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Abstract: On the basis of the previous models of inductive and steric effects, ‘inductive’ 
electronegativity and molecular capacitance, a range of new ‘inductive’ QSAR 
descriptors has been derived. These molecular parameters are easily accessible from 
electronegativities and covalent radii of the constituent atoms and interatomic distances 
and can reflect a variety of aspects of intra- and intermolecular interactions. Using 34 
‘inductive’ QSAR descriptors alone we have been able to achieve 93% correct separation 
of compounds with- and without antibacterial activity (in the set of 657). The elaborated 
QSAR model based on the Artificial Neural Networks approach has been extensively 
validated and has confidently assigned antibacterial character to a number of trial 
antibiotics from the literature. 
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Introduction. 
 

Nowadays, rational drug design efforts widely rely on building extensive QSAR models which 
currently represent a substantial part of modern ‘in silico’ research. Due to inability of the fundamental 
laws of chemistry and physics to directly quantify biological activities of compounds, computational 
chemists are led to research for simplified but efficient ways of dealing with the phenomenon, such as 
by the means of molecular descriptors [1]. The QSAR descriptors came to particular demand during 
last decades when the amounts of chemical information started to grow explosively. Nowadays, 
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scientists routinely work with collections of hundreds of thousands of molecular structures which 
cannot be efficiently processed without use of diverse sets of QSAR parameters. Modern QSAR 
science uses a broad range of atomic and molecular properties varying from merely empirical to 
quantum-chemical. The most commonly used QSAR arsenals can include up to hundreds and even 
thousands of descriptors readily computable for extensive molecular datasets. Such varieties of 
available descriptors in combination with numerous powerful statistical and machine learning 
techniques allow creating effective and sophisticated structure-bioactivity relationships [1-3]. 
Nevertheless, although even the most advanced QSAR models can be great predictive instruments, 
often they remain purely formal and do not allow interpretation of individual factors influencing 
activity of drugs [3]. Many molecular descriptors (in particular derived from molecular topology 
alone) lack defined physical justification. The creation of efficient QSAR descriptors also possessing 
much defined physical meaning still remains one of the most important tasks for the QSAR research. 

In a series of previous works we introduced a number of reactivity indices derived from the 
Linearity of Free Energy Relationships (LFER) principle [4]. All of these atomic and group parameters 
could be easily calculated from the fundamental properties of bound atoms and possess much defined 
physical meaning [5-8]. It should be noted that, historically, the entire field of the QSAR has been 
originated by such LFER descriptors as inductive, resonance and steric substituent constants [4]. As 
the area progressed further, the substituent parameters remained recognized and popular quantitative 
descriptors making lots of intuitive chemical sense, but their applicability was limited for actual QSAR 
studies [9]. To overcome this obstacle, we have utilized the extensive experimental sets of inductive 
and steric substituent constants to build predictive models for inductive and steric effects [5]. The 
developed mathematical apparatus not only allowed quantification of inductive and steric interactions 
between any substituent and reaction centre, but also led to a number of important equations such as 
those for partial atomic charges [8], analogues of chemical hardness-softness [7] and electronegativity 
[6]. 

Notably, all of these parameters (also known as ‘inductive’ reactivity indices) have been expressed 
through the very basic and readily accessible parameters of bound atoms: their electronegativities (χ), 
covalent radii (R) and intramolecular distances (r). Thus, steric Rs and inductive σ* influence of n - 
atomic group G on a single atom j can be calculated as: 
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In those cases when the inductive and steric interactions occur between a given atom j and the rest 
of N-atomic molecule (as sub-substituent) the summation in (1) and (2) should be taken over N-1 
terms. Thus, the group electronegativity of (N-1)-atomic substituent around atom j has been expressed 
as the following: 
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Similarly we have defined steric and inductive effects of a singe atom onto a group of atoms (the 
rest of the molecule): 
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In the works [7, 8] an iterative procedure for calculating a partial charge on j-th atom in a molecule has 
been developed: 
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(where Qj reflects the formal charge of atom j). 
Initially, the parameter χ in (6) corresponds to χ0 - an absolute, unchanged electronegativity of an 
atom; as the iterative calculation progresses the equalized electronegativity χ’ gets updated according 
to (7):  

N∆+≈ 00' ηχχ          (7) 

where the local chemical hardness η0 reflects the “resistance” of electronegativity to a change of the 
atomic charge. The parameters of ‘inductive’ hardness ηi and softness si of a bound atom i have been 
elaborated as the following: 
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The corresponding group parameters have been expressed as  
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The interpretation of the physical meaning of ‘inductive’ indices has been developed by 
considering a neutral molecule as an electrical capacitor formed by charged atomic spheres [8]. This 
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approximation related inductive chemical softness and hardness of bound atom(s) with the total area 
of the facings of electrical capacitor formed by the atom(s) and the rest of the molecule.  

We have also conducted very extensive validation of ‘inductive’ indices on experimental data. 
Thus, it has been established that RS steric parameters calculated for common organic substituents 
form a high quality correlation with Taft’s empirical ES -steric constants (r2=0.985) [10]. The 
theoretical inductive σ* constants calculated for 427 substituents correlated with the corresponding 
experimental numbers with coefficient r = 0.990 [5]. The group inductive parameters χ computed by 
the method (3) have agreed with a number of known electronegativity scales [6]. The inductive 
charges produced by the iterative procedure (6) have been verified by experimental C-1s Electron 
Core Binding Energies [8] and dipole moments [6]. A variety of other reactivity and physical-
chemical properties of organic, organometallic and free radical substances has been quantified within 
equations (1)-(11) [11-16]. It should be noted, however, that in our previous studies we have always 
considered different classes of ‘inductive’ indices (substituent constants, charges or electronegativity) 
in separate contexts and tended to use the canonical LFER methodology of correlation analysis in 
dealing with the experimental data. At the same time, a rather broad range of methods of computing 
‘inductive’ indices has already been developed to the date and it is feasible to use these approaches to 
derive a new class of QSAR descriptors. In the present work we introduce 50 such QSAR descriptors 
(we called ‘inductive’) and will test their applicability for building QSAR model of “antibiotic-
likeness”. 
 
