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Abstract: Oxidative damage can lead to a number of diseases, and can be fatal. The blm1-1 
mutation of Saccharomyces cerevisiae confers hypersusceptibility to lethal effects of the 
oxidative, anticancer and antifungal agent, bleomycin. For the current report, additional 
defects conferred by the mutation in meiosis and mitosis were investigated. The viability of 
spores produced during meiosis by homozygous normal BLM1/BLM1, heterozygous 
BLM1/blm1-1, and homozygous mutant blm1-1/blm1-1 diploid strains was studied and 
compared. Approximately 88% of the tetrads derived from homozygous blm1-1/blm1-1 
mutant diploid cells only produced one or two viable spores. In contrast, just one tetrad 
among all BLM1/BLM1 and BLM1/blm1-1 tetrads only produced one or two viable spores. 
Rather, 94% of BLM1/BLM1 tetrads and 100% of BLM1/blm1-1 tetrads produced asci with 
four or three viable spores. Thus, at least one copy of the BLM1 gene is essential for the 
production of four viable spores after meiosis. During mitotic growth, mutant blm1-1 strains 
grew at reduced rates and produced cells with high frequencies of unusual morphologies 
compared to wild-type strains. These results indicated BLM1 is also essential for normal 
mitotic growth. We also investigated the suppression by the MSH4 gene, a meiosis-specific 
MutS homolog, of the bleomycin hypersusceptibility of blm1-1 mutant cells, and the 
relationship of MSH4 to BLM1. We screened a genomic library, and isolated the MSH4 gene 
on the basis of its ability to suppress lethal effects of bleomycin in blm1-1 cells. However, 
genetic mapping studies indicated that BLM1 and MSH4 are not the same gene. The 
possibility that chromosomal nondisjunction could be the basis for the inability of blm1-1/ 
blm1-1 mutant cells to produce four viable spores after meiosis is discussed. 
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Introduction 

The structures of bleomycins and structurally-related phleomycin are shown in Figure 1.   These 
low molecular weight compounds cause single- and double-stranded breaks in DNA [1] and damage to 
fungal cell walls [2]. They bind to DNA and generate free radicals in an oxygen-dependent, metal-
dependent reaction [3-5]. Bleomycins and phleomycins are radiomimetic in that they produce effects 
similar to those observed after exposure of DNA to ionizing radiation [6-9].  As a result, the drugs are 
employed as tools in studies of oxidative damage to cells [10].  To gain knowledge about how cells 
respond to oxidative damage, we isolated a series of mutants in Saccharomyces cerevisiae that confer 
hypersensitivity to killing by the bleomycins and phleomycins. One of these mutants contained the 
recessive blm1-1 mutation [11,12]. 

Additional defects conferred by blm1-1 were investigated for the current report.  We also describe 
the cloning and isolation of the MSH4 gene, essential for wild-type spore viability in S. cerevisiae [13].  
The Msh4 protein is a homolog of the MutS DNA mismatch repair protein in bacteria [14].  Tetrad 
analyses indicated that the BLM1 gene is essential for the production of four viable spores after 
meiosis, and mitotic analyses indicated BLM1 is essential for normal mitotic growth.  

 

 

Figure 1. Structures of bleomycins and phleomycins. Figure taken from Moore, 1999. 

 

 

Materials and Methods 

Strains and Plasmids 
The yeast and bacterial strains used in this work are listed in Table 1. 
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Table 1. Strains and plasmids used.  

Strain or Plasmid Genotype or Selectable Markers Source 
Saccharomyces cerevisiae 

CM1457-79A MATα ade2-1 and/or ade2-40 trp1-1 and/or trp5b This laboratory 
CM1457-79B MATa ade2-1 and/or ade2-40 ilv1-92 trp1-1 and/or 

trp5b 
This laboratory 

CM1457-79C MATa ade2-1 and/or ade2-40 blm1-1  trp1-1 and/or 
trp5b leu2-3 and/or leu2-112 ura3-1 

This laboratory 

CM1457-79D MATα ade2-1 and/or ade2-40 blm1-1 ilv1-92 leu2-3 
and/or leu2-112 trp1-1 and/or trp5b ura3-1 

This laboratory 

PS593/6H MATα his3∆200 leu2-3 or leu2-112 msh4::LEU2 
trp1-289 ura3-52 

Dr. Nancy Hollingsworth; 
Dr. Shirleen Roeder [15] 

 
Plasmids 

YCp50 amp tet ARS1 CEN4 URA3 Johnston and Davis, 1984 
[16] 

pPM118 tet ARS1 CEN4 URA3 This laboratory 
pPM118-4 tet ARS1 CEN4 URA3 This laboratory 
 

