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Abstract: The most widely employed industrial process for producing alumina (Bayer 
process) involves the dissolution of available aluminium hydroxide minerals present in raw 
bauxite into high temperature sodium hydroxide solutions. On cooling of the solution, or 
liquor in the industrial vernacular, Al is precipitated from solution in the form of gibbsite 
(Al(OH)3). In order to optimise the process, a detailed knowledge of factors influencing 
gibbsite solubility is required, a problem that is confounded by the presence of liquor 
impurities. In this paper, the use of the Group Method of Data Handling (GMDH) 
polynomial neural network for developing a gibbsite equilibrium solubility model for Bayer 
process liquors is discussed. The resulting predictive model appears to correctly incorporate 
the effects of liquor impurities and is found to offer a level of performance comparable to 
the most sophisticated phenomenological model presented to date. 
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Introduction 

The Bayer Process is presently the most economic means for alumina production and promises to 
be so for many years to come. The process can be most simply described by the following steps: 

1. dissolution of extractable aluminium bearing minerals from bauxite in sodium hydroxide at 
elevated temperatures (and pressures); 

2. removal of insoluble impurities and clarification of the remaining solution; 
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3. precipitation of pure gibbsite from the clarified solution by cooling to highly supersaturated 
levels and seeding with previously precipitated gibbsite crystals; 

4. calcination of the crystallised gibbsite at 1100°C to remove chemically bound water to produce 

alumina. 
As an industry, the Bayer process is quite mature, but there are still many fundamental phenomena 

occurring in the process that are not very well understood. For example, the speciation and 
crystallisation mechanisms in Bayer solutions or liquors are still the subjects of considerable 
conjecture [1, 2]. A similar case also exists for models describing gibbsite solubility in Bayer liquors 
which are as varied in their approaches as the are ubiquitous. Because the rate and extent of gibbsite 
precipitation from the Bayer liquor strongly depends on the level of supersaturation, the control and 
optimisation of this component of the Bayer process is greatly facilitated by a good understanding of 
gibbsite solubility. The motivation for developing a corresponding descriptive model is therefore 
obvious.  

Owing to their particular idiosyncrasies, some of the gibbsite solubility models appearing in the 
literature are limited in their application to one extent or another (See Ref. 3 for a review). One 
common limitation, however, is that most models do not account for the effects of dissolved impurities 
which can have significant impact on gibbsite solubility. Organic and inorganic impurities can enter 
the liquor circuit from several different sources such as the raw bauxite ore for example. The scarcity 
of available models that adequately incorporate impurity effects is, in itself, testimony to the difficulty 
of the problem. Possibly the most ambitious attempt to derive a flexible solubility model was presented 
by Rosenberg and Healy (RH) [3]. Following on from concepts introduced by Bouzat and 
Philiponneau [4] they developed a model based on thermodynamic principles describing the 
equilibrium equation: 

 Al(OH)3 +OH− ↔ Al(OH)4
−   (1) 

The effect of impurities was then accounted for by considering their effect on activity coefficients. 
Parameters of the final model equation were calibrated by fitting experimental data and further 
validated indicating sound predictive properties. One of the problems was, however, that the model 
tended to fail at high and low caustic concentrations which may have been due to either analytical 
errors or inappropriate activity coefficients for describing the system at the extremes. A subtler 
problem was revealed when investigating the application of the RH model to Gove process liquors. In 
this case, model predictions deviated significantly from the experimentally measured gibbsite 
equilibrium solubility concentrations. A possible explanation for this considerably large discrepancy 
may involve the solution phase speciation of impurities. It would not be unreasonable to expect that the 
Worsley refinery liquors used by RH may have a significantly contrasting impurity composition to 
Gove liquors due predominantly to the different raw materials entering the respective processes. Gove 
bauxite, for example, is starkly different in character to the Darling Range bauxite used at Worsley. 
Other raw materials, such as caustic soda as well as the way in which impurities are treated may also 
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vary considerably from plant to plant. The variability of impurity species that may be present in Bayer 
Liquors of different origins renders the development of a universally applicable, phenomenological 
solubility model practically impossible.  

