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Abstract: We discuss the basic concepts of density functional theory (DFT) as ap-

plied to materials modeling in the microscopic, mesoscopic and macroscopic length

scales. The picture that emerges is that of a single unified framework for the study of

both quantum and classical systems. While for quantum DFT, the central equation

is a one-particle Schrodinger-like Kohn-Sham equation, the classical DFT consists of

Boltzmann type distributions, both corresponding to a system of noninteracting par-

ticles in the field of a density-dependent effective potential, the exact functional form

of which is unknown. One therefore approximates the exchange-correlation potential

for quantum systems and the excess free energy density functional or the direct cor-

relation functions for classical systems. Illustrative applications of quantum DFT to

microscopic modeling of molecular interaction and that of classical DFT to a meso-

scopic modeling of soft condensed matter systems are highlighted.
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1 Introduction

Designing materials with tailored properties has always been a long cherised dream and even its

partial realisation heavily depends on the research on modeling and simulation. At the funda-

mental level, the properties of materials are of course ultimately determined by the nature of

the electron density reorganisation that takes place during their formation from the constituent

atoms, and hence in principle are obtainable through a detailed quantum mechanical calculation.

However, a complete ab-initio calculation by solving the many-electron Schrodinger equation or its

variants even with the state of the art computational advances is often too ambitious for the wide

range of length scales involved in materials modeling and considerations involving a separation of

length scales become essential. Thus, in the shorter microscopic length scales, one can aim for a

complete ab-initio electronic structure description considering interacting electrons and the nuclei

using quantum mechanics within the framework of approximate theories that have been developed

over the years. On the other hand, for the intermediate mesoscopic length scale, an atomistic de-

scription with the concept of particles (atoms and molecules), their movements and distributions

using classical and statistical mechanics is often most suitable. The interparticle interaction which

is needed as input in this description can be generated through a quantum mechanical calculation

within the microscopic length scale. The properties obtained at the mesoscopic length scale can

in turn serve as input for the investigation in the macroscopic length scales, where one considers

matter as a continuous medium and the conventional approaches of continuum mechanics and

hydrodynamics of classical physics are used as theoretical tools. The objective of this work is

to present a unified theoretical framework for the study of materials at these three length scales

encompassing electronic, atomistic as well as continuum descriptions. Besides modeling the same

material using different length scales, the recent upsurge in nanomaterials of the mesoscopic size

regime has also led to greater opportunities for materials modeling.

Even in the microscopic length scale, the solution for the wavefunction of a many-electron

system is difficult and methods such as density functional theory (DFT) [1-5] which employs the

single-particle electron density [6] as the basic variable bypassing the many-electron wavefunction

have been known to provide valuable tools for the electronic structure calculations. The scope

of DFT has been further broadened [7] through its application in the mesoscopic domain where

the density distribution of the atomistic particles serve as the basic variable. A density based

description as used, for example, in hydrodynamics is also possible in the domain of macroscopic

length scale. In this work, we present a unified view of DFT using the electronic, atomistic and

macroscopic density variables for the respective length scales.

In the microscopic scale, one deals with the electron density based descriptions leading to

conceptual simplicity, computational economy and a framework for strengthening the foundation
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of widely used chemical concepts. In the mesoscopic scale, the corresponding basic variable is

the single-particle density of the atoms (or molecules) and the effective interaction potentials can

be obtained either by a detailed DFT calculation using the electron density or by modeling the

chemical binding in terms of the atomic parameters defined within the DFT framework. The

field of soft condensed matter [8] physics has found tremendous applications of this mesoscopic

classical DFT where mainly empirical interaction potentials are used. An important field dealing

with the DFT based ab-initio simulation proposed by Car and Parrinello [9] has also emerged

where the interatomic force is obtained using DFT for the electrons during simulation instead

of an empirical pair potential. In the macroscopic domain, the mass, current, energy and other

property densities are the basic variables for a continuous medium description. While the Car-

Parrinello method [9] bridges the microscopic and mesoscopic length scales, many of the areas

of materials science and engineering dealing with the material properties needs a bridging of the

mesoscopic and macroscopic length scales as well.