Results 
 

QSAR models for drug-likeness in general and for antibiotic-likeness in particular are the 
emerging topics of the ‘in silico’ chemical research. These binary classifiers serve as invaluable tools 
for automated pre-virtual screening, combinatorial library design and data mining. A variety of QSAR 
descriptors and techniques has been applied to drug/non-drug classification problem. The latest series 
of QSAR works report effective separation of bioactive substances from the non-active chemicals by 
applying the methods of Support Vector Machines (SVM) [17, 18], probability-based classification 
[19], the Artificial Neural Networks (ANN) [20-22] and the Bayesian Neural Networks (BNN) [23, 
24] among others. Several groups used datasets of antibacterial compounds to build the binary 
classifiers of general antibacterial activity (antibiotic-likeness models) utilizing the ANN algorithm 
[25-27], linear discriminant analysis (LDA) [28, 29], binary logistic regression [29] or k-means cluster 
method [30]. Thus, in the study [31] the LDA has been used to relate anti-malarial activity of a series 
of chemical compounds to molecular connectivity QSAR indices. The results clearly demonstrate that 
creation of QSAR approaches for classification of molecules active against broad range of infective 
agents represents an important and valuable tack for the modern QSAR research.  
 
Dataset 
 

To investigate the possibility of using the inductive QSAR descriptors for creation an effective 
model of antibiotic-likeness, we have considered a dataset of Vert and co-authors [27] containing the 
total of 657 structurally heterogeneous compounds including 249 antibiotics and 408 general drugs. 
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This dataset has been used in the previous studies [27, 29] and therefore could allow us to 
comparatively evaluate the performance of QSAR model built upon the inductive descriptors. 
 
Descriptors 
 

50 inductive QSAR descriptors introduced on the basis of formulas (1)-(11) have been described in 
the greater details in Table 1. Those include various local parameters calculated for certain kinds of 
bound atoms (for instance for most positively/negatively charges, etc), groups of atoms (say, for 
substituent with the largest/smallest inductive or steric effect within a molecule, etc) or computed for 
the entire molecule. One common feature for all of the introduced inductive descriptors is that they all 
produce a single value per compound. Another similarity between them is in their relation to atomic 
electronegativity, covalent radii and interatomic distances. It should also be noted, that all descriptors 
(except the total formal charge) depend on the actual spatial structure of molecules. The choice of 
particular inductive descriptors in Table 1 was driven by our expectation to have a limited set of 
QSAR parameters reflecting the greatest variety of different aspects of intra- and intermolecular 
interactions a molecule can be engaged into. It should be mentioned, however, that some inductive 
descriptors may reflect related or similar molecular/atomic properties and therefore can be correlated 
in certain cases (even though the analytical representation of those descriptors does not directly imply 
their co-linearity). Thus, a special precaution should be taken when using such parameters for QSAR 
modeling. The procedure of selection of appropriate inductive descriptors has been outlined in the 
following section. 
 

Table 1. Inductive QSAR descriptors introduced on the basis of equations (1)-(11). 

Descriptor Characterization Parental formula(s) 
χ (electronegativity) – based 

EO_Equalizeda 

Iteratively equalized 
electronegativity of a molecule 

Calculated iteratively by (7) where 
charges get updated according to (6); 
an atomic hardness in (7) is expressed 
through (8) 

Average_EO_Posa 
Arithmetic mean of 
electronegativities of atoms with 
positive partial charge 

where +n  is the number of 
atoms i in a molecule with 
positive partial charge 

Average_EO_Nega 
Arithmetic mean of 
electronegativities of atoms with 
negative partial charge 

where −n  is the number of 
atoms i in a molecule with 
negative partial charge 

η (hardness) – based 

Global_Hardnessa Molecular hardness - reversed 
softness of a molecule 

(10) 

Sum_Hardnessa 
Sum of hardnesses of atoms of a 
molecule 

Calculated as a sum of inversed 
atomic softnesses in turn computed 
within (9) 

Sum_Pos_Hardnessa 
Sum of hardnesses of atoms with 
positive partial charge 

Obtained by summing up the 
contributions from atoms with positive 
charge computed by (8)  
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Table 1. Cont. 

Sum_Neg_Hardnessa 
Sum of hardnesses of atoms 
with negative partial charge 

Obtained by summing up the 
contributions from atoms with 
negative charge computed by (8) 

Average_Hardnessa Arithmetic mean of hardnesses 
of all atoms of a molecule 

Estimated by dividing quantity (10) 
by the number of atoms in a molecule 

Average_Pos_Hardness 
Arithmetic mean of hardnesses 
of atoms with positive partial 
charge 

 where +n  is the number of 
atoms i with positive partial 
charge. 

Average_Neg_Hardnessa 
Arithmetic mean of hardnesses 
of atoms with negative partial 
charge 

 where −n  is the number of 
atoms i with negative partial 
charge. 

Smallest_Pos_Hardnessa 
Smallest atomic hardness 
among values for positively 
charged atoms 

(8) 

Smallest_Neg_Hardnessa 
Smallest atomic hardness 
among values for negatively 
charged atoms. 

(8) 

Largest_Pos_Hardness 
Largest atomic hardness among 
values for positively charged 
atoms 

(8) 

Largest_Neg_Hardness 
Largest atomic hardness among 
values for negatively charged 
atoms 

(8) 

Hardness_of_Most_Pos Atomic hardness of an atom 
with the most positive charge 

(8) 

Hardness_of_Most_Nega Atomic hardness of an atom 
with the most negative charge 

(8) 

s (softness) - based 

Global_Softness Molecular softness – sum of 
constituent atomic softnesses 

(11) 

Total_Pos_Softnessa 
Sum of softnesses of atoms 
with positive partial charge 

Obtained by summing up the 
contributions from atoms with 
positive charge computed by (9)  

Total_Neg_Softnessa 
Sum of softnesses of atoms 
with negative partial charge 

Obtained by summing up the 
contributions from atoms with 
negative charge computed by (9) 

Average_Softness Arithmetic mean of softnesses 
of all atoms of a molecule 

(11) divided by the number of atoms 
in molecule 

Average_Pos_Softness 
Arithmetic mean of softnesses 
of atoms with positive partial 
charge 

 where +n  is the number of 
atoms i with positive partial 
charge. 

