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Abstract: Potential functions of the ground and low excited states of Al2 are calcu-

lated by the relativistic Fock-space coupled cluster method in the framework of the

projected Dirac-Coulomb Hamiltonian. A moderate-size basis [16s11p3d3f/6s6p3d2f ]

is used. 3Πu is confirmed as the ground state of the system. Its spin orbit splittings

are reproduced well, with the Λ = 1, 2 states lying 32.5 and 66.1 cm−1, respectively,

above the Λ = 0 minimum (experimental values are 30.4 and 63.4 cm−1). The bond is

somewhat too weak, with De 0.14 eV below experiment, Re too high by 0.08 Å, and

ωe 21 cm−1 too low. It is speculated that the better agreement obtained in earlier

calculations may be due to neglect of basis set superposition errors. The description

of bonding in the molecule may be improved by the use of a better basis and the in-

clusion of more correlation by the intermediate Hamiltonian coupled cluster method,

which makes it possible to handle larger P spaces and extend the potential functions

to the whole range of internuclear separations.

Keywords: Aluminum dimer; Relativistic coupled cluster; Intermediate Hamiltonian

coupled cluster.
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1 Introduction

The aluminum dimer, a light molecule with only two valence electrons, exhibits nevertheless

interesting features in its bonding. The 3p valence electrons can go into either pσg or pπu bonding

orbitals, yielding a number of close-lying potential curves. The nature of the ground state was

not clear for many years (references to early work may be found in [1]); more recently, both

theoretical [2,3] and experimental [1,4] studies identified the ground state as σgπu X3Πu, followed

closely by π2
u A3Σ−

g . The adiabatic energy separation Te of the two states has not been determined

experimentally; theoretical predictions [2, 3] are about 200 cm−1.

An interesting feature of the Al2 ground state is its spin-orbit splitting [4]. The lowest state

is 3Π0u, with 3Π1u and 3Π2u 30.4 and 63.4 cm−1 higher, respectively. The Ω = 0 state itself is

split into 3Π0−u and 3Π0+u, separated by 0.087 cm−1. These splittings were not accounted for in

previous calculations, which were nonrelativistic and did not include spin-orbit coupling.

The purpose of the present work is to apply the relativistic Fock-space coupled cluster method to

the low states of Al2. This method has proved highly accurate for energy levels of heavy atoms, re-

producing transition energies (ionization potentials, excitation energies, electron affinities) within

a few hundredths of an eV in most cases and providing reliable predictions for super-heavy el-

ements, where ground and excited state configurations are often different from those of lighter

homologs (for a recent review see [5]). The reduced symmetry of molecules increases dramatically

the computational resources required and limits the size of the basis which can be used. This work

should be regarded as preliminary, with a modest-size basis, and is expected to pave the way to

more complete applications in the future.

2 Methodology

2.1 The relativistic Hamiltonian

The relativistic many-electron Hamiltonian cannot be written in closed form; it may be derived

perturbatively from quantum electrodynamics [6]. The simplest form is the Dirac-Coulomb (DC)

Hamiltonian, where the nonrelativistic one-electron terms in the Schrödinger equation are replaced

by the one-electron Dirac operator hD,

HDC =
∑

i

hD(i) +
∑
i<j

1/rij , (1)

with

hD = cα · p + βc2 + Vnuc. (2)

α and β are the four-dimensional Dirac matrices, and Vnuc is the nuclear attraction operator,

with the nucleus modeled as a point or finite-size charge. Only the one-electron terms in the DC
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Hamiltonian include relativistic effects, and the two-electron repulsion remains in the nonrelativis-

tic form.

The DC Hamiltonian may lead to the admixture of negative-energy eigenstates of the Dirac

Hamiltonian in an erroneous way [7, 8]. The no-virtual-pair approximation [9, 10] is invoked to

correct this problem: the negative-energy states are eliminated by the projection operator Λ+,

leading to the projected Hamiltonians

H+
DC = Λ+HDCΛ+ . (3)

H+
DC provides the framework for the calculations reported here.

2.2 The Fock space coupled cluster method

The Dirac-Coulomb Hamiltonian H+
DC may be rewritten in second-quantized form [9,11] in terms

of normal-ordered products of spinor creation and annihilation operators {r†s} and {r†s†ut},

H = H+
DC − 〈0|H+

DC|0〉 =
∑
rs

frs{r†s} +
1

4

∑
rstu

〈rs||tu〉{r†s†ut}, (4)

where

〈rs||tu〉 = 〈rs|tu〉 − 〈rs|ut〉
and

〈rs|tu〉 =
∫

dx1dx2Ψ
∗
r(x1)Ψ

∗
s(x2)r

−1
12 Ψt(x1)Ψu(x2).