Thus, the building blocks for a density functional treatment in the short, intermediate and large

length scales are respectively the electron, atom and the volume element, with the corresponding

basic variables being the electron density, the single particle density and the property density. Most

of the applications of DFT involves the common feature of a collection of building blocks with

an inhomogeneous density distribution arising due to the field of an external potential. There

also is the density inhomogeneity arising through stabilisation of thermal density fluctuations,

examples being the phenomena of freezing, nucleation, crystallisation etc. A unified view of the

DFT encompassing the diverse situations and length scales as mentioned above is presented here

for quantum as well as classical systems. We discuss here the basic structure of DFT as applied

to quantum and classical systems covering the microscopic and mesoscopic length scales, with the

main concern being on the atomistic length scale of materials modeling.

2 Density Functional Theory of Quantum and Classical Systems

The basic variable in DFT is the single-particle density ρ(r) which is defined, for an N -particle

system, by integrating the N -particle distribution function P (r1, r2, . . . , rN) over N − 1 variables,

as

ρ(r1) = N
∫
· · ·

∫
dr2dr3 · · · drN P (r1, r2, . . . , rN) , (1)

and represents locally the number of particles per unit volume, thus integrating to the total number

N as
∫
ρ(r)dr = N . This concept of single-particle density is valid for both quantum and classical

systems and for the former, one has P (r1, r2, . . . , rN) = |ψ(r1, r2, . . . , rN)|2 where ψ is the many-

electron wavefunction. The possibility of describing a quantum or classical many-particle system
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completely in terms of the reduced one-particle density has been rigorously proved by Hohenberg

and Kohn [1] and Mermin [2] (HKM) who demonstrated for the first time a one to one mapping

between the density and the potential.

For a many-particle system characterised by an external potential v(r) (arising due to the nuclei

in the case of electrons and due to the walls or pores in the case of confined classical fluid particles),

the ground state energy Ev[ρ] (for a many-electron quantum system) or, the grand potential Ωv[ρ]

(for a many-particle classical system) can be expressed as the unique functionals of density, given

respectively by

Ev[ρ] = F [ρ] +
∫
drρ(r)v(r) (2)

and

Ωv[ρ] = F [ρ] +
∫
drρ(r)[v(r) − µ] (3)

where µ is the chemical potential. The respective true equilibrium densities are determined by

the Euler-Lagrange equation

µ = v(r) +
δF [ρ]

δρ(r)
, (4)

which corresponds to the minima of the energy density functionals.

For many-electron systems, the quantity F [ρ] is always a universal functional of density whereas

for classical particles, it is so only for a specified interparticle interaction. For many-electron

systems, F [ρ] can be expressed as

F [ρ] = Ts[ρ] + Ecoul[ρ] + Exc[ρ] (5)

where the functionals Ts[ρ], Ecoul[ρ] and Exc[ρ] represent the noninteracting kinetic energy, classical

Coulomb energy and the exchange-correlation (XC) energy respectively. The energy functional

Ev[ρ] with the known exact expressions for Ts[ρ] and Ecoul[ρ] as given by

Ts[ρ] = − h̄2

2m

∑
i

< ψi(r)|∇2|ψi(r) > (6)

Ecoul[ρ] =
e2

2

∫ ∫
drdr′

ρ(r)ρ(r′)
|r − r′| (7)

yields, on minimization, the effective one-particle Kohn-Sham equation [3] given by[
− h̄2

2m
∇2 + veff (r; [ρ])

]
ψi = εiψi (8)

where the density ρ(r) is obtained as the sum

ρ(r) =
∑

i

|ψi(r)|2 (9)



Int. J. Mol. Sci. 2002 , 3 264

and the effective potential and the energy functional are given respectively by

veff (r; [ρ]) = v(r) + e2
∫
dr′

ρ(r′)
|r − r′| +

δExc[ρ]

δρ(r)
(10)

and

E[ρ] =
∑

i

εi − Ecoul[ρ] + Exc[ρ] −
∫
drρ(r)

δExc

δρ(r)
. (11)

