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Abstract: We present an extension of the Polarizable Continuum Model (PCM) to

the calculation of solvent effects on indirect spin–spin coupling constants for Hartree–

Fock wave functions and Density Functional Theory. This is achieved by implementing

the PCM model for singlet and triplet linear response functions. The new code is

used for calculating the solvent effects on the indirect spin–spin coupling constants

of benzene. For the 1J(H13C) coupling constants, our calculated solvent shifts are in

good agreement with experimental observations when geometry relaxation is taken into

account. However, our results do not support the extrapolated gas-phase value for this

coupling constant. A new experimentally derived 1J(H 13C) for a vibrating benzene

molecule at 300 K is proposed.

Keywords: Indirect spin–spin coupling constants; Benzene; Solvent effects; Dielectric

Medium; PCM

c©2003 by MDPI, Basel, Switzerland. Reproduction for noncommercial purposes permitted.



Int. J. Mol. Sci. 2003, 4 120

1 Introduction

The ab initio calculation of indirect spin–spin coupling constants is a challenging task. Each

nuclear spin can in the non-relativistic formulation of the theory as first derived by Ramsey [1]

perturb the electron density through 10 different interaction mechanisms (6 spin-dipolar (SD), 3

paramagnetic spin-dipole (PSO) and one Fermi-contact interaction), and a large number of re-

sponse equations therefore need to be solved for each nucleus. The presence of the Fermi-contact

interaction—which depends on the electron density close to the nuclei—puts severe demands on

the quality of the basis set used. For this reason, basis set requirements for accurate calculations of

indirect spin–spin coupling constants have been given much attention in the literature [2–6], and

a few different schemes for obtaining fairly small basis sets yielding accurate spin–spin coupling

constants have in recent years been devised [5, 6]. The triplet nature of the Fermi-contact and the

spin-dipolar operators means that ordinary spin-restricted approaches such as Hartree-Fock fails

completely, often giving results that are several order of magnitudes too large as well as having

incorrect signs [7, 8]. The problem of triplet instabilities is often quite efficiently solved by intro-

ducing electron correlation, and several successful studies using multiconfigurational self-consistent

field (MCSCF) [7, 9–11] or coupled-cluster [12–14] wave functions have been presented. An alterna-

tive approach has used the second-order polarization propagator approximation (SOPPA) [2, 15].

In recent years, it has been demonstrated that even in it’s spin-restricted formulation, density

functional theory (DFT) is a computationally efficient route to accurate indirect spin–spin cou-

pling constants [16, 17]. Although the first DFT implementations used a finite-perturbation ap-

proach [17–19], often only considering the Fermi contact interaction mechanism, fully analytical

implementations of all interaction mechanisms have recently been presented [16, 20]. To further

complicate the theoretical study of indirect spin–spin coupling constants, the vibrations of the

molecular framework have been shown to give significant contributions to the indirect spin–spin

coupling constants, often giving contributions that are 5-10% of the magnitude of the purely elec-

tronic contributions. Recent developments have however made it possible to obtain quite accurate

estimates for the vibrational corrections to the spin–spin coupling constants [21, 22], even for fairly

large molecules such as benzene [23]. Even if all the factors affecting the theoretical calculation

of indirect spin–spin coupling constants now can be addressed for medium-sized molecules [4], a

direct comparison of the theoretical results with experimental observations is in general not pos-

sible since most experimental NMR studies take place in solution. Although there are continuous

improvements in the gas-phase determination of NMR parameters, only a very small number of

indirect spin–spin coupling constants have been determined for molecules in the gas phase [24].

It is generally known that spin–spin coupling constants are less influenced by solvent effects than

for instance the nuclear shielding constants, but a detailed comparison of theoretical and exper-
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imental results requires that the effects of the solvent on the theoretically calculated spin–spin

coupling constants are properly understood [25]. Almost all theoretical investigations of indirect

spin–spin coupling constants have been limited to gas-phase investigations (see Ref. [4] and ref-

erences therein for some recent examples). Only one implementation of a dielectric continuum

model for studying solvent effects on spin–spin coupling constants have been presented in the

literature [26]. It was initially used to study solvent effects on the spin–spin couplings of H2Se,

H2S, and HCN [26, 27], but has in recent years been used for studies on larger molecules, often

together with supermolecular models in order to account for the effects of specific solute-solvent

interactions [28, 29]. The dielectric continuum model presented in Ref. [26] used a spherical shape

for the molecular cavity. Although this model can be expected to be adequate for the study of

small or nearly spherical molecules, it may not be suitable for solvent studies on larger molecules.