Here frs and 〈rs||tu〉 are, respectively, elements of one-electron Dirac-Fock and antisymmetrized

two-electron Coulomb interaction matrices over Dirac four-component spinors. The effect of the

projection operators Λ+ is now taken over by normal ordering, denoted by the curly braces in

(4), which requires annihilation operators to be moved to the right of creation operators as if

all anticommutation relations vanish. The Fermi level is set at the top of the highest occupied

positive-energy state, and the negative-energy states are ignored.

By adopting the no-pair approximation, a natural and straightforward extension of the nonrel-

ativistic open-shell CC theory emerges. The multireference valence-universal Fock-space coupled-

cluster approach is employed, which defines and calculates an effective Hamiltonian in a low-

dimensional model (or P ) space, with eigenvalues approximating some desirable eigenvalues of

the physical Hamiltonian. The effective Hamiltonian has the form [12]

Heff = PHΩP (5)

where Ω is the normal-ordered wave operator,

Ω = {exp(S)}. (6)
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The Fock-space approach starts from a reference state (closed-shell in our applications, but

other single-determinant functions may also be used), correlates it, then adds and/or removes

electrons one at a time, recorrelating the whole system at each stage. The sector (m, n) of the

Fock space includes all states obtained from the reference determinant by removing m electrons

from designated occupied orbitals, called valence holes, and adding n electrons in designated

virtual orbitals, called valence particles. The practical limit is m + n ≤ 2, although higher sectors

have also been tried [13]. The excitation operator is partitioned into sector operators

S =
∑
m≥0

∑
n≥0

S(m,n). (7)

This partitioning allows for partial decoupling of the open-shell CC equations. The equations

for the (m, n) sector involve only S elements from sectors (k, l) with k ≤ m and l ≤ n, so

that the very large system of coupled nonlinear equations is separated into smaller subsystems,

which are solved consecutively: first, the equations for S(0,0) are iterated to convergence; the S(1,0)

(or S(0,1)) equations are then solved using the known S(0,0), and so on. This separation, which

does not involve any approximation, reduces the computational effort significantly. The effective

Hamiltonian (5) is also partitioned by sectors. An important advantage of the method is the

simultaneous calculation of a large number of states. Reviews of the Fock-space method may be

found in Refs. [14,15].

Each sector excitation operator is, in the usual way, a sum of virtual excitations of one, two,

. . . , electrons,

S(m,n) =
∑

l

S
(m,n)
l , (8)

with l going, in principle, to the total number of electrons. In practice, l has to be truncated.

The level of truncation reflects the quality of the approximation, i.e., the extent to which the

complementary Q space is taken into account in the evaluation of the effective Hamiltonian. In

the applications described below the series (8) is truncated at l=2. The resulting CCSD (cou-

pled cluster with single and double excitations) scheme involves the fully self-consistent, iterative

calculation of all one- and two-body virtual excitation amplitudes and sums all diagrams with

these excitations to infinite order. As negative-energy states are excluded from the Q space, the

diagrammatic summations in the CC equations are carried out only within the subspace of the

positive-energy branch of the DF spectrum.

2.3 The intermediate Hamiltonian coupled cluster method

The accuracy and convergence of the Fock-space coupled cluster method discussed above depends

on an appropriate partitioning of the function space into P and Q subspaces. Ideally, the P
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space should include all functions which are important to the states considered, since the effective

Hamiltonian is diagonalized in P , whereas Q-space contributions are included approximately. On

the other hand, convergence of the coupled cluster iterations is enhanced by maximal separation

and minimal interaction between P and Q. These two requirements are not always easy to

reconcile. Relatively high P functions have often strong interaction with or are energetically close

to Q states, making convergence slow or impossible. The offending functions are usually included

in P because of their significant contribution to the lower P states, and we may not be particularly

interested in the correlated states generated from them by the wave operator; however, the FSCC

is an all-or-nothing method, and lack of convergence means that no states at all are obtained. The

intermediate Hamiltonian coupled cluster method developed recently [16] addresses this problem,

making possible larger and more flexible P spaces, thereby extending the scope of the coupled

cluster method and increasing its precision.