For a classical fluid [7] with inhomogeneous density distribution, the functional F [ρ] representing

the intrinsic Helmholtz free energy can be expressed as

F [ρ] = Fid[ρ] + Fex[ρ] (12)

where the ideal-gas free-energy functional Fid[ρ] (corresponding to absence of internal interactions)

is the analogue of the noninteracting kinetic energy Ts[ρ] of Eqs. (5) and (6), and is given by the

exact expression

Fid[ρ] =
1

β0

∫
drρ(r){ln[ρ(r)Λ3] − 1} , (13)

where β0(= 1/kBT ) is the inverse temperature and Λ is the thermal de-Broglie wavelength. The

quantity Fex[ρ] representing the excess free-energy for the classical system is analogous to the

interaction energy functional (Ecoul[ρ] + Exc[ρ]) of the quantum system and is a universal func-

tional of density for a specified interparticle interaction. The Euler-Lagrange equation (4) for this

classical system is given by

ρ(r) = Λ−3 exp(β0µ) exp{−β0v(r) + c(1)(r; [ρ])} (14)

which essentially represents a Boltzmann-like distribution of an ideal gas in the field of an effective

potential veff (r; [ρ]) = [v(r)− β−1
0 c(1)(r)], where the first order direct correlation function (DCF)

c(1)(r) is defined as the functional derivative

c(1)(r1) = −β0
δFex[ρ]

δρ(r1)
. (15)

This extra contribution of the first order DCF c(1)(r; [ρ]) to the effective potential, arising from

interparticle interactions and correlations is analogous to the exchange-correlation contribution to

the Kohn-Sham potential for quantum systems. It may be noted that a spin-polarized quantum

system and a two-component classical fluid mixture can be treated using an extended version of

the above respective frameworks with two density components as the basic variables.

In both quantum and classical DFT, the one-particle picture has emerged through an exact

mapping of the actual system of N interacting particles in the field of an external potential v(r)
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into another system of N noninteracting particles of the same density ρ(r) but moving in an

effective potential veff (r; [ρ]), which itself depends on the density, thus requiring a self-consistent

iterative procedure for solution of the Kohn-Sham or the Boltzmann-like density equations.

Due to lack of knowledge of the exact form of veff (r; [ρ]) as a density functional for inhomoge-

neous systems, it is however essential to approximate the XC energy functional Exc [ρ] for quantum

systems, and the excess free energy functional Fex [ρ] or its derivatives for classical systems. The

knowledge of the functionals for specific systems with homogeneous density are often useful in

approximating the functionals for the corresponding inhomogeneous systems. For many-electron

quantum systems, a standard simple scheme is the local density approximation [10] (LDA) where

the expression for the XC energy functional of the homogeneous system is directly evaluated using

the inhomogeneous density, viz.

ELDA
xc [ρ(r)] =

∫
drρ(r)ε̃xc(ρ(r)), (16)

where ε̃xc denotes the XC energy per electron for the homogeneous electron gas. This approach

is however not suitable for approximating the excess free energy of the classical systems such

as liquids for which the particles are of finite size and the peak densities might even exceed the

density of close packing. For such systems, the corresponding procedure is the weighted density

approximation (WDA) [11-13] where the actual density distribution ρ(r) is smoothed out by coarse

graining with a weight function w(r, r′; ρ̄(r)) to obtain an effective density ρ̄(r) as

ρ̄(r) =
∫
dr′ρ(r′)w(r, r′; ρ̄(r)) (17)

which is then used to obtain an approximation to the excess free energy or the first order DCF as

Fex[ρ(r)] =
∫
drρ(r)f̃ex(ρ̄(r)) (18)

c(1)(r; [ρ(r)]) = c̃(1)(ρ̄(r)), (19)

by evaluating the corresponding expressions for f̃ex and c̃(1) of the homogeneous fluid. Other

procedures involve the gradient corrections to the LDA in electronic structure theory [14] and

functional perturbation techniques [15, 16] in the theory of complex fluids.

3 Electron Density and Microscopic Modeling of Intra- and Inter-molecular Inter-

action Potential

One of the important areas of research in materials modeling involves computer simulation using

interparticle potentials as input which are obtained either empirically or through a quantum
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mechanical calculation. While the interatomic or intermolecular potential can be obtained through

a direct detailed DFT calculation based on electron density with suitable approximations for the

XC energy functionals, other simplified alternatives include a perturbative approach involving the

electron density reorganisation arising out of interatomic or intermolecular perturbations. Thus,

considering the up- and down-spin densities ρα(r) and ρβ(r), (which integrate to the corresponding

number of electrons Nα and Nβ), as the basic variables, the spin-polarised version of the energy

functional of Eq. (2) can be written as

E[ρα, ρβ] = F [ρα, ρβ] +
∫
dr[ρα(r) + ρβ(r)]v(r). (20)

Now if the system is perturbed by a perturbing potential δv(r) with consequent density changes

δρα(r) and δρβ(r), the resulting energy change can be expressed [17, 18] using the functional