In this paper we present a new approach for calculating solvent effects on indirect–spin coupling

constants based on the polarizable continuum model (PCM) [30–32]. In the PCM model, the

molecule is placed in a molecule-shaped cavity in the dielectric medium, the polarization effects

on the solvated molecule being introduced through charges on the cavity surface. The implemen-

tation is based on our recent extensions of the PCM model to a quadratically convergent scheme

for optimizing PCM-MCSCF wave functions [33] and singlet linear response functions [34] for

solvated molecules. In this work we extend that implementation to also include DFT reference

states and triplet linear response functions. Although we will here only discuss and employ DFT,

our implementation also includes Hartree–Fock and MCSCF reference wave functions. The re-

mainder of this paper is organized as follows: In Section 2 we present the theory for triplet linear

response functions for a Kohn-Sham based DFT approach in the PCM formalism. We also briefly

summarize the mechanisms that determine the indirect spin–spin coupling constants. We then

apply this formalism to study the solvent dependence of the indirect spin–spin coupling constants

of benzene, and the computational details of this study is summarized in Section 3. The results

we have obtained is presented in Section 4, and we summarize our results in Section 5.

2 Theory

The indirect spin–spin coupling parameters describe the indirect coupling of the nuclear magnetic

dipoles, mediated by the surrounding electrons. For an isolated molecule, the indirect spin–spin

coupling parameters can be determined as second derivatives of the electronic energy with respect

to the nuclear magnetic moments [4]. A parallel situation holds for molecules in solution described

by PCM. However, in this case the indirect spin–spin coupling parameters are instead determined

as second derivatives of the free-energy functional G of the solute-solvent system with respect the

nuclear magnetic moments. The nuclear magnetic moments MK are related to the nuclear spins
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IK as

MK = γKh̄IK (1)

where γK are the nuclear magnetogyric ratios and the normal and reduced nuclear indirect spin–

spin coupling constant JKL and KKL are given as

JKL = h
γK

2π

γL

2π
KKL = h

γK

2π

γL

2π

d2G
dMKdML

(2)

Introducing the presence of the nuclear magnetic moments, the non-relativistic electronic Hamil-

tonian of the molecular solute has the form

H|Ψ> =
1

2

∑

i

[pi + Ai] · [pi + Ai] +
∑

i

si · B(ri)

+Ven + Vee + Vnn + V (Ψ) (3)

where pi is the conjugate momentum of electron i and si it’s spin. Ven, Vee, and Vnn denote

the electron-nuclear attraction potential and the electron-electron and nuclear-nuclear repulsion

potentials, respectively. The vector potential A(ri) and the related induction B(ri) = ∇× A(ri)

are given by

A(ri) = α2
∑

K

MK × riK

r3
iK

(4)

B(ri) =
8πα2

3

∑

K

δ(riK)MK

+ α2
∑

K

3riKrT
iK − riKI3

r5
iK

MK (5)

where α is the fine-structure constant, riK is the position of electron i relative to nucleus K and

I3 is the 3 × 3 unit matrix. The potential term V (Ψ) in Eq. 3 represents the interaction of the

electrons with the reaction field produced by the solvent polarized by the charge distribution

of the solute. The argument of V (Ψ) indicates that it depends on the electronic state of the

solute, introducing a nonlinear character into the Hamiltonian. Introducing Eqs. 4 and 5 into the

electronic Hamiltonian Eq. 3 and rearranging, we obtain

H|Ψ> =
1

2

∑

i

p2
i + Ven + Vee + Vnn + V (Ψ) +

∑

KL

MT
KhDSO

KL ML

+
∑

K

MT
KhPSO

K +
∑

K

MT
K(hFC

K + hSD
K ) (6)

where the diamagnetic spin-orbit (DSO) and paramagnetic spin-orbit (PSO) operators are given

by

hDSO
KL =

α4

2

∑

i

(rT
iKriL)I3 − riKrT

iL

r3
iKr3

iL

(7)
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hPSO
K = α2

∑

i

riK × pi

r3
iK

(8)

and the triplet Fermi-contact (FC) and spin-dipole (SD) operators by

hFC
K =

8πα2

3

∑

i

δ(riK)si (9)

hSD
K = α2

∑

i

3(sT
i riK)riK − r2

iKsi

r5
iK

(10)

