5 Pb* 3.0466 3.53 
Se 6.381 3.87 Bi* 3.3972 3.74 
Br 6.978 4.22    

 
 
and inter-relationship between various sets of radii seems to have not been taken up. The scientific 
workers often feel the need of more representative atomic and ionic radii than that available in 
chemical literature. Powell [49] has stated that the structure, stability and reactivity of organo–
lanthanide compounds seem to be largely determined by electrostatic and steric effects and by 
selecting a metal of appropriate size it may in future be possible to tailor the steric effect so as to 
provide just right environment to bring about a desired reaction.  The present theoretical investigation 
of physical problem of atomic size has been found largely successful in providing with an 
unambiguous concept of the absolute size of atoms and rationalizing the range of validity and status of 
various sets of reported atomic radii by a qualitative and quantitative study. The computed theoretical 
radii qualitatively reproduce the periodic table and the atomic volume curve of Lother Meyer. A 
comparative study of the relative sizes of the atoms in groups and periods reveals that the expected 
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vertical trend of variation in a group and the horizontal trend in a period in atomic size are nicely 
reproduced by the theoretical atomic radii. The d-block and f-block contractions are also distinct in the 
calculated sizes. The atomic radii of present calculation are found to have a good correlation with other 
available so called experimental radii and theoretical radii computed through more sophisticated 
method.  The computed size is applied to calculate the periodic size dependent physical properties of 
distinct and isolated atoms: the diamagnetic part of the atomic susceptibility, the atomic polarizability 
and the global hardness. The computed theoretical results have a good resemblance with experimental 
data.  In a significant number of cases the theoretically computed physical properties in terms of the 
absolute radii calculated by the present method are quantitatively close to their experimental values. 
The atomic radii of present calculation are found to have a good correlation with other available 
theoretical radii computed through more sophisticated method. Thus, the present approach of 
computing the absolute size of atoms in a simple way seems to be a successful venture and should be 
exploited as fully as possible. 
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