Taylor expansion (retaining terms upto second order) as

∆E =
∑
ν

∫
dr

(
δE[ρα, ρβ]

δρν(r)

)
v(r)

δρν(r) +
∫
dr

(
δE[ρα, ρβ]

δv(r)

)
ρ(r)

δv(r)

+
1

2

∑
µ

∑
ν

∫ ∫
drdr′

(
δ2E[ρα, ρβ]

δρµ(r)δρν(r′)

)
v(r)

δρµ(r)δρν(r
′)

+
1

2

∫ ∫
drdr′

(
δ2E[ρα, ρβ]

δv(r)δv(r′)

)
ρ(r)

δv(r)δv(r′)

+
∑
ν

∫ ∫
drdr′

(
δ2E[ρν(r)]

δρν(r)δv(r′)

)
δρν(r)δv(r

′) (21)

which on functional differentiation and using the result [19] (δ2E/δρν(r)δv(r
′)) = δ(r− r′), yields

the up- and down-spin chemical potentials given (upto first order) by

µα = µ0
α + δv(r) +

∑
ν

∫
dr′ηαν(r, r

′)δρν(r
′) (22)

µβ = µ0
β + δv(r) +

∑
ν

∫
dr′ηβν(r, r

′)δρν(r
′) (23)

where µ0
α and µ0

β denote the corresponding chemical potentials of the unperturbed system, viz.

µ0
α = v(r) +

δF [ρα, ρβ]

δρα(r)
(24)

µ0
β = v(r) +

δF [ρα, ρβ]

δρβ(r)
, (25)

also identified [20] as the negative of the two electronegativities (∂E/∂Nα) and (∂E/∂Nβ) respec-

tively. These are the key equations providing a justification for the chemical potential equalisation
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within a molecular species. Here the hardness kernel [21] ηµν(r, r
′) represents the energy functional

derivative

ηµν(r, r
′) =

(
δ2F [ρα, ρβ]

δρµ(r)δρν(r′)

)
(26)

with the subscripts µ and ν denoting any of the spins α and β, and determines the local hardness

[22] ηµν(r) as well as the cross hardness ηαβ = (∂2E/∂Nα∂Nβ) as

ηµν =
∫
drfν(r)ηµν(r)

=
∫
drfν(r)

∫
dr′ρµ(r′)ηµν(r, r

′) (27)

where the spin-dependent Fukui function [23] fν(r) = (∂ρν(r)/∂Nν).

The expressions for the energy and chemical potential in terms of density perturbation are useful

in the studies of molecule formation, response properties and also intermolecular interaction. The

basic approach is the same in all the cases and hence we now specialise to the simple case of

molecule formation from its constituent atoms. The objective is to develop a lattice model with

the lattice sites given by the locations of the M atoms and P bonds between them at the fixed

positions {Ri} corresponding to a particular (say, equilibrium) configuration of the molecule and

therefore the expressions of chemical potential given by Eqs. (22) and (23) are now recast to obtain

the same for the i-th atomic or bond site as given by

µα,i = µ0
α,i + δv(Ri) +

∑
ν

∫
dr′ηαν(Ri, r

′)δρν(r
′)

= µ0
α,i + δv(Ri) +

∑
ν

∑
j

∫
dr′jηαν(Ri, r

′
j)δρν(r

′
j), (28)

with a similar expression for µβ,i obtained by interchanging α with β. This expression corresponds

to the partitioning of the density changes δρν(r) on molecule formation as a sum of the atomic and

bond region components as δρν(r) =
∑

i δρν,i(r) =
∑

i δρν,i(ri), with ri denoting the atom or bond

region around the i-th site location Ri. Also, it is assumed without any loss of generality that the

density components δρν,i(r) vanish outside this region ri belonging to the i-th site. Introducing

the assumption ηµν(ri, r
′
j) ≈ ηµν(Ri,R

′
j) for the hardness kernel, the chemical potential for the

i-th site as given by Eq. (28) can be further simplified as

µα,i = µ0
α,i + δv(Ri) +

∑
ν

∑
j

ηαν(Ri,Rj)
∫
dr′jδρν(r

′
j)

= µ0
α,i + δv(i) +

∑
ν

∑
j

ηαν(i, j)qν,j (29)

with a similar expression for µβ,i given by

µβ,i = µ0
β,i + δv(i) +

∑
ν

∑
j

ηβν(i, j)qν,j, (30)
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where qν,j denotes the atomic or bond site charges. One thus arrives at the lattice model of a

molecular species with point charges (zeroeth moment of the density) located at the lattice sites.