These operators represent the different mechanisms of the coupling between the nuclear spins

mediated by the surrounding electrons. Due to the nonlinearity of the molecular Hamiltonian,

the fundamental energetic quantity of a solvated molecule is the so called free-energy functional

G defined as

{G} =
< Ψ|H|Ψ> − 1

2
V (Ψ)|Ψ >

< Ψ||Ψ >
(11)

whose stationarity points correspond to the eigenfunctions of the solute Hamiltonian

H|Ψ>|Ψ >= E|Ψ > (12)

Variational approximate solutions of the nonlinear Schrödinger equation in Eq. 12 can be obtained

by searching for the stationary points of the free-energy functional with respect to the whole set

of variational parameters [33]. The evaluation of the spin–spin coupling constants as second

derivatives of the free-energy functional G requires a procedure based on the linear response

theory for molecular solutes, i.e. a variational-perturbative scheme which ensures the stationarity

condition of the free-energy functional at first order with respect any value of the nuclear magnetic

moments. In the following we describe the procedure for the variational Density Functional Theory

approach. Ignoring the details of the parameterization, we denote the Kohn-Sham free energy as

G(MK, λS , λT ) where λS and λT are two sets of variational parameters associated with singlet

and triplet variations of the electronic state [16]. For the optimized free-energy state, the reduced

spin–spin coupling constants may then be calculated as

KKL =
d2G

dMKdML

=
∂2G

∂MK∂ML

+
∂2G

∂MK∂λS

∂λS

∂ML

+
∂2G

∂MK∂λT

∂λT

∂ML

(13)

The derivatives of the variational parameters λS and λT with respect ML are obtained by solving

the response equations [11, 35]

∂2G
∂λS∂λS

∂λS

∂ML

= − ∂2G
∂λS∂ML

(14)
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∂2G
∂λT ∂λT

∂λS

∂ML

= − ∂2G
∂λT ∂ML

(15)

where the second derivatives on the left-hand sides are, respectively, the singlet and triplet elec-

tronic Hessian. The solution of the singlet linear response equations Eq. 14 gives the perturbing

effect of the imaginary singlet paramagnetic spin-orbit (PSO) operator, while the solution of the

triplet linear response equations Eq. 15 represents the perturbing effect of the real triplet Fermi-

contact (FC) and of the spin-dipole (SD) operator. The perturbing effect of the second-order

real singlet diamagnetic spin-orbit (DSO) operators enter the reduced coupling constant via the

first term of Eq.2 and do not require solution of any response equation [36]. In many cases, the

Fermi-contact FC contribution dominates the spin–spin couplings, but it is impossible to predict

with any certainty when the non-FC contributions may be neglected [4], and all terms should

therefore in general be included in the calculation.

3 Computational details

The calculation of accurate indirect spin–spin coupling constants is a challenging task, putting

severe demands on the quality of the one-electron basis and the treatment of electron correlation

effects [4]. Since we will here mainly be concerned with the changes in the spin–spin coupling

constants of benzene induced by different solvents, we do not need to have a basis set or a

correlation description that gives highly accurate results, although it is important that the method

and basis sets used is able to give a qualitatively correct description of the electronic structure of

the molecule in the region close to the nuclei. DFT has in recent years been demonstrated to be a

very computationally efficient way of obtaining accurate indirect spin–spin coupling constants [16,

17], and this is the approach we will use here. Based on a recent implementation of indirect spin–

spin coupling constants at the DFT level [16], we have included the solvent contributions using

the PCM model to the singlet and linear response functions as described in Section 2. A study

by Helgaker et al. [5] demonstrated that basis sets based on Huzinaga’s compilation [37] with

polarization functions by van Wüllen [38], decontracted in the s space and with additional tight s

functions, provide a good compromise between the accuracy of the results and the size of the basis

set. We will in this work employ the Huz-IIsu2 basis set [5] where two tight s functions have been

added to the atomic Huz-II basis set in a geometric progression. There are in general two distinct

contributions to an observed solvent effect: (1) The direct change in the electronic wave function

