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Abstract: In this work, we reported the investigation on the interaction between DNA 

strands self-assembled at gold electrodes and an electron transfer protein, cytochrome c. We 

observed that cytochrome c exhibited well-defined electrochemistry in both double-stranded 

and single-stranded DNA films. This suggested that the electron transfer reaction of 

cytochrome c arose possibly due to the electron hopping along DNA strands rather than 

wiring along the double helix. We also compared the heterogeneous electron transfer rate of 

cytochrome c with that of a ruthenium complex, which further confirmed this mechanism. 
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1. Introduction 

Electron transfer (ET) of proteins plays a vital role in both photosynthesis that traps light energy and 

metabolism that oxidizes fuel. Virtually all living organisms can efficiently convert electrochemical 

energy to either a trans-membrane proton gradient or substrate consumption. This high efficiency of 

long-range ET has mostly been attributed to the well-controlled natural protein-protein interface. 
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However, in contrast, ET of proteins at electrodes, i.e., artificial charged interfaces, is usually 

difficult.[1-4] Indeed, only in rare cases could one observe direct electron communication between 

proteins and bare electrodes. As a major step toward in-vitro protein ET, self-assembled monolayers 

(SAMs) that can functionalize solid surfaces in a highly controlled manner was introduced, which 

offered great opportunities to mimic natural protein-protein interfaces at electrode surfaces. 

Importantly, self-assembly of organosulfur compounds (alkanethiols) on gold electrode surfaces has 

led to successful electrochemical characterization of a variety of electron-transfer proteins in vitro.[5-7] 

Despite this significant progress, there are still many fundamental issues that remain to be resolved. 

For example, electron coupling of protein-SAMs is still less efficient than that at the interface of 

natural protein partners. This arises possibly due to the existence of specific interactions between 

natural protein partners. For example, Millett and coworkers found that replacement of yeast 

cytochrome c (cyt c) with the protein of horse origin significantly attenuated ET between cyt c and 

yeast cytochrome c oxidase, which strongly implied the importance of naturally existing protein-

protein interactions.[8] Since catalytic activities of many enzymes are directly coupled with their ET 

reactivity,[9] enhancement of interfacial ET can, in principle, be translated into significant 

improvement in the performance of protein-based biosensors, or the efficiency of bioelectronic devices 

(e.g. biofuel cells). 

In order to achieve highly efficient interfacial ET of proteins, Xiao et al. recently reported that 

glucose oxidase (GOD) could be electrically wired to a gold electrode, which was bridged by a 

conductive gold nanoparticle.[10] In this nano-wired system, they observed an ET turnover rate of 

~5000 s-1, which even exceeded the corresponding rate between GOD and its natural substrate, oxygen, 

by approximately an order of magnitude. In an alternative approach, Gray and coworkers employed a 

thiolated conjugated oligomer to wire the deeply buried, otherwise inaccessible, redox site of 

Arthrobacter globiformis amine oxidase (AGAO) to a gold electrode.[11] At this electrode surface 

self-assembled with 2.2 nm-long molecular wires, AGAO exhibited reversible electrochemistry with an 

extremely high ET rate (k0 > 4×104 s-1). Analogous to conjugated oligomers, base-stacked 

oligonucleotides are possibly another medium for long-range ET.[12] Thiolated oligonucleotides have 

proven to spontaneously form well aligned monolayers at gold surfaces.[13, 14] According to the 

reports by Barton and coworkers, intercalative redox probes that were localized at a distance from the 

electrode surface could efficiently transfer electrons to and from the underlying electrode via π-π 
interactions arising from base stacking within the double helix.[15] That’s to say, the stacked aromatic 

heterocycles of the DNA duplex may serve as an efficient medium for coupling electron donors and 

acceptors over very long distances. More recently, they demonstrated that the electrochemistry of 

several iron-sulfur proteins and a flavoenzyme could also be mediated by double stranded DNA 

(dsDNA).[16] However, the certainty of DNA duplex’s electron transfer ability is still in debate.  