In this paper we investigate an alternative method of developing a gibbsite solubility model based 
on the Group Method of Data Handling (GMDH) algorithm [5, 6]. The GMDH network is a learning 
machine based on the principle of heuristic self-organisation. Unlike classical neural network 
modelling, GMDH elegantly self determines a network structure of active neurons (or transfer 
functions) automatically while synthesising an analytical model relating the input basis data to the 
associated output data. During the network construction, relevant input variables of the system are also 
determined while insignificant variables are discarded in a process of genetic inheritance, mutation and 
selection. The GMDH ansatz realises a powerful method for constructing accurate model equations 
with little or no a priori knowledge of the system being modelled.  

 

Experiment Details 

The experimental method employed in the present investigation followed a similar strategy to 
Rosenberg and Healy [3]. The main objective of the experimental work was to simulate typical plant 
conditions rather than perform completely controlled experiments based on fully synthetic liquor 
systems. Gibbsite solubility measurements were therefore carried out using spent Bayer liquor sampled 
from the Gove refinery as a basis. Liquor compositions were then manipulated by a number of means 
such as the addition of soluble chemicals, addition of synthetic liquor, addition of water and the 
evaporation of liquors. As well as the liquor impurities considered by RH, the effect of fluoride 
concentration was also taken into account in this work. 124 equilibrium gibbsite solubility tests were 
carried out exploring the range of liquor conditions outlined in Table 1. A strong association between 
the impurity anions and sodium is expected. It is therefore conventional to express impurities in terms 
of their sodium salts. Industry standard methods were used for analysing the test liquors at their final 
equilibrium conditions. This included thermal titration for determining Al2O3, Na2CO3 and caustic 

concentrations [7] and capillary ion analysis for the anions Cl- and SO −2
4 . Total organic carbon was 

analysed on a Dohrmann DC-180 Carbon Analyser which utilises the ultra-violet promoted persulfate 
oxidation method. Fluoride analysis was carried out by burning samples in a modified oxy-hydrogen 
burner. The fluoride was then scrubbed out of the combustion products and concentrations determined 
in a conventional manner [8].  

There are no strict industry conventions for expressing concentrations and here C stands for caustic 
concentration expressed as Na2O, dissolved gibbsite is given in terms of Al2O3 and TOC is the Total 
Organic Carbon as g/L carbon. 
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GMDH Modelling of Experimental Data 

GMDH is essentially a self-organising network of active neurons or transfer functions. The network 
architecture is fully self-determined by the algorithm itself. The final network consists of the zeroth 
layer or input data and the final output layer which are connected through a network structure which is 
made up of several layers of active neurons of progressively increasing complexity. The basic 
approach of GMDH is that each neuron in the network receives input from exactly two other neurons 

with the exception of the neurons representing the input layer. The two inputs, xi and jx  are then 

combined to produce a partial descriptor based on the simple quadratic transfer function 

 y = a+ bxi + cx j + dxi
2 + ex j

2 + fxix j   (2) 
where the coefficients a..f are determined statistically and are unique for each transfer function. The 
coefficients can be thought of as analogous to weights found in other types of neural networks. 

The network of transfer functions is constructed one layer at a time. The first network layer consists 

of functions of each possible pair of n input variables (zeroth layer) resulting in n⋅(n-1)/2 neurons. The 

second layer is created using inputs from the first layer and so on. The first network layer therefore 
consists of a set of quadratic functions of the input variables, the second layer involves fourth degree 
polynomials, the third layer includes eighth degree polynomials etc. A selection process is employed to 
limit the size of the network by culling neurons at each layer based on a performance criterion. The 
way in which this is done represents an important feature of the GMDH algorithm. While the 
parameters of each transfer function are estimated using a training set of observations to optimise the 
behaviour of the partial descriptor, a separate testing set is used to rank and select the best partial 
descriptors of each network layer. This approach guarantees objectivity during the model construction 
process and serves to avoid overfitting. A pre-defined number of surviving neurons are preserved 
which then mutate to form the subsequent layer as described above. The algorithm automatically 
terminates once the performance of the network begins to deteriorate.  