due to the polarization of the molecular wave function by the solvent, and (2) An indirect effect

caused by changes in the molecular geometry as the molecule is placed in the solvent. To account

for the latter effect, we have optimized the geometry of the molecules in the different solvents

using the gradient formalism recently presented [39]. All calculations have used D2h symmetry

following the algorithm described in Ref. [40]. It is important to emphasize that our algorithm for
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generating the molecular cavity will not generate a cavity possessing the full D6h symmetry, but

rather a cavity of D2h symmetry, the highest point group used in the Dalton program [41]. For this

reason we obtain a slight symmetry-breaking of the solvent-optimized geometry. Although the

symmetry-breaking effects on the molecular geometry is very small (vide infra), they do give rise

to noticeable differences in the calculated indirect spin–spin coupling constants, and we return to

this point in the next section. The solvent cavity was built from six interlocking spheres centered

on the carbon atoms of the benzene molecule, each with a radius of 1.90 Å. All calculations have

been done with a local version of the Dalton program [41].

4 Results

We have summarized our results for the benzene molecule in gas phase in Table 1. Our results

have been calculated at the optimized geometry of the molecule using the B3LYP functional and

the Huz-IIsu2 basis set. The results are compared to recently derived “experimental” equilibrium

values for the indirect spin–spin coupling constants [23]. These values are meant to be more

directly comparable to theoretical results, as they have been derived by subtracting a theoretically

estimated zero-point vibrational contribution to the indirect spin–spin coupling constants from

the experimentally observed couplings. As such, they are meant to represent the experimental

spin–spin coupling constant of a non-vibrating benzene molecule, which is what we obtain in our

calculation. In Table 1 we have also collected the results of other recent theoretical investigations.

We note that our results in general are in quite good agreement with the vibrationally corrected

experimental results, although a difference of 15 Hz (about 10% ) exists in the case of 1J(H13C).

Only minor differences between our results and the DFT/B3LYP results of Ref. [23] obtained

with the HuzIII-su3 basis set are observed. Our results corroborate the observation [23, 42] that

the MCSCF results significantly overestimate most of the coupling constants. In a recent paper,

an attempt was made to extract a vibrationally averaged 1J(H13C) coupling constant for benzene

in the gas phase by extrapolation of accurately measured coupling constants in four relatively

non-polar solvents to a dielectric medium with a dielectric constant of 1 (which corresponds to

the dielectric constant of vacuum) [43]. In addition to depend strongly on the solvent being well

represented as a structureless dielectric continuum, such an approach also relies heavily on the

assumption that the spin–spin coupling constant varies smoothly with the dielectric constant.

Although this may be the case for the direct solvent effects, it is much less likely that this will be

the case for the changes induced by the changes in molecular geometry. We have reinvestigated

this extrapolation scheme by PCM calculations using the same solvents as in Ref. [43]. Our

results for 1J(H13C) are collected in Table 2. In order to make the most consistent comparison

with the available experimental data of Ref. [44], we refer all solvent shifts to the results obtained
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Table 1: Calculated gas-phase values for benzene at the optimized geometry. Comparison is made

with available literature data. All numbers reported in Hz.

Coupling DFT/B3LYP Exp. Jeq
a MCSCF DFT/B3LYPb

This work Ref. [23] Ref. [42] Ref. [23]
1J(H13C) 164.636 153.8 176.7 166.3
2J(H13C) 1.798 1.4 -7.4 2.0
3J(H13C) 7.877 7.0 11.7 8.0
4J(H13C) -1.329 -1.0 -1.3 -1.2
3J(HH) 8.571 7.0 8.7
4J(HH) 0.962 1.2 1.3
5J(HH) 0.661 0.6 0.8
1J(13C13C) 59.244 56.1 70.9 60.0
2J(13C13C) -1.768 -1.7 -5.0 -1.8
3J(13C13C) 10.822 9.4 19.1 11.2

aDerived experimental equilibrium value. Obtained by taking the experimental observations from Ref. [42] and
subtracting the zero-point vibrational corrections as calculated in Ref. [23].

bCalculated at the optimized geometry using the Huz-IIIsu3 basis set and the B3LYP functional.

Table 2: Calculated and experimental solvent shifts of 1J(H13C) for benzene in four different

solvents. Both relaxed and unrelaxed geometries reported. All numbers reported in Hz.