We are particularly interested in DNA-mediated protein ET, which should not only widen our view 

on interfacial protein ET but deepen our understanding of protein-DNA interactions. In this work, we 

report the electrochemical interrogation on the ET of cytochrome c (cyt. c), a well-studied model for 

protein electrochemistry, within self-assembled DNA films. Cyt. c plays an important role in the 

biological respiratory chain, whose function is to receive electrons from cytochrome c reductase and 

deliver them to cytochrome c oxidase. So the electrochemical study of cyt. c is very important. 
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Whereas the voltammetric response of cyt. c is quite poor at bare metal electrodes, most likely due to 

protein denaturation at the metal electrode surface leading to extremely slow electron-transfer 

kinetics.[17, 18] While previous studies suggested that direct electrochemistry of cyt. c was feasible at 

dsDNA-modified gold electrodes,[19] the exact ET mechanism remains ambiguous. Here, we found 

that, in contrast to the iron-sulfur proteins and flavoenzyme studied by Barton and coworker, cyt. c 

binds to DNA mainly via electrostatic interactions (not intercalation)[20] and its electrochemistry is 

electron hopping-based (not “wiring”[21, 22]). 

2. Results and discussion 

2.1. Cyt c electrochemistry 

 

Figure 1. Cyclic voltammogram of cyt c adsorbed at DNA modified gold electrode (A; 5mM Tris 
buffer, pH7.0, scan rate: 50 mV/s and 100 mV/s) and cyt c/DNA modified electrodes (B; 5mM Tris-
HCl, pH7.0 containing no H2O2, 1 µM H2O2，10 µM H2O2 and100 µM H2O2. Scan rate: 50 mV/s) 

 

Thiolated ssDNA spontaneously form self-assembled monolayers on gold electrodes.[13, 14] 

Previous studies have demonstrated that these surface-confined DNA strands are predominantly in a 

well-aligned conformation that is nearly vertical to the electrode surface.[13, 14] Since DNA strands 

are highly negatively charged, multivalent cations can be electrostatically trapped within the DNA film. 

As is well known, cyt c is a positively charged protein at neutral pH, arising due to several exposed 

protonable lysine at its surface. We thus incubated a DNA-modified electrode in a cyt c solution (30 

µM) with low ionic strength. Of note, high salt concentrations may screen electrostatic attraction 

between cyt c and DNA and minimize their interactions. After incubation of 20 min under repetitive 

potential scan, we obtained an electrode stably decorated with cyt c/DNA hybrid film. Significantly, cyt 

c could facilely communicate electrons with the gold electrode in this state, as manifested by the 

appearance of a pair of well-defined peaks in the CV experiment (Figure 1A). Note that the cyt c-DNA 

interaction is very strong since cyt c remains trapped in the DNA film even in a protein-free buffer 

solution and after being potential scanned for hours. The voltammetric response in E-buffer showed the 

stable redox transformation of the immobilized protein and the peak separation at this scan rate was 

about 20 mV, suggesting a fairly fast electron transfer reaction. The adsorption and redox 
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transformation of cyt c were mostly attributed to the modification of SH-DNA. The negatively charged 

DNA strands effectively attracted positively charged cyt c via electrostatic interactions. In contrast, the 

gold electrode with MCH only exhibited weak adsorption and poor electrochemical behavior of cyt c. 

2.2. Cyt c keeps its native structure at DNA modified electrodes 

It has been reported that proteins containing heme groups, such as HRP, hemoglobin and 

myoglobin, can catalyze the reduction of H2O2[23, 24] while cyt c cannot except when its native 

structure is either denatured or partial disturbed.[25, 26] As a result, it has been suggested that the 

catalytic ability for H2O2 can serve as a highly sensitive probe for the cyt c structure.[26, 27] In order to 

confirm that cyt c keeps its native structure at DNA modified electrode, we evaluated the catalytic 

effect on H2O2 by using cyt c absorbed at DNA modified electrodes. Interestingly, we observed the 

voltammograms of cyt c/DNA modified electrodes remained unchanged along with the elevation of 

H2O2 concentration, even at a high concentration of 100 µM (Figure 1B). This clearly suggested that 

cyt c kept its native structure within DNA films, and that this system was appropriate for investigation 

of the electron transfer of cyt c. 