 
Media and Growth Conditions 
Non-synthetic complete solid medium (YPAD), containing 2% glucose, 2% Bacto-peptone, (Difco 

Laboratories, Detroit, Michigan), 1% Bacto-yeast extract (Difco), 2% Bacto-agar (Difco), and 0.16 
mg/ml adenine sulfate were used for the nonselective growth of all yeast strains.  If liquid YPAD 
medium was required, agar was not included in the preparation. Solid synthetic medium (SD) was used 
for the selective growth of desired strains. It contained 0.2% Bacto-yeast nitrogen base (Difco), 0.5% 
ammonium sulfate, 2% glucose, and 2.5% Bacto-agar. For strain selection or for the growth of 
individual strains during screening procedures, the specific amino acid requirements of each strain 
were added during the preparation of SD medium. 

 

Sporulation and Dissection of Tetrads 
The steps involved in mating of haploid strains to produce diploid cells, sporulation of diploids, and 

analysis of tetrads after meiosis are outlined in Figure 2.  The yeast haploids of opposite mating types 
were crossed, and the resulting diploids were selected on supplemented SD media.  A colony from the 
selected diploids was inoculated into sterile liquid YPAD medium and incubated with aeration at 30oC 

overnight.  Cells were grown to stationary phase, then inoculated at a cell density of 1000 cells/ml into 
presporulation media containing  0.8% Bacto-yeast extract (Difco),  0.3% Bacto-peptone (Difco),  10%  



Int. J. Mol. Sci. 2003, 4   
 

 

4

haploid haploid

mating

meiosis

diploid

(tetrad)
ascus

Glusulase

Haploid spores

Dissection

 
Figure 2.  Flow chart outlining the steps involved in meiosis and the production of ascospores in S. 
cerevisiae. Haploid strains of opposite mating types were mated to produce diploid cells.  Diploid cells 
were then sporulated, and ascal cell walls were treated with the lytic enzyme, glusulase. The treated 
asci or tetrads were microdissected to release and analyze the four spore products of meiosis. 
 
 
glucose, and 0.16 mg/ml adenine sulfate.  The culture was incubated at 23oC until the cells grew to a 
density of 1 x 107 to 5 x 107 cells/ml (mid-exponential growth).  Cells were pelleted, washed twice, 
and resuspended into sporulation media containing 1% potassium acetate and the amino acids required 
for sporulation of the diploids.  The tetrads obtained after sporulation were dissected using a 
micromanipulator (Singer Instruments Co. Ltd., Somerset, England) and incubated on solid YPAD at 
30oC. 

 
Zeocin Treatments 
Zeocin is a 20-fold dilution of phleomycin, and was purchased from Invitrogen (Carlsbad, CA).  

Aliquots from the stock solution of Zeocin were added to the desired concentration in SD or YPAD 
media which had been sterilized and cooled to approximately 45oC.  Zeocin medium was always 
prepared within 24 hours prior to use.  Yeast strains listed in Table 1 were replica-plated on Zeocin 
media and grown for 3 days at 30oC to determine their susceptibility to killing by the drug. 

 

E. coli and Yeast Transformations 
E. coli transformation was carried out according the CaCl2 method described by Sambrook et 

al.[17].  Transformation of yeast cells was carried out using lithium acetate in the method of Ito and 
co-workers [18] and as modified by Rose [19] and Rose and Broach [20]. 
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Results 

Reduced Viability of Spores from Homozygous Mutant Strains 
The viability of spores from homozygous blm1-1/blm1-1 mutant strains was compared to that of 

spores from BLM1/BLM1 homozygous normal strains and heterozygous BLM1/blm1-1 strains. The 
homozygous normal diploid was created by crossing two wild-type haploid segregants, CM1457-79A 
and CM1457-79B (Table 1). The heterozygous diploid was created by crossing a wild-type haploid, 
CM1457-79A, to a mutant haploid, CM1457-79C.  The homozygous mutant diploid was created by 
crossing two mutant haploids, CM1457-79C and CM1457-79D.  Each diploid was sporulated, and the 
tetrads obtained from each sporulated diploid were dissected (Figure 2). 