Solvent Unrelaxed geometry Relaxed geometry Experiment (Ref. [44])

Gas -0.426 -0.583/-0.534 -0.927

C6D12 0.000 0.000 0.000

CS2 0.135 0.182/0.165 0.215

Pyridine-d5 0.661 0.896/0.836 0.725

Acetone-d6 0.734 1.043/0.938 0.818
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in fully deuterated cyclohexane. We note from Table 2 that the agreement between our results

and experiment is fair. There are two important observations that can be made from the results

in Table 2: (1) The indirect contributions to the solvent shifts arising from the change in the

molecular geometry are significant, being about 20-30% of the total calculated solvent shift. (2)

Our calculations slightly underestimate the solvent shift in CS2 relative to cyclohexane, whereas

we overestimate the effects for pyridine and acetone. However, this is consistent with our model,

in which we consider an infinitely diluted benzene molecule in a pure solvent, whereas a more

reasonable representation would be a 5% solution of benzene in solvent [43]. This could be

modeled using an “effective” dielectric constant [43, 45], which would lead to an increase of the

dielectric constant of the cyclohexane solution and reduce the effective dielectric constants of the

other solutions, thus probably leading to a better agreement with the experimental observations.

However, we will not explore this approach here. A final observation that can be made from

the data in Table 2 is that there is a large discrepancy between theory and experiment in the

predicted gas-to-cyclohexane solvent shift, the experimental shift being almost twice as large as the

theoretical prediction. If we try to apply the linear extrapolation done in Ref. [43] to our theoretical

data, we get a predicted gas-to-cyclohexane solvent shift of 0.869 Hz and 1.112 Hz for the coupling

constants calculated at the vacuum geometry and the solvent-relaxed geometry, respectively. Both

of these numbers are almost twice as large as the calculated solvent shift, clearly illustrating the

inadequacy of the linear regression for obtaining the gas-phase value of the spin–spin coupling

constant. Assuming that the experimentally extrapolated gas-phase value has used a cyclohexane-

to-gas shift that is too large by approximately a factor of 2, we therefore propose a revised gas-phase

value of 1J(H13C) for a vibrating benzene molecule at 300 K of 157.46 Hz, to be compared with the

original proposal of 156.99 Hz. Subtracting from this the recently calculated zero-point vibrational

corrections of 4.8 Hz [23], we obtain a derived experimental gas-phase value for the equilibrium

geometry spin–spin coupling constant of 152.7 Hz. This is likely to be an upper limit, as it can be

expected that the zero-point vibrational correction underestimates the true vibrational corrections

that would be obtained at the experimental temperature of 300 K. Let us also address the issue of

symmetry breaking of our molecular cavity. As can be seen from Table 2, we report two slightly

different numbers for the solvent-relaxed geometries. This symmetry-breaking arises because we

in our construction of the cavity only enforce symmetries of D2h and subgroups thereof [40].

We will therefore not be able to enforce the full D6h symmetry of the benzene molecule in the

tessellation of the cavity. As such we will get two classes of carbon and hydrogen atoms, one

containing two symmetry-related carbon/hydrogen atoms, and one containing four symmetry-

related carbon/hydrogen atoms. Although the differences in the bond lengths and angles are for

all practical purposes negligible (CC bond lengths differing by less than 0.05 pm, CH bond lengths

by less than 0.04 pm, and bond angles by about 0.04◦), the sensitivity of the spin–spin coupling
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Table 3: Calculated solvent shifts of nJ(H13C) for benzene in four different solvents. Both relaxed

and unrelaxed geometries reported. Solvent shifts reported relative to the cyclohexane value.

Experimental data (in italics) from Ref. [44]. All numbers reported in Hz.