2.3. Dependence on DNA surface density 

 

Figure 2. Cyclic votammograms of DNA modified electrode with different concentrations of DNA in 
immobilization buffers (0.1, 0.2, 1, 2 µM). 5mM Tris buffer, pH7.0, scan rate: 100 mV/s. 

 

In order to unveil the role of self-assembly of DNA in adsorption process of cyt c, we turn to the 

relationship between the DNA surface density and the amount of electro-active cyt c absorbed on 

electrode. To obtain electrodes with different DNA surface density, a series of DNA I-buffers in which 

the concentrations of SH-DNA were 0.1 µM, 0.2 µM, 1 µM and 2 µM respectively, were prepared, 

while other conditions such as immobilization time, MCH treatment time and cyt c adsorption process 

remain unchanged. Note that higher concentration of SH-DNA in I-buffer resulted in increased number 

of thiolated oligonucleotides on electrodes. As shown in Figure 2, the denser SH-DNA was on surface, 

the larger the voltammetric response of cyt c. Both anodic and cathodic peak currents increased with 
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the concentration of SH-DNA in I-buffer, demonstrating that the amount of electro-active protein was 

dependent on the surface density of SH-DNA. 

2.4. Electron transfer of cyt c at electrodes 

Figure 3 showed the CVs of cyt c/SH-DNA modified electrode at various scan rate of 0.05-10 V. 

The potentials and peak currents were dependent on the scan rate. The peak current linearly increased 

with the scan rate, suggesting that the reaction was a surface-controlled process. On the other hand, the 

peak-to-peak separation increased with the increase of scan rate. Marcus density-of-states (DOS) 

theory has been successfully applied to heterogeneous electron transfer reactions between metal 

electrodes and redox molecules attached on electrodes [28]. Based on this theory, heterogeneous 

electron transfer rate constants (ket) can be estimated from the plot of peak separation versus the 

logarithm of scan rate. We thus obtained a ket of approximately 50~90 s-1. It is important to note that 

the ket is almost independent of the density of SH-DNA on electrodes (within experimental error). 

 

 

Figure 3. Cyclic voltammograms of cyt c at various scan rates ranging from 1-20 V/s (left) and 

simulation of Marcus plots (right). The upper and lower panels are for high (1 µM SH-DNA) and low 

density (0.1 µM SH-DNA) DNA monolayers, respectively. 

In order to evaluate the effect of DNA monolayer on the electrochemistry of cyt c, we further 

prepared a dsDNA surface by immobilizing hybridized dsDNA on gold electrodes. We observed 

similar electrochemical reactions of cyt c. As shown in Figure 4, the heterogeneous electron transfer 
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rate of cyt c at dsDNA modified electrodes was at the same order as that at ssDNA modified 

electrodes. This situation is contrast to those observed by Barton and coworkers. They noticed that 

intercalative dyes (e.g. methylene blue) underwent facile electron transfer reactions when intercalated 

in double stranded DNA, however even a single mismatch in base pairing significantly attenuated the 

electron transfer.[15] The fact that we observed well-defined electrochemistry for cyt c even with 

ssDNA strongly suggested that double helix was not important for transferring electrons of cyt c. 

 

 
Figure 4. Data from CVs of cyt c (A) and RuHex (B) on dsDNA monolayer and its simulation to 

Marcus plots. 

As a step further, we also compared the electron transfer rate of cyt c with that of RuHex. Previous 

studies have demonstrated that RuHex-DNA binding was completely based on electrostatic 

interactions, because it lacks planar organic groups that can intercalatively insert into DNA base pairs. 

As a result, electron transfer reaction of RuHex bound to DNA monolayers is solely due to the hopping 

along DNA strands, instead of any wiring effect.[29] We observed that the rate of RuHex redox (ket 

=60 s-1) is similar to that of cyt c (Figure 4), which further confirm that electron transfer of cyt c at the 

DNA modified electrodes is mostly associated with the hopping rather than wiring along DNA strands. 