Unlike other types of neural network approaches to modelling data, GMDH provides a fully 
portable, symbolic description of the final network or model in the form of a polynomial function of 
the selected, relevant input variables. Specifically, a Volterra series is generated in the form 

 y = a0 aixi
i=1

M

∑ + aij
j=1

M

∑
i=1

M

∑ xix j + aijk xix j xk
k=1

M

∑
j=1

M

∑
i=1

M

∑ …  (3) 

where X( 1x , 2x ,…., xM ) is the vector of input variables and A( 1a , 2a ,…., Ma ) is the vector of summand 

coefficients.  
Being an inductive process, GMDH adheres to the principle of Occam’s razor which advocates a 

parsimonious model in contrast to other neural network approaches which systematically tend to 
overfit data. This is an important attribute when attempting to identify relevant input variables to a 
complex system such as the present case of determining which impurities influence gibbsite solubility. 

The modelling of the solubility data employed a twice multi-layered network structure GMDH 
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variant as implemented in the KnowledgeMiner program package [9]. The mechanism of layer-
breakthrough was employed to allow all input variables and selected partial descriptors from previous 
layers to be reintroduced into subsequent network layers regardless of whether or not they were 
selected in the most recent network layer. This approach is more computationally demanding but 
provides considerably greater flexibility in the model construction process by avoiding premature 
elimination of input variables or selected partial models.  

To develop the present gibbsite solubility model, temperature, caustic concentration and the 
concentration of each impurity provided the set of input vectors. The experimentally determined 
equilibrium gibbsite solubility for each set of input conditions represented the output to be modelled. 
With these raw data provided in tabular form, the GMDH algorithm was left more or less to its own 
devices to formulate an appropriate model. The resulting GMDH network is presented in algebraic 
form in Ref 10. 

 

Results and Discussion 

The performance of the GMDH solubility model can be appreciated by inspection of Figure 1. The 
linear regression plot of experimental versus modelled equilibrium gibbsite solubility shows that for 
the entire range of measured data, the model behaves very well. For the 124 solubility measurements 
covering the ranges outlined in  Table 1,  the GMDH model reproduced the experimental values with a  
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Figure 1. Plot of predicted versus experimental equilibrium gibbsite solubility concentrations for the 
model calibration data set. 
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Table 1. Range of liquor constitutions used for the model calibration.Quantities expressed in g/L.  

Variable Temp *C Na2CO3 NaCl Na2SO4 NaF **TOC 

Range 55-95 °C 110 – 160 0 – 70 0 – 13 0 – 4 0-7 0 – 10 
*C is caustic expressed as g/L Na2O. **TOC is total organic carbon expressed as g/L. 

 
mean unsigned error (MUE) of 0.78 g/L Al2O3. The corresponding mean signed error (MSE) was -0.17 
g/L Al2O3 with a standard deviation from the MSE of 1.05 g/L Al2O3. The performance of the model 
can therefore be closely compared with RH’s thermodynamic model which was accurate within a 
typical error of 1.2 g/L Al2O3 at the 95% confidence level [3]. 

The GMDH network failed to identify fluoride concentration as a significant variable of the system. 
This represents a bit of a curiosity. Fluoride is a group 7 element with a high electronegativity and 
thus, a high propensity of ion formation in an inorganic solvent. If fluoride ions are formed, they 
should reduce the available solvent for gibbsite dissolution. On the other hand, the binding of F- to Al3+ 
is unusually strong. It is likely that a considerable fraction of the available fluoride ions are occupied in 
the form of (OH)3AlF– and associated tetrahedral Al3+ complexes as opposed to free F– ions in 
solution. Adhering to this argument would explain why fluoride concentration has negligible overall 
effect on gibbsite solubility. 