Solvent 2J(H13C) 3J(H13C) 4J(H13C)

Unrelaxed Relaxed Unrelaxed Relaxed Unrelaxed Relaxed

Gas-phase -0.072 -0.089 0.019 0.020 -0.010 -0.004

CS2 0.084 0.103 -0.022 -0.023 0.011 0.005

0.001 -0.016 0.011

Pyridine-d5 0.156 0.180 -0.042 -0.043 0.021 0.011

0.077 -0.039 0.015

Acetone-d6 0.166 0.204 -0.044 -0.048 0.022 0.010

0.095 -0.031 0.007

constants to geometry changes makes these small differences quite visible in our calculated coupling

constants. Obviously, we do not experience any symmetry-breaking in the gas-phase optimized

geometry, but since the solvent shifts are given relative to the value in cyclohexane, we obtain two

different values for the gas-phase shifts since we have two different 1J(H13C) coupling constants

in cyclohexane. Similar differences can be expected for the other coupling constants, but for

these couplings we have only solved response equations for one symmetry-class of atoms [46], and

we therefore do not observe these differences. It is generally known that solvent effects are of

minor importance for couplings other than one-bond couplings [25], and this is largely confirmed

for the solvent effects calculated for the spin–spin coupling constants nJ(H13C), nJ(13C13C), and
nJ(HH), collected in Tables 3, 4, and 5, respectively. Indeed, sizeable solvent effects are only

observed for 1J(H13C) and 1J(13C13C), where the calculated solvent shifts going from gas-phase

to an acetone solution are about 1.5 Hz and -1.3 Hz, respectively. Interestingly, the 1J(13C13C)

couplings display only a negligible geometry effect, the solvent-induced changes for this coupling

arising only from polarization of the electronic structure of the molecule by the surrounding

dielectric medium. The two-bond carbon-hydrogen coupling constant 2J(H13C) also has a non-

negligible solvent effect of about 0.2 Hz going from gas-phase to acetone, with the geometry

changes accounting for about 20% of the total shift. Indeed, in relative terms this is the largest

solvent effect of all the calculated coupling constants, as the solvent effect is more than 10% of

the gas-phase value. In comparison, the solvent shift for 1J(13C13C) is only about 2.5% of the gas-

phase value. The effects of the dielectric medium and the solvent-induced geometry changes are

negligible for all other coupling constants, in no instances exceeding 0.1 Hz even for the most polar



Int. J. Mol. Sci. 2003, 4 129

Table 4: Calculated solvent shifts of 1J(13C13C) for benzene in four different solvents. Both relaxed

and unrelaxed geometries reported. Solvent shifts reported relative to the gas-phase values. All

numbers reported in Hz.

Solvent 1J(13C13C) 2J(13C13C) 3J(13C13C)

Unrelaxed Relaxed Unrelaxed Relaxed Unrelaxed Relaxed

C6D12 -0.550 -0.565 0.000 -0.015 -0.029 -0.037

CS2 -0.638 -0.653 -0.001 -0.017 -0.034 -0.042

Pyridine-d5 -1.223 -1.266 0.002 -0.025 -0.067 -0.082

Acetone-d6 -1.304 -1.346 0.002 -0.031 -0.071 -0.090

Table 5: Calculated and experimental solvent shifts of nJ(HH) for benzene in four different sol-

vents. Both relaxed and unrelaxed geometries reported. Solvent shifts reported relative to the

cyclohexane value. Experimental data (in italics) from Ref. [44]. All numbers reported in Hz.

Solvent 3J(HH) 4J(HH) 5J(HH)

Unrelaxed Relaxed Unrelaxed Relaxed Unrelaxed Relaxed

Gas-phase -0.022 -0.002 -0.004 -0.006 -0.002 -0.006

CS2 0.026 0.003 0.004 0.007 0.003 0.006

-0.022 0.004 -0.009

Pyridine-d5 0.049 0.008 0.008 0.014 0.005 0.011

-0.021 0.013 -0.003

Acetone-d6 0.052 0.002 0.008 0.015 0.005 0.013

-0.009 0.006 0.005
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solvent. The two largest coupling constants, 1J(13C13C) and 1J(13CH), are both dominated by the

Fermi contact interaction. This predominance of the Fermi-contact interaction is also reflected in

the contributions to the solvent shifts observed for these coupling constants. Even when going from

gas-phase to the solvent-optimized geometry of benzene in acetone, the contribution from the other

coupling mechanisms are -0.068 and -0.040 Hz for 1J(13CH) and 1J(13C13C), respectively. Even for

the one-bond carbon-carbon coupling constant, where the PSO contribution is about 10% of the

Fermi-contact contribution, but with opposite sign, the solvent effect on the PSO contribution is

a negligible 0.007 Hz. However, more studies on coupling constants with a smaller contribution

from the Fermi-contact mechanism is needed in order to establish whether the dielectric medium

effects in general only affect the Fermi contact contribution. In comparison with experiment, our

results for the nJ(13CH) (n = 2, 3, 4) and nJ(HH) (n=3,4,5) couplings are not very satisfactory.