The intermediate Hamiltonian method has been proposed by Malrieu [17] in the framework of

degenerate perturbation theory. The P space is partitioned into the main Pm and the intermediate

Pi, with the corresponding operators satisfying

Pm + Pi = P , P + Q = 1 . (9)

Two sets of wave-like operators are defined and expanded in coupled-cluster normal-ordered ex-

ponential ansätze. Ω = 1 + χ is a standard wave operator in Pm,

ΩPm|Ψm〉 = {exp S}Pm|Ψm〉 = |Ψm〉 , (10)

where |Ψm〉 denotes an eigenstate of the Hamiltonian H with the largest components in Pm, and

R = 1 + ∆ is an operator in P , satisfying

RP |Ψm〉 = {exp T}P |Ψm〉 = |Ψm〉. (11)

It should be noted that the last equation, and therefore all equations derived from it, applies when

operating on |Ψm〉 but not necessarily on |Ψi〉. This feature distinguishes R from a bona fide wave

operator. The cluster equation for S in the (n) sector of the Fock space is [16]

Q[S(n), H0]Pm = Q(V QiΩ − χPmV QiΩ)(n)Pm, (12)

where Qi = 1 − Pi = Q + Pm. No PiSPm elements appear in the equation, so that Pi acts as a

buffer between Pm and Q, facilitating convergence and avoiding intruder states. Eq. (12) is valid

provided QSPm � QTPm, which is rather easy to achieve and is checked in the calculation. After

(12) is solved for QSPm, the equation for QTP is solved,

(E − H0)QT (n)P = (13)

Q
(
S(E − H0)Pm + (V R) − (χPmV R)

)(n)
P.



Int. J. Mol. Sci. 2002 , 3 503

E is an arbitrary constant, chosen to facilitate convergence. Tests have shown that E may be

changed within broad bounds (hundreds of hartrees) with minute effect (a few wave numbers) on

calculated transition energies. The final step is the construction of the intermediate Hamiltonian

HI = PHRP , (14)

which gives upon diagonalization the correlated energies of |Ψm〉,

HIP |Ψm〉 = EmP |Ψm〉 . (15)

The dimension of the HI matrix is that of P ; however, only the eigenvalues corresponding to

|Ψm〉 are required to satisfy (15). The other eigenvalues, which correspond to states |Ψi〉 with the

largest components in Pi, may include larger errors.

3 Calculations

The MOLFDIR [18] program package was used in the Dirac-Fock stage of the calculations, gen-

erating the orbitals and integrals needed in the coupled cluster part. The augmented correlation

consistent pVTZ basis [19] was recontracted by Partridge et al. [20].It consists of 16s11p3d3f

Gaussian-type spinors contracted to 6s6p3d2f . It is a moderate-size basis, and is expected to give

good but not definitive results. As indication to the quality of the basis, the ionization potential

of atomic Al given by it at the Fock-space CCSD level is 5.88 eV, compared with the experi-

mental [21] 5.98 eV, and the 2P3/2 −2P1/2 splitting is 119 cm−1, close to the experimental [22]

112 cm−1. The closed-shell Al2+
2 ion was used as reference, and the Al2 states were obtained by

the Fock-space scheme

Al2+
2 [(0) sector] → Al+2 [(1) sector] → Al2[(2) sector]. (16)

All electrons were correlated, except the inner-shell 1s. Double-group symmetry was used, and

the valence orbitals were 6′e1g, 6′′e1g, 6′e1u, 6′′e1u, 2′e2u, and 2′′e2u, all the bonding molecular

orbitals resulting from the Al 3p atomic orbitals. Virtual orbitals with energies above 100 a.u.

were discarded; all other excitations were included in the coupled cluster expansion. Results were

corrected for basis set superposition errors (BSSE) by the counterpoise method [23].

4 Results and Discussion

Calculated energies of the Al2 low-lying triplet and singlet states are collected in tables 1 and

2, respectively. Potential functions are shown in fig. 1. Spectroscopic constants for the different

states are listed in table 3. To our knowledge, this is the first calculation of the fine-structure
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Table 1: Calculated energies of Al2 triplets. All quantities in atomic units. 484 a.u. should be

subtracted from listed values to obtain the total energies.