An equalisation of the effective chemical potentials of each spin as given by Eqs. (29) and (30) for

all the M atomic and P bond sites leads to M + P − 1 linear equations in the charge variables

for each spin which along with the charge conservation yield the individual site charges. The

expression for the energy change as given by Eq. (21) as reexpressed in terms of these charges is

given by

∆E =
∑
ν

∑
i

[µ0
ν,i + δv(i)]qν,i +

1

4

∑
µ

∑
ν

∑
i

∑
j

ηµν(i, j)qµ,iqν,j. (31)

While for molecule formation, δv(i) = 0, one can calculate the polarizability [18, 24] or chemical

reactivity etc, by considering this contribution [18]. The energy expression of Eq. (31) is reminis-

cent of semiempirical quantum chemistry and numerical results based on this procedure are found

[25, 26] to reproduce the binding energies as well as partial atomic charges of homonuclear as well

as heteronuclear simple molecular systems quite well. These DFT based formalisms can also be

used for predicting the properties of solids. One such example is the Miedema [27] model for the

prediction of heat of formation of simple alloy systems.

The ingredients of the present theory are the chemical potentials of each of the atomic and bond

sites and also the self and cross components of the hardness matrix corresponding to different

spins and sites. The atomic up- and down-spin chemical potentials µ0
α,i and µ0

β,i as well as the

corresponding hardness parameters η0
α,i, η

0
β,i and the cross term η0

αβ,i which are essentially the

diagonal elements of the hardness kernels, viz. ηαα(i, i), ηββ(i, i) and ηαβ(i, i) of the i-th atom

can be obtained from spin polarised DFT calculations as has been done earlier [26]. The bond

site chemical potential as well as the hardness parameters can be approximated [28] by suitable

averaging [29] of the corresponding values for the neighbouring atoms. For the off-diagonal (i �= j)

elements of the hardness kernel ηµν(i, j), one can essentially employ the atom-in-molecule hardness

matrix concept of Nalewajski [30] generalised for the spin-dependence and model along similar lines

[31] following basically an electrostatic analogy details of which have been discussed elsewhere [18].

For a nonbonded pair of sites (atom or bond), one considers a Coulomb potential ηαβ(i, j) = 1/εRij,

with ε as the dielectric constant of the electron cloud medium. while for bonded sites, a better

modeling [31] involves the Mataga-Nishimoto-Ohno formula as ηαβ(i, j) = 1/(Rij + aαβ
ij ) with

aαβ
ij = 2/(η0

α,i + η0
β,j). Thus, the DFT framework with the simplifications through the associated

concepts is shown to lead to a simple equation (Eq.(31)) for predicting the intra- as well as

inter-molecular interaction energies.
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4 Density Functional Theory of Soft Matter: A Mesoscopic Domain

While the quantum DFT discussed in the previous section with electron density as the basic

variable provides a simplified route to the estimation of the intermolecular potential, the present

prescription which considers DFT in the mesoscopic length scale uses this as input. For the soft

matter systems considered here, the collective interaction and correlation effects play important

role making the DFT formalism an attractive tool for study of these many-body systems. Some of

the applications of DFT in this area include [7] the density distributions at interfaces consisting

of liquid-gas, solid-liquid, charged electrode-electrolyte [32] interfaces, oscillating solvation force

[33, 34], sedimentation [35] and adsorption isotherm in porous medium [36] etc. The swelling of

polymer gels on absorbing water, display using liquid crystals, field responsive electro-/magneto-

rheological fluids etc involve a distribution of the complex fluid particles in external fields. The

structure of complex fluids and their mixtures at solid-fluid interfaces is directly relevant to ad-

sorption, wetting, catalysis etc and is thus of both fundamental and technological importance. We

therefore consider equilibrium arrangement of the fluid particles, which are the building blocks in

the intermediate mesoscopic length scale, at interfaces due to confinement.