For 2J(13CH) the agreement is quite good when considering the solvent shifts of pyridine and

acetone relative to CS2. However, whereas we obtain a rather sizeable solvent shift of 0.103 Hz

from cyclohexane to carbon disulfide, no noticeable difference in the coupling constants is observed

in experiment in these two solvents. It is interesting to note that the experimental solvent shifts

for 3J(13CH), 4J(13CH), 4J(HH) relative to cyclohexane pass through a maximum for pyridine.

Only in the case of 4J(13CH) are we able to reproduce this trend, whereas a similar maximum

also occurs for 3J(HH) in our calculations. Our results indicate that this maximum in the solvent

shifts arise from the geometry relaxation, compensating and opposing the effects of the direct

polarization of the electronic structure of the solvated molecules. However, our results does not

appear reliable enough to enable us to draw a definite conclusion on this point.

5 Summary

In this paper we have presented the theory and implementation of the polarizable continuum

model for singlet and triplet linear response functions in the Dalton quantum chemistry pro-

gram [41] using density functional theory. The implementation uses D2h symmetry in all parts of

the calculation, including the generation of the PCM cavity. This fully analytical implementation

of the PCM model for the calculation of solvent effects on indirect spin–spin coupling constants

have been applied to the study of the solvent effects on the coupling constants in benzene. For

the largest coupling constants—1J(13CH) and 1J(13C13C)—our results for the solvent shifts are in

quite good agreement with experiment when the molecular geometry is allowed to relax in the sol-

vent. For the other coupling constants, the solvent effects are too small for other predicted solvent

shifts to be considered accurate, and for these coupling constants, agreement with experiment is

only fair. Our results do not support the use of extrapolation schemes to estimate coupling con-

stants of gas-phase molecules from the solvent shifts observed in solution. Our calculations have
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demonstrated that such extrapolation schemes significantly overestimate the cyclohexane-to-gas

shift of 1J(13CH), and we propose instead a new “experimental” gas-phase value of the 1J(13CH)

spin–spin coupling constant of a vibrating molecule at 300 K to be 157.46 Hz.
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Bak, K. L.; Bakken, V.; Christiansen, O.; Coriani, S.; Dahle, P.; Dalskov, E. K.; Enevoldsen,

T.; Fernandez, B.; Hättig, C.; Hald, K.; Halkier, A.; Heiberg, H.; Hettema, H.; Jonsson,

D.; Kirpekar, S.; Kobayashi, R.; Koch, H.; Mikkelsen, K. V.; Norman, P.; Packer, M. J.;

Pedersen, T. B.; Ruden, T. A.; Sanchez, A.; Saue, T.; Sauer, S. P. A.; Schimmelpfennig, B.;

Sylvester-Hvid, K.O.; Taylor, P. R.; and Vahtras, O. Dalton, an ab initio electronic structure

program, Release 1.2. See http://www.kjemi.uio.no/software/dalton/dalton.html, 2001.

[42] Kaski, J.; Vaara, J.; Jokisaari, J. 13C-13C spin–spin coupling tensors in benzene as de-

termined experimentally by liquid crystal NMR and theoretically by ab initio calculations.

J. Am. Chem. Soc. 1996, 118, 8879–8886.

[43] Schaefer, T.; Bernard, G. M.; Hruska, F. E. An estimate of the spin–spin coupling constant,
1J(1H,13C), in gaseous benzene. Can. J. Chem. 1996, 74, 1524–1525.

[44] Laatikainen, R.; Ratilainen, J.; Sebastian, R.; Santa, H. NMR study of aromatic-aromatic

interactions for benzene and some other fundamental aromatic systems using alignment of

aromatics in strong magnetic field. J. Am. Chem. Soc. 1995, 117, 11006–11010.

[45] Cappelli, C.; Corni, S.; Mennucci, B.; Cammi, R.; Tomasi, J. Vibrational circular dichroism

within the polarizable continuum model: a theoretical evidence of conformation effects and

hydrogen bonding for (s)-(-)-3-butyn-2-ol in CCl4 solution. J. Phys. Chem. B, submitted.
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