R 3Π0+u
3Π0−u

3Π1u
3Π2u

3Σ−
g

4.2 -0.9316700 -0.9316700 -0.93149 -0.93131 -0.95592

4.8 -0.9475860 -0.9475860 -0.94741 -0.94724 -0.96414

4.6 -0.9579970 -0.9579970 -0.95783 -0.95766 -0.96791

4.8 -0.9642450 -0.9642450 -0.96418 -0.96401 -0.96856

5.0 -0.9676862 -0.9676851 -0.96753 -0.96737 -0.96711

5.2 -0.9688693 -0.9688680 -0.96872 -0.96856 -0.96429

5.4 -0.9684924 -0.9684909 -0.96835 -0.96819 -0.96064

5.6 -0.9670160 -0.9670150 -0.96687 -0.96672 -0.95650

5.8 -0.9647870 -0.9647850 -0.96464 -0.96450 -0.95219

6.2 -0.9590180 -0.9590150 -0.95888 -0.95873 -0.94361

6.4 -0.9558050 -0.9558020 -0.95566 -0.95552 -0.93956

Table 2: Calculated energies of Al2 singlets. All quantities in atomic units. 484 a.u. should be

subtracted from listed values to obtain the total energies.

R 1Πu (1)1Σ+
g (2)1Σ+

g
1∆g

4.2 -0.91804 -0.92544 -0.87523 -0.93929

4.4 -0.93415 -0.93743 -0.89657 -0.94851

4.6 -0.94472 -0.94544 -0.91091 -0.95324

4.8 -0.95120 -0.95084 -0.91982 -0.95482

5.0 -0.95466 -0.95449 -0.92466 -0.95426

5.2 -0.95595 -0.95683 -0.92664 -0.95230

5.4 -0.95567 -0.95805 -0.92673 -0.94946

5.6 -0.95431 -0.95838 -0.92568 -0.94612

5.8 -0.95220 -0.95790 -0.92395 -0.94256

6.2 -0.94678 -0.95523 -0.91966 -0.93539

6.4 -0.94380 -0.95328 -0.91743 -0.93199
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Figure 1: Al2 potential functions. Splitting of the 3Πu state not shown.

splittings of the ground 3Πu state. The splittings between the Ω = 0, 1, 2 states are reproduced

well, with calculated values of 32.5 and 66.1 cm−1 compared with the experimental [4] 30.4 and

63.4. The Λ doubling splits the 3Π0u level; the calculated splitting (0.3 cm−1) is larger than the

experimental 0.09 cm−1. This is, however, a very small effect. The deficiencies in the basis lead

to a bond which is somewhat too weak: De is calculated at 1.22 eV, vs. the experimental [4]

1.36±0.06; Re is 2.78 Å (experimental 2.70); and ωe is 265 cm−1 (experimental 286). It should

be noted that results uncorrected for BSSE give, as expected, a stronger bond (De=1.37 eV,

Re=2.74 Å, ωe=281 cm−1). This is due to cancellation of errors. Langhoff and Bauschlicher [3]

do not mention the BSSE correction; their values, which are close to our uncorrected numbers,

may indicate that the correction was not applied. The A3Σ−
g spectroscopic constants show similar

behavior, with the calculated Re 2.52 Å compared with the experimental [4] 2.47 Å, ωe = 335

cm−1 (expt. 350 cm−1), and ωexe = 2.0 cm−1 (expt. 2.0 cm−1). Values uncorrected for BSSE are

again closer to experiment and to the Langhoff and Bauschlicher numbers.

While the results shown here are satisfactory, in particular the splittings of the ground state,

they are far from definitive. These calculations should be improved in two directions: a more com-

plete basis set is needed, and the treatment of correlation should be better. The latter goal might

be achieved by the use of the intermediate Hamiltonian coupled cluster method [16] discussed

above. This new method will also remove the limitation on the range of internuclear distances

calculated. The current application uses only bonding orbitals constructed from atomic 3p as va-
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Table 3: Spectroscopic constants of Al2 states.

State re (Å) De (eV) ωe ωexe Te(cm
−1)

3Π0−u 2.78 1.21 265 0.91 0
3Π0+u 2.78 1.22 265 0.90 0.3
3Π1u 2.78 1.21 266 1.4 32.7
3Π2u 2.78 1.22 266 1.4 66.3
3Σ−

g 2.52 1.22 335 2.0 70.7

(1)1Σ+
g 2.95 0.94 200 1.6 2310

1Πu 2.79 0.88 262 1.6 2830
1∆g 2.57 0.85 310 2.1 3080

(2)1Σ+
g 2.81 0.10 264 2.9 9240

lence orbitals. Bonding and antibonding orbitals become closer in energy as R increases, leading

to the appearance of intruder states and causing convergence difficulties in the Fock-space method.