The system of interest here is a two-component fluid mixture, with the interparticle interaction

(such as hard sphere, Lennard-Jones etc for neutral species and charged hard sphere, DLVO

screened Coulomb (for colloids) etc for charged species) uµν(r12) with µ, ν = α, β denoting the

two components. The fluid mixture is confined in a cavity (a slit between two planar walls

or a spherical or cylindrical pore) which provides the external potential vν(r) and the resulting

inhomogeneous density distribution is ρν(r) for the ν-th component. This inhomogeneous fluid

mixture is considered to be in equilibrium with the corresponding bulk phases of densities ρ0
α and

ρ0
β and chemical potentials µα and µβ for the two components. The DFT for this system is quite

analogous to the spin polarised DFT for the many-electron systems considered in the previous

section.

The grand potential density functional Ω[ρα, ρβ] for this two-component system can be written

as

Ω[ρα, ρβ] = Fex [ρα, ρβ] +
1

β0

∑
ν

∫
dr ρν(r){ln[ρν(r)Λ

3
ν ] − 1}

+
∑
ν

∫
dr[vν(r) − µν ]ρν(r) (32)

where Fex [ρα, ρβ] is the excess free energy arising from interparticle interaction and correlation

effects. The grand potential, on minimisation, with respect to the component densities leads to

the Euler-Lagrange equations, the final forms of which as obtained after equating the component
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chemical potentials with those of the bulk phase, are given by

ρν(r) = ρ0
ν exp{−β0vν(r) + c(1)

ν (r; [ρα, ρβ]) − c̃(1)
ν (ρ0

α, ρ
0
β)}, ν = α, β (33)

where the symbol c̃ corresponds to the bulk phase. The density equation (33) for each component

is of the same Maxwellian form as that of an ideal gas subjected to an effective one-particle

potential contributed by the DCF c(1)
ν (r; [ρα, ρβ]) defined for the two component system as

c(1)
ν (r; [ρα, ρβ]) = −β0

δFex[ρα, ρβ]

δρν(r)
. (34)

Since the exact form of the functional c(1)
ν (r; [ρα, ρβ]) is unknown, one can employ a functional

Taylor expansion for c(1)
ν (r; [ρα, ρβ]) around the same for the corresponding homogeneous system

in powers of the density deviation ∆ρν(r) = [ρν(r) − ρ0
ν ] as

c(1)
ν (r; [ρα, ρβ]) = c̃(1)

ν ([ρ0
α, ρ

0
β]) + γν(r) + ∆cν(r) (35)

where γν(r) represents the second order correction term given by

γν(r) =
∑
ν′

∫
dr2 c̃

(2)
νν′(r, r2; [ρ

0
α, ρ

0
β]) ∆ρν′(r2) (36)

with the second order DCF c
(2)
νν′(r1, r2) defined as

c
(2)
νν′(r1, r2; [ρα, ρβ]) = −β0

δ2Fex[ρα, ρβ]

δρν (r1)δρν′(r2)
(37)

and ∆cν(r) denotes contributions from all the higher order terms. The corresponding density

equation is given by

ρν(r) = ρ0
ν exp [−β0vν(r) + γν(r) + ∆cν(r)] . (38)

This splitting is often convenient since the homogeneous second order DCF is often known for some

model pair potentials and hence the corresponding contribution γν(r) can be evaluated easily while

the higher order DCF’s are unknown and hence are approximated for practical implementation.

Recently, we have proposed two approximate approaches to calculate ∆cν(r), one of which esti-

mates a third order contribution [16] through an approximation for the third order DCF in the

spirit of Kirkwood’s superposition approach, and also generalisation of the one-component result

of Rickayzen and coworkers [37]. The conditions that the density functional as used here should

yield the correct bulk partial pressures in the homogeneous limit are imposed to evaluate the

parameters appearing in the approximation. The other alternative route that we have proposed

[38] evaluates ∆cν(r) using the concept of bridge function used widely in the integral equation

theory of homogeneous fluid mixtures.
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While these approaches are either fully or partially perturbative, nonperturbative WDA based

methods can also be obtained by generalising Eqs. (18) or (19) to the case of mixtures. The basic

approach here is the same and terms of all orders are approximated by evaluating the excess free

energy or the first order DCF at suitable effective weighted densities. In the partially nonpertur-

bative approaches [39], WDA is used to evaluate the short range contribution to the first-order

DCF and for the long range contribution, one employs a functional perturbative expansion. A

typical application that has been considered involves the structure of electrode-electrolyte inter-

face, with the ionic components modeled as charged hard spheres, and the solvent as a dielectric

continuum. For this restricted primitive model [32] the long range contribution leads to an electro-

static potential analogous to that in the many-electron systems, and the short range correlation

is evaluated through WDA or functional perturbative method. For walls or cavities of planar,

spherical or cylindrical shapes, the density variation is along only one coordinate and hence the

numerical calculation becomes much simpler.