Average_Neg_Softness 
Arithmetic mean of softnesses 
of atoms with negative partial 
charge 

 where −n  is the number of 
atoms i with negative partial 
charge. 
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Table 1. Cont. 

Smallest_Pos_Softnessa 
Smallest atomic softness 
among values for positively 
charged atoms 

(9) 

Smallest_Neg_Softnessa 
Smallest atomic softness 
among values for negatively 
charged atoms 

(9) 

Largest_Pos_Softness 
Largest atomic softness among 
values for positively charged 
atoms 

(9) 

Largest_Neg_Softness 
Largest atomic softness among 
values for positively charged 
atoms 

(9) 

Softness_of_Most_Posa Atomic softness of an atom 
with the most positive charge 

(9) 

Softness_of_Most_Nega Atomic softness of an atom 
with the most negative charge 

(9) 

q (charge)- based 

Total_Charge 
Sum of absolute values of 
partial charges on all atoms of 
a molecule 

where all the contributions 
iN∆ derived within (6) 

Total_Charge_Formala 
Sum of charges on all atoms of 
a molecule (formal charge of a 
molecule) 

Sum of all contributions (6) 

Average_Pos_Chargea 
Arithmetic mean of positive 
partial charges on atoms of a 
molecule 

 where +n  is the number of 
atoms i with positive partial 
charge 

Average_Neg_Chargea 
Arithmetic mean of negative 
partial charges on atoms of a 
molecule 

 where −n  is the number of 
atoms i with negative partial 
charge 

Most_Pos_Chargea 
Largest partial charge among 
values for positively charged 
atoms 

(6) 

Most_Neg_Charge 
Largest partial charge among 
values for negatively charged 
atoms 

(6) 

σ* (inductive parameter) – 
based 

Total_Sigma_mol_ia 

Sum of inductive parameters 
σ*(molecule→atom) for all 
atoms within a molecule 

 where contributions *
iG→σ  

are computed by equation 
(2) with n=N-1 – i.e. each atom j is 
considered against the rest of the 
molecule G 

Total_Abs_Sigma_mol_i 

Sum of absolute values of 
group inductive parameters 
σ*(molecule→atom) for all 
atoms within a molecule 
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Table 1. Cont. 

Most_Pos_Sigma_mol_ia 
Largest positive group inductive 
parameter σ*(molecule→atom) for 
atoms in a molecule 

(2) 

Most_Neg_Sigma_mol_ia 

Largest (by absolute value) 
negative group inductive 
parameter σ*(molecule→atom) for 
atoms in a molecule 

(2) 

Most_Pos_Sigma_i_mola 
Largest positive atomic inductive 
parameter σ*(atom→molecule) for 
atoms in a molecule 

(5) 

Most_Neg_Sigma_i_mola 
Largest negative atomic inductive 
parameter σ*(atom→molecule) for 
atoms in a molecule 

(5) 

Sum_Pos_Sigma_mol_i 

Sum of all positive group 
inductive parameters σ*( molecule 
→atom) within a molecule 

∑
+

→

n

i
iG

*σ  where *
iG→σ >0 and +n  

is the number of N-1 atomic 
substituents in a molecule with 
positive inductive effect 
(electron acceptors) 

Sum_Neg_Sigma_mol_ia 

Sum of all negative group 
inductive parameters σ*( molecule 
→atom) within a molecule 

∑
−

→

n

i
iG

*σ  where *
iG→σ <0 and −n  

is the number of N-1 atomic 
substituents in a molecule with 
negative inductive effect 
(electron donors) 

Rs (steric parameter) – based 

Largest_Rs_mol_ia 
Largest value of steric influence 
Rs(molecule→atom) in a molecule 

(1) where n=N-1 - each atom j is 
considered against the rest of the 
molecule G 

Smallest_Rs_mol_ia 
Smallest value of group steric 
influence Rs(molecule→atom) in a 
molecule 

(1) where n=N-1 - each atom j is 
considered against the rest of the 
molecule G 

Largest_Rs_i_mol 
Largest value of atomic steric 
influence Rs(atom→molecule) in a 
molecule 

(4) 

Smallest_Rs_i_mola 
Smallest value of atomic steric 
influence Rs(atom→molecule) in a 
molecule 

(4) 

Most_Pos_Rs_mol_ia 

Steric influence 
Rs(molecule→atom) ON the most 
positively charged atom in a 
molecule 

(1) 

Most_Neg_Rs_mol_ia 

Steric influence 
Rs(molecule→atom) ON the most 
negatively charged atom in a 
molecule 

(1) 
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Table 1. Cont. 

Most_Pos_Rs_i_mol 

Steric influence 
Rs(atom→molecule) OF the most 
positively charged atom to the rest 
of a molecule 

(4) 

Most_Neg_Rs_i_mola 

Steric influence 
Rs(atom→molecule) OF the most 
negatively charged atom to the rest 
of a molecule 

(4) 

a – descriptors selected for building the antibiotic-likeness QSAR model. 
 
Selection of variables 
 

To build a binary QSAR model enabling effective separation of antibacterials we have initially 
calculated all 50 individual inductive descriptors for each molecule from the Vert’s dataset. We have 
used the hydrogen suppressed representation of the molecular structures – i.e. only the heavy atoms 
have been taken into account. The inductive QSAR descriptors have been calculated within the MOE 
package [32] from values of atomic electronegativities and radii taken from our previous publications 
[5]. To avoid the mentioned cross-correlation among the independent variables we have computed pair 
wise regressions between all 50 sets of the QSAR parameters and removed those inductive descriptors 
which formed any linear dependence with R≥0.9. As the result of this procedure, only 34 inductive 
QSAR descriptors have been selected for the further processing (see the legend to Table 1). The 
average values of these 34 parameters independently calculated for antibacterial and non- antibacterial 
compounds have been plotted onto Figure 1. As it can be seen, the corresponding curves for two 
classes of compounds are clearly separated on the graph and, hence, the selected 34 inductive 
descriptors should allow building an effective QSAR model of “antibiotic likeness”.  
 