Predicting solubility for conditions outside the range of calibration provides a good test of the 
reported GMDH model. Table 2 lists a range of predicted gibbsite solubilities against some previously 
published results for Worsely liquors fitting this criterion. Despite the possible problems outlined 
above relating to solution phase speciation, the GMDH model performs very well compared to the 
experimental results and the RH model predicted values. The strong correlation between the predicted 
and experimental solubilities is also shown in Figure 2. It should pointed out that the latter model was 
calibrated for Worsely liquors so a superior performance should be expected in any case. The 
analytical quality of the measurements at high and low caustic may be questionable which possibly 
explains the large deviations at these extremes. 

 

Conclusions 

We have demonstrated the successful application of the Group Method of Data Handling to the 
problem of modelling gibbsite solubility in Bayer process liquors. Using a set of experimentally 
determined solubility data as input, the GMDH algorithm was able to automatically create a algebraic 
description of the relationship between equilibrium gibbsite solubility concentration and temperature, 
caustic concentration as well as impurity concentrations in liquor. This was accomplished with 
virtually no user intervention. The performance of the final reported model compares favourably with 
the most sophisticated phenomenological model presented to date which was developed based on the 
principles of thermodynamics. 
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Table 2. Equilibrated liquor conditions and measured gibbsite equilibrium solubilities taken from Ref. 
3 compared to predicted values from the GMDH model and Rosenberg and Healy’s thermodynamic 
model. The associated errors are listed in the final two columns. Concentrations appearing in Italics 
represent values outside the calibration range (C is caustic expressed as g/L Na2O). 

Equilibrated Liquor Analysis  Predicted Conc’s 
Temp 

°C 
C 

(g/L) 
Na2CO3 

(g/L) 
NaCl 
(g/L) 

Na2SO4 
(g/L) 

TOC 
(g/L) 

Measured 
(g/L) 

GMDH 
(g/L) 

HR 
(g/L) 

80 2.4 10.0 0.0 0.0 0.0 1.6 4.10 0.09 
60 2.5 10.0 0.0 0.0 0.0 1.0 4.53 0.05 
80 2.5 1.1 0.0 0.0 0.0 1.5 1.33 0.02 
60 2.7 0.3 0.0 0.0 0.0 1.2 1.07 0.01 

175 103.6 37.2 18.79 32.82 24.96 147.9 148.5 147.9 
175 105.0 38.3 19.97 33.25 26.19 150.1 152.6 150.3 
85 111.0 39.4 20.1 35.1 26.7 85.2 83.2 84.9 
85 112.5 39.9 21.3 35.46 27.94 87.4 85.7 87.1 
65 112.7 41.4 20.1 35.87 27.28 62 63.2 60.2 
65 114.5 42.1 21.5 36.32 28.61 62.9 65.7 62.3 
85 114.5 41.2 22.56 36.37 28.72 90.1 88.8 89.9 
65 116.1 43.2 22.7 37.11 29.3 64.7 68.0 64.2 

149 118.6 52.5 16.9 43.8 19.5 160.2 162.4 159.6 
85 124.8 44.6 22.99 38.45 30.33 103.5 100.9 103.4 
65 125.4 48.3 16.4 43.5 22.7 71.3 70.2 71.2 
65 127.7 47.0 23.5 39.55 31.2 76.7 78.3 76.7 
65 140.4 48.5 21.37 23.07 0.17 83.6 79.9 75.0 
80 235.3 38.6 42.2 13.2 40.8 266.3 297.8 308.0 
60 238.1 36.6 45.2 13.3 43.5 247.7 235.0 273.2 
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Figure 2. Plot of predicted versus experimental equilibrium gibbsite solubility concentrations for 
liquors conditions outside the range of model calibration. 
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The predictive behaviour of the model appears to allow for solubility determinations outside of the 
range of calibration. One very useful feature of the present approach is that the calibration range can 
easily be extended when new data becomes available. Importantly, the method does not rely on a 
particular model remaining valid throughout a particular range of data. For example, it is probable that 
at high caustic concentrations different ion-pairing behaviour occurs in the Bayer liquor than at lower 
concentrations. A thermodynamic model would have difficulty in describing this type of transition and 
would require that activity coefficients account for this as a function of caustic concentration. As long 
as the behavioural transition was smooth, the GMDH algorithm would have the flexibility to adapt 
itself to include these effects assuming the appropriate experimental data was available. 