The viability of the spores in each tetrad is tabulated in Table 2. Ninety-four percent of the tetrads 
from the BLM1/BLM1 diploid and 100% of the tetrads from the BLM1/blm1-1 diploids produced four 
or three viable spores.  In contrast, no tetrads from blm1-1/blm1-1 cells produced asci with four viable 
spores, and only 13% of the tetrads produced three viable spores.  One- or two-spored viability was 
predominant.  Thus, in the presence of one or two copies of the BLM1 gene (as in homozygous or 
heterozygous diploids), tetrads appear capable of completing meiosis and producing four viable spores.  
However, in the absence of the BLM1 gene, cells appear unable to complete meiosis and produce four 
viable spores.  These results indicate that the BLM1 gene is essential for the viability of all four spores 
after meiosis, and that the blm1-1 mutation confers a deficiency in meiosis since the homozygous 
mutant cells are unable to produce four viable spores. 

 
Table 2a. Viability of spores from BLM1/BLM1, BLM1/blm1-1, and blm1-1/blm1-1 diploid strains 

Diploid Type 

Total 
number of 

tetrads 
dissected 

No viable 
spores 

1 viable 
spore 

2 viable 
spores 

3 viable 
spores 

4 viable 
spores 

Homozygous 
normal 16 0 1 0 6 9 

Heterozygous 14 0 0 0 5 9 
Homozygous 
mutant 31 0 7 20 4 0 

 
 

Table 2b. Percentage of viable spores produced by each genotype 

Diploid Type 

Total 
number of 

tetrads 
dissected 

Sporulation 
(%) 

1 viable 
spore (%) 

2 viable 
spores (%) 

3 viable 
spores (%) 

4 viable 
spores (%) 

Homozygous 
normal 16 70±5.81 6 0 38 56 

Heterozygous 14 66.3±4.51 0 0 36 64 
Homozygous 
mutant 31 52.1±4.11 23 65 13 0 
1Standard errors of the means were calculated from three to five replicates. 
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Mitotic Phenotype of blm1-1 Mutant Strains: Reduced Growth Rate and Elevated Frequencies of 
Irregularly-shaped Cells 

Mutant blm1-1 strains were found to grow at reduced rates compared to the wild-type strains.  At 
stationary phase, the titers of blm1-1 haploid strains were approximately 25% less than those of BLM1 
cells (Table 3). During growth, the blm1-1 mutant cells also assumed peculiar shapes at high 
frequencies. When quantitated, approximately five percent of blm1-1 cells in stationary-phase 
populations were abnormally shaped. In addition, twice as many cells appeared swollen in blm1-1 
populations than in BLM1 populations. 

 
 

Table 3.  Comparisons of Growth and Abnormally-shaped Cells in BLM1 and blm1-1 Strains 1 

Strains Final 
Titers 

(cells/ml) 

Number and 
Percent of 

Irregularly- 
shaped Cells 2 

Normal-sized 
Single Cells 
and Budded 

Cells 3 

Number and 
Percent of 
Enlarged 
Cells 4 

Total Number 
of Cells 

  
Means of experiments one and two 

 

BLM1 
(CM1457-79A) 

 
5.00 x 108 0% (462) 84.6% (84) 15.4% 546 (100%) 

 Experiments three and four: means of both strains  
blm1-1 

(CM1457-79C 
and 

CM1457-79D) 

3.60 x 108 (28.5) 5.23% (350) 64.1% (167) 30.6% 546 (100%) 

  
Experiments five and six: means of both strains 

 

blm1-1 
(CM1457-79C 

and 
CM1457-79D) 

3.78 x 108 (29) 5.31% (347) 63.6% (170) 31.1% 546 (100%) 

1Each cell was classified based on the following criteria and relative sizes. 

2Irregularly-shaped cells: . 

3 Normal-sized single cells and budded cells: .  

4Enlarged cells:  . 
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Isolation of Plasmids, Restriction Analyses, and DNA Sequence Analyses  
In addition to the meiotic defect, the blm1-1 mutation confers hypersensitivity to lethal effects of 

bleomycin [21]. Thus, this phenotype was used to isolate plasmids that relieved the drug 
hypersensitivity.  Isolation of the pPM118 and pPM118-4 plasmids  from a S. cerevisiae (S288C) 
genomic library was previously described [22].  A 32P-labelled 3.8 kb BamHI-ClaI fragment from 
pPM118 was used as a probe to screen the genomic library and isolate pPM118-4. 