Figure 1.  Averaged values of 34 selected inductive QSAR descriptors calculated 
independently within studied sets of antibiotics (dashed line) and non-
antibiotics (solid line). 
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QSAR model 
 

In order to relate the inductive descriptors to antibiotic activity of the studied molecules we have 
employed the Artificial Neural Networks (ANN) method – one of the most effective pattern 
recognition techniques. During the last decades the machine-learning approaches have became an 
essential part of the QSAR research; the detailed description of the ANN’s fundamentals can be found 
in numerous sources [33 for example].  

In our study we have used the standard back-propagation ANN configuration consisting of 34 input 
and 1 output nodes. The number of nodes in the hidden layer was varied from 2 to 14 in order to find 
the optimal network that allows most accurate separation of antibacterials from other compounds in the 
training sets. For effective training of the ANN (to avoid its over fitting) we have used the training sets 
of 592 compounds (including 197 antibiotics) randomly derived as 90 percent of the total of 657 
molecules. In each training run the remaining 10 percents of the compounds were used as the testing 
set to assess the predictive ability of the model. It should be noted, that we the condition of non-
correlation amongst the descriptors has been monitored within the training and the testing sets of 
compounds as well. 

During the learning phase, a value of 1 has been assigned to the training set’s molecules possessing 
antibacterial activity and value 0 to the others. For each configuration of the ANN (with 2, 3, 4, 6, 8, 
10, 12, and 14 hidden nodes respectively) we have conducted 20 independent training runs to evaluate 
the average predictive power of the network. Table 2 contains the resulting values of specificity, 
sensitivity and accuracy of separation of antibacterial and non-antibacterial compounds in the testing 
sets. The corresponding counts of the false/true positive- and negative predictions have been estimated 
using 0.4 and 0.6 cut-off values for non-antibacterials and antibacterials respectively. Thus, an 
antibiotic compound from the testing set, has been considered correctly classified by the ANN only 
when its output value ranged from 0.6 to 1.0. For each non-antibiotic entry of the testing set the correct 
classification has been assumed if the corresponding ANN output lay between 0 and 0.4. Thus, all 
network output values ranging from 0.4 to 0.6 have been ultimately considered as incorrect predictions 
(rather than undetermined or non-defined). 
 

Table 2. Parameters of specificity, sensitivity, accuracy and positive predictive values for 
prediction of antibiotic and non-antibiotic compounds by the artificial neural 
networks with the varying number of hidden nodes. The cut-off values 0.4 and 
0.6  have been used for negative and positive predictions respectively. 

 
Hidden 
nodes 

Specificity Sensitivity Accuracy PPV 

2 0.8 0.92 0.846 0.751 
3 0.926 0.928 0.923 0.884 
4 0.925 0.92 0.923 0.884 
6 0.9 1 0.938 0.862 
8 0.9 0.92 0.907 0.851 
10 0.9 0.92 0.907 0.851 
12 0.9 0.92 0.907 0.851 
14 0.815 1 0.923 0.833 
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Considering that one of the most important implications for the “antibiotic-likeness” model is its 
potential use for identification of novel antibiotic candidates from electronic databases, we have 
calculated the parameters of the Positive Predictive Values (PPV) for the networks while varying the 
number of hidden nodes. Taking into account the PPV values for the networks with the varying 
number of the hidden nodes along with the corresponding values of sensitivity, specificity and general 
accuracy we have selected neural network with three hidden nodes as the most efficient among the 
studied. The ANN with 34 input-, 3 hidden- and 1 output nodes has allowed the recognition of 93% of 
antibiotic and 93% of non-antibiotic compounds, on average. The output from this 34-3-1 network has 
also demonstrated very good separation on positive (antibiotics) and negative (non-antibiotics) 
predictions. Figure 2 features frequencies of the output values for the training and testing sets 
consisting of ⅓ of antibiotic and ⅔ of non-antibiotics compounds. As it can readily be seen from the 
graph, the vast majority of the predictions has been contained within [0.0÷0.4] and [0.6÷1.0] ranges 
what also illustrates that 0.4 and 0.6 cut-offs values provide very adequate separation of two 
bioactivity classes (Tables 3 and 4 feature the outputs values from the 34-3-1 ANN for the training and 
testing sets respectively). 
 

Figure 2.  Distribution of the output values from the ANN with three nodes in the hidden 
layer and trained on the set containing 90% of the studied compounds  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

It should be mentioned, that the estimated 93% accuracy of the prediction by the 34-3-1 ANN is 
similar or superior to the results by several similar ‘antibiotic-likeness’ studies where the overall 
cross—validated accuracy can range from 78 [20] to 98% [26] depending of the QSAR methodology, 
size of antibiotics/non-antibiotics dataset, cross-correlation technique and statistics utilized. 

We have also applied the developed techniques on the non-hydrogen suppressed molecular 
structures. The estimated accuracy of antibiotic/non-antibiotic classification was very close to the 
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results for the hydrogen suppressed molecules. In contrast, the time for the calculation of the inductive 
QSAR descriptors in the former case is much shorter as the total number of all atoms nearly doubles. 
 
Discussion 
 

The accuracy of discrimination of antibiotic compounds by the artificial neural networks built upon 
the ‘inductive’ descriptors clearly demonstrates an adequacy and good predictive power of the 
developed QSAR model. There is strong evidence, that the introduced inductive descriptors do 
adequately reflect the structural properties of chemicals, which are relevant for their antibacterial 
activity. This observation is not surprising considering that the inductive QSAR descriptors calculated 
within (1)–(11) should cover a very broad range of proprieties of bound atoms and molecules related to 
their size, polarizability, electronegativity, compactness, mutual inductive and steric influence and 
distribution of electronic density, etc. The results of the study demonstrate that not extensive sets of 
inductive QSAR descriptors having much defined physical meaning can be sufficient for creating 
useful models of “antibiotic-likeness”. The accuracy of the developed QSAR model is superior or 
similar compared to other binary classifiers on the same set of molecules but using much more 
extensive collections of QSAR descriptors [27, 29].  