The intermediate Hamiltonian method can handle larger and more flexible P spaces, comprising

both bonding and antibonding 3p orbitals. Preliminary calculations show that the intruder state

problem is indeed solved, and the potential functions may be calculated over the whole range of

internuclear separations. These calculations are under way, and results will be reported elsewhere.

References

[1] Cai M. F.; Carter C. C.; Miller T. A.; Bondybey V. E. Chem. Phys. 1991, 155, 233–245.

[2] Sunil K. K.; Jordan K. D. J. Phys. Chem. 1988, 92, 2774–81.

[3] Langhoff S. R.; Bauschlicher C. W. J. Chem. Phys. 1990, 92, 1879–86.

[4] Fu Z.; Lemire G. W.; Bishea G. A.; Morse M. D. J. Chem. Phys. 1990, 93, 8420–41.

[5] Kaldor U.; Eliav E. Advan. Quantum Chem. 1998, 31, 313–336.

[6] See, e.g., Sucher J. In Relativistic, Quantum Electrodynamic, and Weak Interaction Effects in

Atoms. Ed. Johnson W.; Mohr P.; Sucher J. American Institute of Physics; New York, 1989,

p. 28.

[7] Brown G.E.; Ravenhall D.G. Proc. Roy. Soc. A 1951, 208, 552–559.



Int. J. Mol. Sci. 2002 , 3 507

[8] Bethe H.A.; Salpeter E.E. Quantum Mechanics of One- and Two-Electron Atoms; Springer-

verlag; Berlin, 1957.

[9] Sucher J., Phys. Rev. A 1980, 22, 348–362; Phys. Scr. 1987, 36, 271–281.

[10] Buchmüller W.; Dietz K. Z. Phys. C 1980, 5, 45–54.

[11] Ishikawa Y.; Binning R.C.; Sekino H. Chem. Phys. Lett. 1989, 160, 206. Ishikawa Y. Phys.

Rev. A 1990, 42, 1142–50. Chem. Phys. Lett. 1990, 166, 321. Ishikawa Y; Quiney H.M. Phys.

Rev. A 1993, 47, 1732–39. Ishikawa Y; Koc K. Phys. Rev. A 1994, 50, 4733–42.

[12] Lindgren I.; Morrison J. Atomic Many-Body Theory 2nd ed.; Springer Verlag; Berlin, 1986.

[13] Hughes S.R.; Kaldor U. Chem. Phys. Lett. 1992, 194, 99–104; Chem. Phys. Lett. 1993, 204,

339–343; Phys. Rev. A 1993, 47, 4705–12; J. Chem. Phys. 1993, 99, 6773–76; Intern. J.

Quantum Chem. 1995, 55, 127–133.

[14] Mukherjee D.; Pal, S. Advan. Quantum Chem. 1989, 20, 292–373.

[15] Kaldor U. Theor. Chim. Acta 1991, 80, 427–439.

[16] Landau A.; Eliav E.; Kaldor U. Chem. Phys. Lett. 1999, 313, 399–403. Landau A., Eliav E.,

Ishikawa Y., and Kaldor U. J. Chem. Phys. 2000, 113, 9905–10. Landau A., Eliav E., and

Kaldor U., Advan. Quantum Chem. 2001, 39, 172–188.

[17] Malrieu J.-P.; Durand Ph.; Daudey J.-P. J. Phys. A 1985, 18, 809–826.

[18] Aerts P.J.C.; Visser O.; Visscher L.; Merenga H.; de Jong W.A.; Nieuwpoort W.C. MOLFDIR

Program Package, University of Groningen, The Netherlands.

[19] Woon D. E.; Dunning T. H. J. Chem. Phys. 1993, 98, 1358–71.

[20] Partridge H.; Bauschlicher C. W.; Visscher L. Chem. Phys. Lett. 1995, 246, 33–39.

[21] Lide D. R. (editor) Handbook of Chemistry and Physics, 81st edition. CRC Press; Boca Raton,

2000, p. 1-13.

[22] Moore C. E. Atomic Energy Levels, Natl. Bur. of Stand. (U.S.) Circ. No. 467. U.S. GPO;

Washington, DC, 1948.

[23] Boys S.F.; Bernardi F. Mol. Phys. 1970, 19, 553–566.