It is probably due to the binding mechanism between DNA and cyt. c,  which is more likely to be 

electrostatic interactions rather than intercalation in experiments of Barton et al. Although they also 

demonstrate the dsDNA mediated electrochemistry of several iron-sulfur proteins[16], the salt 

concentration of the testing buffer they employ is much higher, to the extent that can prevent 

electrostatic interactions between proteins and DNA[30]. Therefore, there must be some other binding 

patterns between dsDNA and these proteins.  

3. Experimental 

3.1. Materials 

DNA oligonucleotides were purchased from Sangon Inc. (Shanghai). The sequences are 5’-SH-

CACGA CGTTG TAAAA CGACG GCCAG-3’ (thiolated probe at 5’ terminus with a C6 spacer, SH-

ssDNA); and 5’-CTGGC CGTCG TTTTA CAACG TCGTG-3’ (complementary-DNA). 

Tris(hydroxymethyl)-aminomethane was purchased from Cxbio biotechnology Ltd. 6-Mercapro-1-
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hexanol (MCH), cytochrome c from horse heart, Hexaammineruthenium (III) chloride ([Ru(NH3)6]
3+, 

RuHex) and tris(2-carboxy-ethyl) phosphine hydrochloride (TCEP) were from Sigma. All solutions 

were prepared with nanopure water (18MΩ•cm resistivity) from a Millipore MilliQ system. 

The buffers involved in this work are as follows. DNA immobilization buffer (I-buffer): 10 mM 

TrisHCl, 1mM EDTA, 1.0 M NaCl and 1 mM TCEP (pH 8.0). Note that TCEP was employed to 

cleave disulfides. DNA hybridization buffer (H-buffer): 10 mM trisHCl, 1mM EDTA and 1.0 M NaCl 

(pH 8.0). Buffer for electrochemistry (E-buffer): 5mM Tris-HCl buffer, pH 7.0. 

3.2. Pretreatment of electrodes and DNA immobilization. 

Gold electrodes (2 mm in diameter, CH Instruments Inc.) were first polished on microcloth 

(Buehler) with Gamma micropolish deagglomerated alumina suspension (0.05 µm) for 5 min. These 

electrodes were then sonicated in ethanol and Milli-Q water for 5 min, respectively. Finally, the 

electrodes were then electrochemically cleaned to remove any remaining impurities.[31-33] After 

drying with nitrogen, electrodes were subjected to oligonucleotides of appropriate concentrations for 

14-16 hours, followed by a 2-hour deposition in 1 mM MCH in water.[34] DNA duplex was prepared 

by hybridization of the two complementary sequences (0.5 µM each) in H-buffer for at least 1 hour, 

and then be ready for immobilization at surfaces. 

3.3. Electrochemical measurements 

Cyclic voltammetry (CV) and Alternating Current voltammetry (ACV) were performed on a CH 

Instruments model 430 eletrochemical analyzer. A three-electrode cell consisting of Ag/AgCl reference 

electrode and platinum counter electrode was used for all electrochemical measurements. For cyt. c 

adsorption a 10 mM Tris buffer pH7.0 was used. The protein concentration was 30 µM and the 

electrode was cycled for about 20min in the potential range from -250 mV to +250 mV (vs. Ag/AgCl). 

Then the electrode was transferred to the protein free E-buffer to take the measurement. The E-buffers 

were thoroughly purged with pure nitrogen before experiments. 

4. Conclusion 

In summary, we studied the electron transfer properties of cyt c within self-assembled DNA films. 

We found that the electron transfer of cyt c within ssDNA films was as efficient as that within dsDNA 

films. In addition, electron transfer of RuHex, a simple cation that cannot intercalate into dsDNA, also 

showed comparable electron transfer kinetics. We thus conclude that electron transfer of cyt c is 

electron hopping based, rather than a “wiring” process along DNA double helix. 

Acknowledgments 

We thank the financial support from National Natural Science Foundation (60537030, 20404016 and 

30570401), Ministry of Science and Technology (2006CB933000), Shanghai Municipal Commission 

for Science and Technology (0652nm006, 0652nm016 and 06ZR14106), Shanghai Rising-Star 

Program and Chinese Academy of Sciences. 