Presumably, accuracy of the approach operating by the inductive descriptors can be improved even 
further by expanding the QSAR descriptors or by applying more powerful classification techniques 
such as Support Vector Machines or Bayesian Neural Networks. Use of merely statistical techniques in 
conjunction with the inductive QSAR descriptors would also be beneficial, as they will allow 
interpreting individual descriptor contributions into molecular “antibiotic-likeness”. The selection of 
drugs used for the simulation can also be extended and/or refined. For instance, it has been 
experimentally confirmed that several non-antibacterial compounds from Vert’s dataset can, in fact, 
possess definite antibacterial activity. Thus, anti-inflammatory drugs diclofenac [34, 35], piroxicam, 
mefenamic acid and naproxen [35], antihistamines – bromodiphenhydramine [36] diphenhydramine 
[36] and triprolidine [37], anti-psychotics – chlorpromazine [38, 39] and fluphenazine [40, 41], the 
tranquilizer promazine [42] and anti-hypertensive methyldopa [43] all exhibit moderate to powerful 
potential against microbes. It is obvious, that having all these compounds as the negative control can 
interfere with the training of efficient antibiotic-likeness model. We, however, did not remove these 
substances from the e training and testing sets for the sake of comparison of our results with the 
previous data. Nonetheless, despite the certain drawbacks, it is obvious that the developed ANN-based 
QSAR model operating by the inductive descriptors has demonstrated very high accuracy and can be 
used for mining electronic collections of chemical structures for novel antibiotic candidates.  
 
An application of the model 
 

We have decided to test the developed model of “antibiotic-likeness” on the series of early-stage 
antibiotic compounds featured in the free issue of the Drug Data Report – a journal presenting 
preliminary drug research results appearing for the first time in patent literature [44]. The 
“experimental” antibiotic compounds cited by the issue included one penicillin- and two 
cephalosporin- derivatives as well as a number of high molecular weight chemicals with complex 
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spatial structures such as five C11-carbamate azalides and four eremomycin carboxamides (the 
corresponding structural formulas are presented on Figure 3).  
 

Figure 3.  Chemical structures of twelve early stage antibiotics from the Drug Data 
Report used for validation for the developed ANN – based QSAR model. 
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287132:  R4 = NH-(CH2)9CH3 
287133:  R4 = (S)-N(CH2)4-CH(NH2)CONHC10H21 
 
287135:  R4 = 4-(C10H21)-1-Piz 
 
 
287136:  R4 =  
 
 

For each of 12 compounds from the validation set we have calculated 34 inductive descriptors used 
earlier. The normalized patterns of the independent variables have then been passed through 34-3-1 
network with its node–associated weights pre-assigned during the training. The ANN has produced the 
output parameters presented in Table 5. As it can be seen from the data, all of the estimated output 
values score well above 0.60 threshold what confidently assigns all of the trial molecules to the class 
of antibiotics.  
 

Table 3. Compounds of the training set and output values from the trained neural network 
with three hidden nodes. 

Name Output  Name Output
antibiotics  apicycline 0.975 

4'-(methylsulfamoyl)sulfanilanilide 0.973  apramycin 0.980 
  azidocillin 0.979 4'-formylsuccinanilic acid  

thiosemicarbazone 0.259  arbekacin 0.980 
4-sulfanilamidosalicylic acid 0.938  aspoxicillin 0.975 
acediasulfone 0.828  azidamfenicol 0.966 
acetyl sulfamethoxypyrazine 0.855  azlocillin 0.850 
acetyl sulfisoxazole 0.964  aztreonam 0.981 
amidinocillin 0.702  bacampicillin 0.982 
amidinocillin pivoxil 0.938  benzylpenicillinic acid 0.924 
amifloxacin 0.881  benzylsulfamide 0.733 
amikacin 0.984  biapenem 0.830 
apalcillin 0.981  brodimoprim 0.585 
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Table 3. Cont. 

Name Output  Name Output
butirosin 0.984  cephalothin 0.977 
carbenicillin 0.974  cephapirin sodium 0.984 
carfecillin sodium 0.970  cephradine 0.897 
carindacillin(a,e,f,i) 0.938  chloramphenicol 0.606 
carumonam 0.985  chloramphenicol palmitate 0.604 
cefaclor 0.860  chloramphenicol pantothenate 0.983 
cefadroxil 0.915  chlortetracycline 0.984 
cefamandole 0.964  cinoxacin 0.770 
cefatrizine 0.973  clinafloxacin 0.920 
cefazedone 0.984  clindamycin 0.926 
cefazolin 0.979  clometocillin 0.953 
cefbuperazone 0.984  clomocycline 0.982 
cefcapene pivoxil 0.983  cloxacillin 0.935 
cefclidin(a,i,j) 0.985  cyclacillin 0.960 
cefdinir(e,i) 0.984  dibekacin 0.952 
cefditoren 0.984  dichloramine 0.253 
cefepime 0.982  dicloxacillin 0.983 
cefetamet 0.983  difloxacin 0.835 
cefixime 0.984  diphenicillin sodium 0.767 
cefmenoxime 0.984  doxycycline 0.981 
cefmetazole 0.984  enoxacin 0.915 
cefminox 0.985  enrofloxacin 0.630 
cefodizime 0.985  epicillin 0.963 
cefonicid 0.984  fenbenicillin 0.967 
ceforanide 0.974  fleroxacin 0.980 
cefotiam 0.985  flomoxef 0.985 
cefoxitin 0.984  florfenicol 0.955 
cefozopran 0.982  floxacillin 0.983 
cefpimizole 0.985  fortimicin a 0.978 
cefpiramide 0.985  fortimicin b 0.700 
cefpirome 0.984  furaltadone 0.901 
cefpodoxime proxetil 0.985  gentamicin c1 0.850 
cefprozil 0.902  gentamicin c2 0.940 
cefroxadine 0.970  gentamicin c3 0.956 
cefsulodin 0.982  grepafloxacin 0.862 
ceftazidime 0.984  guamecycline 0.977 
cefteram 0.979  imipenem 0.577 
ceftezole 0.984  isepamicin 0.985 
ceftizoxime 0.984  kanamycin a 0.962 
cefuroxime 0.980  kanamycin b 0.976 
cefuzonam 0.985  kanamycin c 0.971 
cephacetrile sodium 0.982  lenampicillin 0.985 
cephalexin 0.847  lincomycin 0.907 
cephaloglycin 0.951  lomefloxacin 0.946 
cephaloridine 0.960  loracarbef 0.862 
cephalosporin c 0.976  lymecycline 0.978 
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Table 3. Cont. 