To identify the complete sequences of the inserts in pPM118 and pPM118-4, approximately 200 
bases at each end of the inserts were sequenced by two custom-made primers originating from the 
vector sequences.  These four end sequences were then used to search the nucleotide sequence 
databases through the National Center for Biological Information (NCBI) using the BLAST program 
[23].  These sequences were also used to search the SGD (Saccharomyces Genomic Database).  The 
search results indicated the cloned sequence on pPM118 contains a region from chromosome VI 
between 133748 and 140147 bases, including the full MSH4 gene (Figure 3). Restriction maps, 
chromosomal origin and the overlapping region of pPM118 and pPM118-4 are shown in Figure 3, 
along with the identification and location of the open reading frame of the MSH4 gene. 

pPM118

pPM118-4

Msh4

C B

B C C

CCE

EP

P

1 Kb

NH2HOOC

 
Figure 3.  Restriction maps of the inserts of the plasmids pPM118 and pPM118-4, and the location of 
the MSH4 gene.  Restriction maps of the two chromosomal inserts are shown with their corresponding 
overlapping region.  B: BamHI, C: ClaI, E: EcoRI, P: Pst I.  Inserts originated from chromosome VI 
and the coordinates for the entire region cloned on pPM118 and pPM118-4 extends from 133748 to 
141542 bases.  Map of chromosomal features from SGD: VTC2 (brown), ARS605 (yellow), Msh4 
(red), tRNA-Asn (green), Ty1LTR (pink), Ty2LTR (orange), Ty2 (purple), TyAGag (aqua), TyB 
(aqua). 

 
 
Relief of Drug Hypersensitivity 
The relief of the hypersensitivity to killing by bleomycin conferred by the pPM118-4 plasmid is 

illustrated in Figure 4.  For comparison, the figure also illustrates the resistance conferred by the wild-
type or normal BLM1 gene and the hypersensitivity conferred by the mutant blm1-1 gene (mutant 
blm1-1 strains transformed with the YCp50 vector alone).  The drug resistance conferred by pPM118-4 
is comparable to the resistance  of wild-type  cells at  all drug concentrations  with the  exception of the  
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Figure 4. A representative comparison of the resistance of normal (BLM1, CM1401-5B) and 
transformed blm1-1 mutant strains to lethal effects of bleomycin.  The blm1-1 mutant strain, CM1401-
5C, was transformed with the plasmid (pPM118-4) or with the YCp50 vector alone. The normal 
segregant and the transformed mutant strains were plated on supplemented SD medium containing 
various concentrations of bleomycin.  Plates were incubated at 30oC for 3 days.  The survival value of 

the last cell is 0.3±0.2%. 

 
 

very high concentration of 30 µg/ml bleomycin.  The resistance provided by pPM118-4 is also high at 

30 µg/ml bleomycin, though somewhat less than wild-type cells.  There are several possible reasons 

for the somewhat decreased resistance relative to wild-type cells at the highest drug dose.  For 
example, if MSH4 is a suppressor of the blm1-1 phenotype, rather than the same gene as BLM1, it may 
not be able to fully relieve the drug hypersusceptibility of mutant cells at high drug concentrations.  
Second, whether MSH4 and BLM1 are or are not the same gene, the full gene may be required on the 
plasmid to obtain full complementation.  Third, the encoded protein may not be produced as efficiently 
from the plasmid as it is from the chromosome. Fourth, the region of the gene on pPM118 may contain 
an alteration. 
 

Genetic Mapping Showed that MSH4 is not the BLM1 Structural Gene 
The MHS4 gene has one function that is similar to that of the BLM1 gene — both genes are required 

in meiosis for wild-type levels of spore viability in S. cerevisiae.  Thus, to determine if BLM1and 
MSH4 are the same gene, linkage analysis was carried out by genetic mapping to determine if MSH4 is 
linked to (and thus could be) the BLM1 gene. 

A mutant strain, PS593/6H, with the LEU2 marker replacing nucleotides 168-2290 of the MSH4 
coding region [15], was kindly provided by Dr. Nancy Hollingsworth (Department of Biochemistry 
and Cell Biology, State University of New York at Stony Brook, Stony Brook, NY). This strain was 
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crossed to a leu2/blm1-1 strain, CM1457-79C.  The resulting diploid was genotypically 
MSH4/msh4::LEU2, BLM1/blm1-1.  The LEU2 gene was used to track the msh4 gene in linkage 
analysis, and Zeocin hypersensitivity was used to track the blm1-1 mutation.  If the two genes are the 
same, the genotypes in the tetrad segregants would be one or the other of the parental ditypes (PD).  
That is, there will be 2:2 segregation of LEU2 (leucine prototrophy) with BLM1 (wild-type or normal 
drug resistance), and leu2 (leucine auxotrophy) with the blm1-1 mutation (drug hypersensitivity). 