 



Int. J. Mol. Sci. 2007, 8                           

 

 

143

References 

1. Ryan, M. D.; Bowden, E. F. and Chambers, J. Q. Dynamic electrochemistry: methodology and 

application. Anal. Chem., 1994, 66, 360R-427R. 

2. Hirst, J. and Armstrong, F. A. Fast-scan cyclic voltammetry of protein films on pyrolytic graphite 

edge electrodes: characteristics of electron exchange. Anal. Chem., 1998, 7, 5062-5071. 

3. Stellwagen, E. Haem exposure as the determinate of oxidation-reduction potential of haem 

proteins. Nature, 1978, 275, 73-74. 

4. Voet, D. and Voet, J. G. Biochemistry 2nd Edition. John Wiley&Sons,Inc., New York, 1993. 

5. Baymann, F.; Moss, D. A. and Mantele, W: An electrochemical assay for the characterization of 

redox proteins from biological electron transfer chains. Anal. Biochem., 1991, 199, 269-274. 

6. Armstrong, F. A.; Camba, R.; Heering, H. A. et al.: Fast voltammetric studies of the kinetics and 

energetics of coupled electron-transfer reactions in proteins. Faraday Discuss., 2000, 191-203; 

discussion 257-168. 
7. Elliott, S. J.; McElhaney, A. E.; Feng, C.; Enemark, J. H. and Armstrong, F. A. A voltammetric 

study of interdomain electron transfer within sulfite oxidase. J. Am. Chem. Soc., 2002, 124, 11612-
11613. 

8. Hahm, S.; Durham, B. and Millett, F. Photoinduced electron transfer between cytochrome c 

peroxidase and horse cytochrome c labeled at specific lysines with 

(dicarboxybipyridine)(bisbipyridine)ruthenium(II). Biochemistry, 1992, 31, 3472-3477. 

9. Mure, M.; Mills, S. A. and Klinman, J. P. Biochemistry, 2002, 41, 9269-9278. 

10. Huang, Y.; Zhang, W.; Xiao, H and Li, G. An electrochemical investigation of glucose oxidase at 

a CdS nanoparticles modified electrode. Biosens. Bioelectron., 2005, 21, 817-821. 

11. Contakes, S. M.; Juda, G. A.; Langley, D. B. et al.: Reversible inhibition of copper amine oxidase 

activity by channel-blocking ruthenium(II) and rhenium(I) molecular wires. Proc. Natl. Acad. Sci. 

U. S. A., 2005, 102, 13451-13456. 

12. Chen, X.; Ruan, C.; Kong, J. and Deng, J. Spectroelectrochemical investigation of direct electron 

transfer between resting horseradish peroxidase and its oxidation states promoted by DNA. 

Fresenius J Anal. Chem., 2000, 367, 172-177. 

13. Steel, A. B.; Herne, T. M. and Tarlov, M.J. Electrochemical quantitation of DNA immobilized on 

gold. Anal. Chem., 1998, 70, 4670-4677. 

14. Thiel, A. J.; Frutos, A. G.; Jordan, C.E.; Corn, R.M. and Smith, L.M. In Situ Surface Plasmon 

Resonance Imaging Detection of DNA Hybridization to Oligonucleotide Arrays on Gold Surfaces. 

Anal. Chem., 1997, 69, 4948-4956. 

15. Kelley, S. O.; Boon, E. M.; Barton, J. K.; Jackson, N. M. and Hill, M. G. Single-base mismatch 

detection based on charge transduction through DNA. Nucleic. Acids Res., 1999, 27, 4830-4837. 

16. Boal, A. K.; Yavin, E.; Lukianova, O. A.; O'Shea, V. L.; David, S. S. and Barton, J. K. DNA-

bound redox activity of DNA repair glycosylases containing [4Fe-4S] clusters. Biochemistry, 2005, 

44, 8397-8407. 

17. Reed, D. E. and Hawkridge, F. M. Direct electron transfer reactions of cytochrome c at silver 

electrodes. Anal. Chem., 1987, 59, 2334-2339. 