Name Output  Name Output
meclocycline 0.984  propicillin 0.814 
meropenem 0.977  quinacillin 0.984 
methacycline 0.983  ribostamycin 0.965 
methicillin sodium 0.951  rifamide 0.979 
mezlocillin 0.976  rifamycin sv 0.984 
micronomicin 0.966  rifaximin 0.984 
miloxacin 0.786  ritipenem 0.977 
moxalactam 0.984  rolitetracycline 0.979 
n2-formylsulfisomidine 0.919  rosoxacin 0.265 
n4-sulfanilylsulfanilamide 0.980  rufloxacin 0.975 
nadifloxacin 0.658  salazosulfadimidine 0.970 
nafcillin sodium 0.919  sancycline 0.980 
nalidixic acid 0.268  sisomicin 0.909 
neomycin a(c,i,j) 0.983  sparfloxacin 0.975 
neomycin b(a,d,h,i) 0.981  spectinomycin 0.628 
netilmicin 0.938  succinylsulfathiazole 0.977 
nifuradene 0.600  sulbenicillin 0.884 
nifuratel 0.980  sulfabenzamide 0.895 
nifurfoline 0.963  sulfacetamide 0.955 
nifurprazine 0.267  sulfachlorpyridazine 0.915 
nifurtoinol 0.694  sulfachrysoidine 0.975 
nitrofurantoin 0.291  sulfacytine 0.971 
norfloxacin 0.523  sulfadiazine 0.937 
N-sulfanilyl-3,4-xylamide 0.956  sulfadicramide 0.933 
ofloxacin 0.972  sulfadimethoxine 0.958 
oxytetracycline 0.984  sulfadoxine 0.965 
panipenem 0.939  sulfaethidole 0.918 
paromomycin 0.984  sulfaguanidine 0.904 
pasiniazide 0.236  sulfaguanol 0.943 
pazufloxacin 0.926  sulfalene 0.938 
pefloxacin 0.563  sulfaloxic acid 0.857 
penamecillin 0.636  sulfamethazine 0.912 
penethamate hydriodide 0.704  sulfamethizole 0.759 
penicillin G potassium 0.848  sulfamethomidine 0.940 
penicillin N 0.901  sulfamethoxazole 0.908 
penicillin O 0.978  sulfamethoxypyridazine 0.912 
penicillin V 0.912  sulfamidochrysoidine 0.952 
phenethicillin potassium 0.822  sulfamoxole 0.954 
phthalylsulfathiazole 0.976  sulfanilamide 0.653 
pipacycline 0.921  sulfanilic acid 0.841 
pipemidic acid 0.882  sulfanilylurea 0.938 
piperacillin 0.982  sulfaphenazole 0.929 
piromidic acid 0.696  sulfaproxyline 0.957 
pivampicillin 0.916  sulfapyrazine 0.934 
pivcefalexin 0.946  sulfathiazole 0.873 
p-nitrosulfathiazole 0.893  sulfathiourea 0.849 
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Table 3. Cont. 

Name Output  Name Output
sulfisomidine 0.909  bamipine 0.036 
sulfisoxazole 0.963  biclofibrate 0.247 
sultamicillin 0.983  befunolol 0.252 
talampicillin 0.911  benfluorex 0.258 
temocillin 0.985  benorylate 0.259 
tetracycline 0.983  benserazide 0.259 
tetroxoprim 0.837  benzitramide 0.259 
thiamphenicol 0.942  benzotropine mesylate 0.000 
ticarcillin 0.983  benzpiperylon 0.000 
tigemonam 0.985  benzydamine 0.000 
trimethoprim 0.739  bermoprofen 0.257 
trospectomycin 0.850  betaxolol 0.174 
trovafloxacin(b) 0.960  bevantolol 0.154 

non-antibiotics  bevonium methyl sulfate 0.032 
2-amino-4-picoline 0.258  bezafibrate 0.256 
5-bromosalicylic acid acetate 0.258  binifibrate 0.319 
5-nitro-2propoxyacetanilide 0.280  bisoprolol 0.184 
acecarbromal 0.259  bitolterol 0.004 
aceclofenac 0.431  bucloxic acid 0.258 
acefylline(c,d,e,g) 0.841  bopindolol 0.001 
acetaminophen(b,i) 0.258  bromfenac 0.258 
acetanilide 0.258  bromisovalum 0.258 
acetazolamide 0.023  bromodiphenhydramine 0.057 
acetophenazine 0.265  brompheniramine 0.006 
acetylsalicylic acid 0.258  bucetin 0.247 
acrivastine 0.260  bucolome 0.253 
ahistan 0.000  bucumolol 0.256 
albuterol 0.258  bufetolol 0.157 
alclofenac 0.258  bufexamac 0.258 
alminoprofen 0.256  bufuralol 0.008 
alphaprodine 0.106  bumadizon 0.205 
alprenolol 0.239  bunitrolol 0.258 
aminochlorthenoxazin 0.257  butabarbital 0.258 
aminopyrine 0.000  butaclamol 0.123 
amosulalol 0.078  butallylonal 0.262 
amtolmetin guacil 0.001  butanilicaine 0.206 
anileridine 0.262  butibufen 0.255 
antipyrine 0.017  butidrine hydrochloride 0.183 
antrafenine 0.283  butoctamide 0.252 
apazone 0.001  butofilolol 0.256 
apronalide 0.258  caffeine 0.159 
arotinolol 0.293  capuride 0.257 
atenolol 0.258  carazolol 0.027 
atropine 0.258  carbamazepine 0.015 
bambuterol 0.032  carbidopa 0.259 
bamifylline 0.290  carbinoxamine 0.066 
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Table 3. Cont. 