Segregation of BLM1, blm1-1, MSH4 and msh4::LEU2  in meiosis is shown in Table 4.  The 
segregation pattern from the tetrad analysis of the cross PS593/6H x CM1457-79C revealed that 35.7% 
of the tetrads were PD, 42.9% of the tetrads were non-parental ditypes (NPD; the genotypes of all four 
spores are different from the genotypes of the parental haploids), and 21.4% were tetratypes (TT;  two 
spores are parental genotypes and two spores are not).  For two genes to be linked, the ratio of PD: 
NPD: TT is >1: <1:0 [24]. The ratio obtained from this assay is <1:1<1. Actually, the ratio of each 
genotype among the total spores is close to 1:1:1:1, consistent with random assortment of each gene on 
its respective chromosome. Thus, the linkage analysis indicates that MSH4 and BLM1 are different 
genes. 

A master plate containing solid YPAD medium and inoculated with parental strains, all the spores 
from dissected tetrads, and positive controls were created.  Cells from this plate were replica-plated on 
SD+7 media lacking leucine and on complete media containing Zeocin.  The MSH4 gene was tracked 
by the wild-type LEU+ phenotype from PS593/6H, and the BLM1 phenotype was introduced into the 
cross by PS593/6H. 

 
 

Table 4. Analysis of tetrad segregation of CM1457-79C (blm1-1,leu2) x PS593/6H (msh4::LEU2, 
BLM1). (The number of spores of each genotype is tabulated. Only results from four-spored asci are 
tabulated) 

Classes of 
tetrads 

Number of 
tetrads 

Number of 
spores 

blm1-1, leu2 BLM1, 
LEU2 

BLM1, leu2 blm1-1, 
LEU2 

Parental 
Ditype (PD) 

5 20 10 10 0 0 

Non-Parental 
Ditype (NPD) 

6 24 0 0 12 12 

Tetratype 
(TT) 

3 12 3 3 3 3 

Total spores 14 56 13 13 15 15 
 
 
 



Int. J. Mol. Sci. 2003, 4   
 

 

10

Discussion  

Analyses of the meiotic and mitotic phenotypes conferred by the blm1-1 mutation indicate that in 
addition to the bleomycin and phleomycin hypersusceptibility, the blm1-1 mutation confers defects in 
meiosis and mitosis.  These results have not previously been reported.  It is not known at the present 
time what mechanism accounts for the low spore viability after meiosis in homozygous blm1-1/blm1-1 
mutant diploid cells. Compared to the homozygous normal BLM1/BLM1 and heterozygous 
BLM1/blm1-1 diploid strains, sporulation was not dramatically lower in the homozygous mutant cells 
(Table 2).  But the fact that only one or two spores from 88% of the tetrads survived indicates some 
step in meiosis is likely to be defective.  One possibility for the defect is that nondisjunction of one or 
more chromosomes occurs at high frequency during meiosis in the mutant diploids. A failure of 
chromosomes to properly separate could occur at either the first or second meiotic division, as shown 
in Figure 5.  If the nondisjunction were limited to a specific chromosome, some spores would receive 
an extra chromosome and some spores would not receive that chromosome (Figure 5).  If the 
nondisjunction were not limited to a single chromosomal pair, different homologous chromosomes 
would fail to properly separate during meiosis.  Either situation could lead to defective meiotic 
products and an inability to produce four viable spores.  Nondisjunction events during mitosis might 
account for the blm1-1/blm1-1 mitotic phenotypes of reduced growth rates and high frequencies of 
abnormal cell morphologies. The decreased growth rates may actually reflect the inviability of some of 
the cells during mitotic growth. 

Nondisjunction

MECHANISM OF NONDISJUNCTION OF 
CHROSOMES IN

first meiotic division second meiotic division

Normal division Nondisjunction

Abnormal AbnormalNormal

Normal division

 

Figure 5. An illustration of the fates of two chromosomal pairs during meiosis. One pair of 
homologous chromosome behaves normally as it goes through meiosis I and meiosis II.  The other pair 
does not disjoin in either the first or the second meiotic division. 
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Disturbance of the structural components of the synaptonemal complex in meiosis can lead to 
nondisjunction of homologous chromosomes [25].  Although the relationship between the Blm1p and 
nondisjunction is unknown, it is known that Msh4p functions in the formation of the synaptonemal 
complex [15].  The MSH4 gene in S. cerevisiae encodes a protein involved in crossing over between 
chromosomes in meiosis, and the gene is not transcribed in mitosis [25].  Recently, Msh4p was shown 
to function in chromosomal synapsis in meiosis, and regulate the distribution of meiotic crossovers 
along chromosomes [15]. The protein localizes to discrete sites in meiotic chromosomes when 
synapsis initiates, and promotes formation of the synaptonemal complex [15].  
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