An important consequence of the inhomogeneous density distribution at the interfaces is the

solvation or structural force which can be directly measured experimentally. The interaction

between colloidal particles in a suspension is also essentially an interaction between the overlapping

electric double layers. DFT has been used successfully to predict the solvation force for simple

liquids and the results are in good agreement with simulation results. We have also calculated the

interaction energies between the walls for a neutral liquid and have been able to reproduce the

experimental results for a real liquid quite well [34] by choosing a suitable value for the hard sphere

diameter. The DFT approach has also been used to calculate the interaction between colloidal

particles. There is also interest in the study of the effect of surface induced inhomogeneity in

density and the surface forces on the dynamics in condensed phase.

Besides these cases involving density inhomogeneity as a consequence of external potential due

to confinement, there are situations where one has spontaneous appearance of density inhomo-

geneity, for example, in phase transitions. Here thermal density fluctuations leading to density

inhomogeneity get stabilised at suitable values of the external parameters such as temperature,

density etc. DFT has been quite successful in its prediction of the phase transition from liquid

phase to an ordered phase due to the pioneering works of Ramakrishnan and Yussouff [40] who laid

the foundation of the DFT of freezing. The theory employs the free energy or the grand potential

functionals to locate the physical parameters at which the ordered phase with an inhomogeneous

periodic density distribution is energetically more stabilised as compared to the uniform density

fluid phase. The original theory has been extended and applied extensively to a large class of soft

matter systems including colloidal suspensions [41], liquid crystals and other forms of complex

fluids. With a simple modeling of the interfacial density as a decaying oscillatory function in the

perpendicular direction and periodic in the parallel plane, DFT has been able to predict [42] the
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surface energy as a function of the number of interfacial layers in good agreement with simulation

results. Application to various other phase transitions, nucleation and many other phenomena

has also been found to be quite successful.

5 Density Functional Theory of Dynamical Phenomena

The applicability of DFT is not restricted to equilibrium situations alone, but is extended to time-

dependent (TD) situations for both quantum and classical systems. The basic variables involve

the TD density ρ(r, t) and TD current density j(r, t). The TD DFT [43] for quantum systems

involve the TD one-particle Kohn-Sham like equations of the form[
− h̄2

2m
∇2 + veff (r, t)

]
ψk(r, t) = ih̄

∂ψk(r, t)

∂t
(39)

where veff (r, t) is the effective TD potential dependent on the densities determined by the orbitals.

The equivalent quantum hydrodynamic formulation [44] consists of the continuity equation corre-

sponding to the time evolution of the density given by

∂ρ(r, t)

∂t
= ∇.j(r, t) (40)

and an Euler type equation for the time-evolution of the current density as

∂j(r, t)

∂t
= −ρ(r, t)∇

[
v(r, t) +

δF

δρ

]
−∇.

(
jj

ρ

)
(41)

which differs from the conventional hydrodynamic equation in the additional force of quantum

origin which augments the classical force.

For classical TD DFT, the continuity equation is the same as Eq.(40) and the equation for the

current density is given by

∂j(r, t)

∂t
= −ρ(r; t)∇

[
v(r, t) +

δF

δρ

]
−
∫ t

0
dτ
∫
dr′Γ(r, r′; t− τ)

δF

δj(r′, τ)
(42)

and involves the dissipation kernel Γ(r, r′; t).
The quantum and classical TD DFT thus involve closely analogous frameworks, suitable for

bridging the microscopic and mesoscopic length scales. The TD DFT equations have also been

extended to spin-polarised situations, and multicomponent fluid mixtures leading to many appli-

cations to dynamical phenomena. The interconnections of TD DFT formalism with mode coupling

theories [45, 46] of diffusion in fluid mixtures have also been demonstrated recently.
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6 Concluding Remarks

This work presents a brief review of DFT as applied to quantum as well as classical systems

encompassing the microscopic, mesoscopic and macroscopic length scales, the emphasis being on

the unified nature of the framework and its promise for future applications in diverse interdis-

ciplinary areas of research. The present review is however only illustrative and not exhaustive.

Materials modeling is an exciting and promising field of research and with the advancement of

theoretical and computational techniques it is expected to be more and more challenging and

further developments in the field of DFT are likely to play an important role.
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