Name Output  Name Output
carbiphene 0.258  diethylbromoacetamide 0.257 
carbocloral 0.313  difenamizole 0.006 
carbromal 0.257  difenpiramide 0.009 
carbuterol 0.258  diflunisal 0.258 
carfimate 0.258  dilevalol 0.255 
carphenazine 0.263  dioxadrol 0.000 
carprofen 0.258  dipyrocetyl 0.315 
carsalam 0.258  dipyrone 0.041 
carteolol 0.259  disulfiram 0.001 
carvedilol 0.000  doxefazepam 0.270 
celiprolol 0.211  doxofylline 0.629 
cetamolol 0.245  doxylamine(b,f,g,i) 0.000 
cetirizine 0.261  droperidol 0.259 
chlorhexadol 0.288  droxicam 0.022 
chlorobutanol 0.258  dyphylline 0.410 
chloropyramine 0.050  ectylurea 0.244 
chlorothen 0.070  embramine 0.122 
chlorpheniramine 0.095  emorfazone 0.010 
chlorprothixene 0.017  enfenamic acid 0.256 
chlorthenoxacin   enprofylline 0.246 
(chlorthenoxazine) 0.258  epanolol 0.258 
chlorcyclizine 0.078  ephedrine 0.229 
cinchophen 0.251  epirizole 0.002 
cinmetacin 0.248  eprozinol 0.237 
cinnarizine 0.388  estazolam 0.000 
cinromida 0.197  etafedrine 0.179 
ciprofibrate 0.251  etamiphyllin 0.118 
clemastine 0.039  etaqualone 0.000 
clenbuterol 0.234  eterobarb 0.001 
clidanac 0.258  etersalate 0.260 
clinofibrate 0.282  ethenzamide 0.243 
clofibric acid 0.256  ethinamate 0.258 
clometacin 0.292  ethoheptazine 0.000 
clometiazol 0.255  ethoxazene 0.248 
clonixin 0.254  etodolac 0.259 
clopirac 0.257  etofibrate 0.260 
cloranolol 0.247  etofylline 0.266 
clordesmetildiazepam 0.257  etomidate 0.000 
clorprenaline 0.249  etymemazine 0.002 
clothiapine 0.003  felbinac 0.258 
clozapine 0.051  fenadiazole 0.230 
codeine 0.062  fenbufen 0.258 
cropropamide 0.002  fenclofenac 0.259 
crotethamide 0.035  fenethazine 0.000 
deserpidine 0.005  fenofibrate 0.254 
diclofenac 0.262  fenoprofen 0.258 



Int. J. Mol. Sci. 2005, 6 
 

81

Table 3. Cont. 

Name Output  Name Output
fenoterol 0.258  lornoxicam 0.031 
fentanyl 0.066  loxapina 0.004 
fentiazac 0.259  loxoprofen 0.258 
floctafenine 0.266  mazindol(i) 0.162 
flufenamic acid 0.259  meclofenamic acid(f) 0.276 
fluoresone 0.459  mecloqualone 0.000 
fluphenazine 0.260  medibazine 0.004 
flupirtine 0.260  medrylamine 0.001 
fluproquazone 0.258  meparfynol 0.258 
flurazepam 0.010  mepindolol 0.211 
flurbiprofen 0.258  meprobamate 0.259 
fluspirilene 0.259  mequitazine 0.001 
flutropium bromide 0.259  methafurylene 0.000 
formoterol 0.259  methaphenilene 0.000 
fosazepam 0.258  methotrimeprazine 0.002 
fusaric acid 0.258  methoxyphenamine 0.000 
gemfibrozil 0.248  methyldopa 0.258 
gentisic acid 0.258  methyltyrosine 0.256 
glafenine 0.259  methyprylon 0.232 
glucametacin 0.335  metiapine 0.002 
glutethimide 0.258  metipranolol 0.258 
haloperidide 0.259  metofoline 0.094 
haloperidol 0.258  metoprolol 0.179 
hexapropymate 0.258  metron 0.275 
hexobarbital 0.274  mexiletine 0.251 
hexoprenaline 0.258  mofezolac 0.340 
histapyrrodine 0.004  molindone 0.000 
hydroxyethylpromethazine    moperone 0.259 
(N-Hydroxyethylpromethazine) 0.261  moprolol 0.213 
hydroxyzine 0.261  morazone 0.000 
ibufenac 0.258  morphine 0.289 
ibuprofen 0.258  moxastine 0.000 
ibuproxam 0.258  nadoxolol 0.258 
indenolol 0.179  naproxen 0.256 
indomethacin 0.323  narcobarbital 0.265 
ipratropium bromide 0.259  nefopam 0.000 
isoetharine 0.258  niceritrol 0.981 
isofezolac 0.183  nicoclonate 0.095 
isonixin 0.125  nicofibrate 0.214 
isopromethazine 0.000  nifenalol 0.256 
isoxicam 0.003  nifenazone 0.000 
ketoprofen 0.250  niflumic acid 0.260 
ketorolac 0.259  nimetazepam 0.512 
labetalol 0.252  nipradilol 0.611 
lefetamine 0.068  nitrazepam 0.337 
lorazepam 0.268  nordiazepam 0.254 
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Table 3. Cont. 

Name Output  Name Output
novonal 0.255  propyphenazone 0.000 
octopamine 0.258  protokylol 0.260 
orphenadrine 0.000  proxibarbital 0.262 
oxaceprol 0.259  proxyphylline 0.210 
oxametacine 0.284  pyrilamine 0.000 
oxanamide 0.254  pyrrobutamine 0.000 
oxaprozin 0.259  quazepam 0.331 
oxitropium bromide 0.265  ramifenazone 0.000 
oxprenolol 0.221  reproterol 0.296 
oxypertine 0.000  rimiterol 0.258 
paramethadione 0.258  ronifibrate 0.259 
parsalmide 0.259  salacetamide 0.258 
p-bromoacetanilide 0.258  salicylamide 0.257 
pemoline 0.258  salicylamide O-acetic acid 0.258 
penbutolol 0.099  salsalate 0.258 
penfluridol 0.259  salverine 0.000 
perisoxal 0.034  scopolamine 0.278 
perphenazine 0.284  secobarbital 0.257 
phenacemide 0.258  setastine 0.035 
phenacetin 0.247  simetride 0.028 
phenoperidine 0.191  simfibrate 0.259 
phenopyrazone 0.243  simvastatin 0.355 
phenylbutazone 0.000  sotalol 0.013 
phenyltoloxamine(a,c,g) 0.000  soterenol 0.099 
pindolol 0.055  sulfinalol 0.062 
pipebuzone 0.001  sulpiride 0.017 
piperacetazine 0.261  suprofen 0.258 
piperidione 0.253  talastine 0.000 
piperylone 0.000  talinolol 0.245 
pirbuterol 0.259  talniflumate 0.399 
pirifibrate(g,h) 0.258  temazepam 0.207 
piroxicam 0.013  tenoxicam 0.008 
pirprofen 0.258  terbutaline 0.258 
p-lactophenetide 0.257  tertatolol 0.129 
p-methyldiphenhydramine 0.000  tetrabarbital 0.257 
pravastatin 0.438  thenaldine 0.000 
prazepam 0.008  thenyldiamine 0.000 
primidone 0.133  theobromine 0.251 
probucol 0.000  theofibrate(b,f,i) 0.435 
procaterol 0.260  theophylline(f,h,i,j) 0.224 
proglumetacin 0.292  thioridazine 0.003 
prolintane 0.024  thiothixene 0.003 
promazine 0.000  thonzylamine 0.001 
pronethalol 0.237  tiaprofenic acid 0.258 
propanolol 0.067  timolol 0.030 
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Table 3. Cont. 