This manuscript presents a single example of the possibilities offered by GMDH in the field of 
Industrial Chemistry. There are many situations when a symbolic mathematical model relating input 
data to some output data is sought where GMDH offers a potential solution. Other obvious Industrial 
Chemistry and Chemical Engineering applications include, for example, plant process modelling, 
quantitative structure-activity relationships (QSAR) and quantitative structure-property relationships 
(QSPR) to name a few. 
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X2 = NaCl   
X3 = Na2CO3 * 12/106 
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X5 = Organic C  
X7 = Temperature  
X9 = 1 / X1  
X10 = 1 / X7 
  
z1 = -0.022 * X1 + 0.0173 * X7 + 0.000483 * X1 * X7 + 0.0000844 * X1 * X1 - 0.000134 * X7 * X7 - 3.89 
z2 = 0.145 * X5 - 1.98 
z3 = 0.118 * z2 + 0.989 * z1 + 0.0114 * z1 * z1 
z2 = -17.2 * X9 - 281.0 * X10 + 587.0 * X9 * X10 + 4.19 
z4 = -0.122 * z2 + 1.11 * z3 
z5 = -0.022 * X1 + 0.0173 * X7 + 0.000483 * X1 * X7 + 0.0000844 * X1 * X1 - 0.000134 * X7 * X7 - 3.89 
z6 = 0.569 * X3 - 2.3 
z7 = 0.125 * z6 + 0.988 * z5 + 0.0189 * z6 * z5 - 0.0262 * z6 * z6 + 0.02 * z5 * z5 
z8 = 0.184 * X2 - 0.928 
z9 = -0.00924 * z8 + 1.0 * z7 - 0.0278 * z8 * z7 + 0.0223 * z8 * z8 
z10 = 0.65 * z9 + 0.353 * z4 - 0.0147 
z11 = -0.022 * X1 + 0.0173 * X7 + 0.000483 * X1 * X7 + 0.0000844 * X1 * X1 - 0.000134 * X7 * X7 - 3.89 
z12 = 0.0228 * X1 + 0.307 * X5 - 0.00168 * X1 * X5 - 0.00276 * X5 * X5 - 3.47 
z13 = 0.244 * z12 + 0.976 * z11 + 0.0652 * z12 * z11 
z14 = -0.316 * z13 + 1.31 * z10 + 0.0072 
z15 = -17.2 * X9 - 281.0 * X10 + 587.0 * X9 * X10 + 4.19 
z16 = -0.0764 * z15 + 1.07 * z14 
z17 = 0.0962 * X4 - 0.391 
z18 = 1.01 * z16 - 0.0179 * z17 * z16 + 0.00763 * z16 * z16 
z19 = 0.55 * X3 - 0.0478 * X3 * X3 - 1.29 

Al2O3 = -2.62 * z19 + 25.7 * z18 - 1.33 * z19 * z19 + 86.5 
where … 
Al2O3 is the equilibrium gibbsite solubility expressed as g/L Al2O3; 
C is caustic expressed as g/L Na2O; 
Temperature is in Celsius (ºC); 
Organic C is expressed as g/L carbon (12C); 
NaCl, Na2CO3 and Na2SO4 are concentrations in g/L. 
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