18. Hawkridge, F. M. and Taniguchi, I. Comments Inorg. Chem., 1990, 17, 163-187. 



Int. J. Mol. Sci. 2007, 8                           

 

 

144

19. Lisdat, F.B.; Ge, B.K.; Ehrlich, A.H.; Bienert, H. and Scheller, F.W. Nucleic Acid-Promoted 

Electron Transfer to Cytochrome c. Electroanalysis, 2001, 13, 1225-1230. 

20. Uosaki, K.; Kondo, T.; Okamura, M. and Song, W.: Electron and ion transfer through multilayers 

of gold nanoclusters covered by self-assembled monolayers of alkylthiols with various functional 

groups. Faraday Discuss., 2002, 373-389; discussion 441-362. 

21. Creager, S.; Yu, C. J.; Bamdad, C. et al.: Electron Transfer at Electrodes through Conjugated 

“Molecular Wire”Bridges. J. Am. Chem. Soc., 1999, 121, 1059-1064. 

22. Samanta, M. P.; Tian, W.; Datta, S; Henderson, J. I. and Kubiak, C. P. Electronic conduction 

through organic molecules. Physical Review. B. Condensed Matter., 1996, 53, R7626-R7629. 

23. D'Agnillo, F.; Wood, F.; Porras, C.; Macdonald, V. W. and Alayash, A. I. Effects of hypoxia and 

glutathione depletion on hemoglobin- and myoglobin-mediated oxidative stress toward 

endothelium. Biochim. Biophys. Acta, 2000, 1495, 150-159. 

24. Huang, H.; Hu, N.; Zeng, Y. and Zhou, G. Electrochemistry and electrocatalysis with heme 

proteins in chitosan biopolymer films. Anal. Biochem., 2002, 308, 141-151. 

25. Zhao, G. C.; Yin, Z. Z. and Wei, X. W. Direct electrochemistry of cytochrome c on a multi-walled 

carbon nanotubes modified electrode and its electrocatalytic activity for the reduction of H2O2. 

Electrochemistry Com., 2005, 7, 256-260. 

26. Diederix, R. E. M.; Ubbink, M. and Canters, G. W.: Peroxidase Activity as a Tool for Studying the 

Folding of c-Type Cytochromes. Biochemistry, 2002, 41, 13067-13077. 

27. Diederix, R. E. M.; Ubbink, M. and Canters, G. W. Effect of the Protein Matrix of Cytochrome c 

in Suppressing the Inherent Peroxidase Activity of Its Heme Prosthetic Group. Chembiochem, 

2002, 1, 110-112. 

28. Finklea. H. O.; Yoon, K.; Chamberlain, E.; Allen, J. and Haddox, R. Effect of the Metal on 

Electron Transfer across Self-Assembled Monolayers. J. Phy. Chem. B, 2001, 105, 3088-3092. 

29. Lao, R.; Song, S.; Wu, H. et al.: Electrochemical Interrogation of DNA Monolayers on Gold 

Surfaces. Anal. Chem., 2005, 77, 6475. 

30. Hamilton, R. W. and Lloyd, R. S. Modulation of the DNA scanning activity of the Micrococcus 

luteus UV endonuclease. J. Bio. Chem., 1989, 264, 17422-17427. 

31. Fan, C.; Zhong, J.; Guan, R. and Li, G. Direct electrochemical characterization of Vitreoscilla sp. 

Haemoglobin entrapped in organic films. Biochim. Biophys. Acta-Proteins Proteom., 2003, 1649, 

123-126. 

32. Hoogvliet, J. C.; Dijksma, M.; Kamp, B. and Bennekom, van W. P. Anal. Chem., 2000, 72, 2016-

2021 

33. Janek, R. P.; Fawcett, W. R. and Ulman, A. J. Phys. Chem. B, 1997, 101, 8550-8558. 

34. Fan, C.; Plaxco, K. W. and Heeger, A. J. Electrochemical interrogation of conformational changes 

as a reagentless method for the sequence-specific detection of picomolar DNA. Proc. Natl. Acad. 

Sci., U.S.A., 2003, 100, 9134-9137. 
 
© 2007 by MDPI (http://www.mdpi.org). Reproduction is permitted for noncommercial purposes. 