Name Output  Name Output
toliprolol 0.127  tripelennamine 0.000 
tolmetin 0.254  triprolidine 0.000 
tolpropamine 0.001  tulobuterol 0.169 
tretoquinol 0.418  viminol 0.028 
triazolam 0.003  vinylbital 0.258 
triclofos 0.276  xenbucin 0.256 
trifluoperazine 0.298  xibenolol 0.148 
trifluperidol 0.259  zolamine 0.035 
trimethadione 0.258  zomepirac 0.263 
triparanol 0.248    

Table 4.  Compounds of the testing set and the corresponding output values from the 
trained neural network with three hidden nodes. 

Name Output  Name Output 
antibiotics  butacetin 0.147 

amoxicillin 0.152  chlorpromazine 0.169 
ampicillin 0.728  ciramadol 0.150 
cefoperazone 0.997  clocinizine 0.125 
cefotaxime 0.999  clofibrate 0.142 
cefotetan 0.568  diazepam 0.997 
cefteram 0.999  diphenhydramine 0.125 
ceftriaxone 0.999  diphenylpyraline 0.101 
ciprofloxacin 0.999  esmolol 0.151 
demeclocycline 0.999  ethclorvinol 0.047 
flumequine 0.998  feprazone 0.118 
hetacillin 0.992  flunitrazepam 0.069 
mafenide 0.999  fosfosal 0.134 
metampicillin 0.978  indoprofen 0.287 
minocycline 0.984  isoproterenol 0.151 
nifurpirinol 0.998  levobunolol 0.150 
noprylsulfamide 0.998  lovastatin 0.151 
oxacillin 0.999  mabuterol 0.149 
oxolinic acid 0.991  mefenamic acid 0.097 
sulfamerazine 0.999  mefexamide 0.000 
sulfametrole 0.999  meperidine 0.146 
sulfanitran 0.998  mephobarbital 0.160 
sulfaperine 0.997  methapyrilene 0.000 
temafloxacin 0.987  nadolol 0.151 
thiazolsulfone 0.994  pheniramine 0.134 
tobramycin 0.994  phenocoll 0.000 
tosufloxacin 0.995  phenyramidol 0.000 

non-antibiotics  pimozide 0.029 
acetaminosalol 0.110  practolol 0.152 
acetobutolol 0.150  proheptazine 0.149 
aminopropylon 0.000  propacetamol 0.166 
benoxaprofen 0.150  sulindac 0.975 
brotizolam 0.004  talbutal 0.063 
bupranolol 0.144    
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 Table 5. Output values from the neural network for the validation set’s antibiotics. 

Compound
Structural 
formula 

Prediction 

286547 3a 0.984 
286724 3c 0.985 
286725 3c 0.985 
286726 3c 0.985 
286727 3c 0.985 
286728 3c 0.985 
286847 3b 0.915 
286848 3b 0.914 
287132 3d 0.985 
287133 3d 0.985 
287135 3d 0.985 
287136 3d 0.985 

 
These results demonstrate that the developed ANN-based binary classifier of antibacterial activity 

is adequate and can be considered an effective tool for ‘in silico’ antibiotics discovery. The results also 
demonstrate that the inductive parameters readily accessible by formulas (1)-(11) from atomic 
electronegativities, covalent radii and interatomic distances can produce a variety of useful QSAR 
descriptors to be used ‘in silico’ chemical research. 
 
Conclusions 
 

The results of the present work demonstrate that a variety of atomic, substituent and molecular 
properties which can be computed within the framework of our previous models for inductive and 
steric effects, inductive electronegativity and molecular capacitance represent a powerful arsenal of 3D 
QSAR descriptors for modern ‘in silico’ drug research. Using only 34 inductive descriptors with no 
additional independent parameters we have achieved 93% correct classification of compounds with- 
and without antibacterial activity. The introduced inductive descriptors possess a number of important 
merits: they are 3D- and stereo- sensitive, can be easily computed from fundamental properties of 
bound atoms and molecules and possess much defined physical meaning. The developed ANN-based 
model for antibiotic-likeness prediction can be used as a powerful QSAR tool for filtering through the 
collections of chemical structures to discover novel antibiotic leads.  
 
Methods  
 

The names of the chemical compounds from the dataset from [27] have been translated into 
SMILES records and MOL files using the ChemIDPlus online service [45] and the MOE package [32].  
50 inductive descriptors have been calculated using by the SVL scripts – a specialized language of the 
MOE package. The interatomic distances have been calculated by the MOE from the molecular 
structures optimized with the MMFF94 force-field [46]. The atomic types have been assigned 
according to the name, valent state and a formal charge of atoms as it is defined within the MOE. The 
parameters of the corresponding atomic electronegativities and covalent radii have been taken from 



Int. J. Mol. Sci. 2005, 6 
 

85

our works [5, 8]. The inductive QSAR descriptors used in the study have been normalized into the 
range [0.0÷1.0] and the non-overlapping training and testing sets have been randomly drawn by the 
customized Java scripts. The training and testing of the neural networks has been conducted using the 
Stuttgart Neural Network Simulator [47]. The training was performed through the feed-forward back-
propagation algorithm with the weight decay and pattern shuffling. The values of initial rates were 
randomly assigned in a range [0.0÷1.0], the learning rate has been set to 0.8 with the threshold 0.10. 
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