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Abstract: One of the room temperature ionic liquids (RTILs), 1-butyl-3-methylimidazolium 

chloride ([BMIM]Cl) was chosen to prepare the concentrated solutions of Polyacrylonitrile 

(PAN). The rheological behaviors of the solutions were measured with rotational rheometry 

under different conditions, including temperatures, concentration, and molecular weight of 

PAN. The solutions exhibited shear-thinning behaviors, similar to that of PAN/DMF 

solutions. The viscosities decreased with the increasing of shear rates. However, the 

viscosity decreased sharply at high shear rates when the concentration was up to 16wt%. The 

dependence of the viscosity on temperature was analyzed through the determination of the 

apparent activation energy. Unusually, the viscosity of solutions of higher concentration is 

lower than that of lower concentration. Similarly, the viscosity of low molecular weight 

PAN was higher than high molecular weight PAN at high shear rates. The dynamic 

rheological measurement indicates the loss modulus is much higher than storage modulus. 

The trend of complex viscosity is similar with the result of static rheological measurement. 

The interaction between PAN and ionic liquid [BMIM]Cl was discussed. 
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1. Introduction 

Polyacrylonitrile (PAN) are commercially important and used for the precursor for high-

performance carbon fiber. In the fiber applications, PAN is dissolved in a suitable solvent and spin to 
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fibers by a wet or dry spinning process [1]. Several solvents have been used to prepare PAN spinning 

solutions. The extensively used solvents are aqueous sodium sulfocyanate (NaSCN), N, N-

dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), and N, N-dimethyl sulfone (DMSO). 

Nitric acid and aqueous zinc chloride (ZnCl2) also can be used. Unfortunately, all the solvents 

mentioned above are unfriendly to the environment. 

To meet the requirements of ‘Green Chemistry’, scientists have been searching for a green solvent 

to be an alternative to these solvents. In recent years, room temperature ionic liquids (RTILs) have 

received a lot of attention as the potential “green” and “designable” solvents [2]. Although the ionic 

liquids have been studied since the 1950s [3], but they can not to be handled under an inert atmosphere. 

These are not part of our studies until some kinds of water-stable and air-stable ionic liquids are found 

such as [BMIM]Cl. Because of its extremely low volatility, some of the RTILs are promising 

environment-friendly solvents instead of the volatile organic solvents in a range of science and 

technology applications such as media for organic and inorganic reactions [4,5], materials processing [6] 

electrochemistry [7] and chemical separation [8].  

During the copolymerization of AN and MMA in RTILs our research group find that RTILs are 

good solvents for PAN copolymer, and PAN copolymer could be precipitated from the RTILs solutions 

by the addition of water. Therefore RTILs are promising to be green solvents for PAN. Understanding 

the rheological properties of a solution is a convenient and effective way to gain a fundamental 

knowledge of the spinnability and structure-property relationships for the spinning solution. Thus, this 

paper investigates the rheological properties of PAN copolymer/BMIMCl concentrated solutions in 

some detail. 

2. Experimental 

2.1 Materials 

The PAN copolymer, chlorobutane, 1-methylimidazole, ethyl acetate and acetone were used as 

supplied. The P(AN-co-MMA) copolymer ratio was 90:10. P(AN-co-MMA) copolymer was referred to 

as PAN. [BMIM]Cl was prepared based on the reported procedures[9]. 

2.2 Preparation of concentrated solutions 

Firstly, PAN powder was swollen by [BMIM]Cl at room temperature to give a white, little viscous 

pulp. Secondly the pulp was heated to 90°C until a homogeneous, transparent solution was formed. 

The PAN/[BMIM]Cl solution of 5 wt% to 22 wt% concentration was obtained within 5 hours at 90°C. 

Figure 1 shows the process of the dissolution of PAN with ionic liquids [BMIM]Cl at 90°C at the 

concentration of 10 wt%.  
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(a) 

 
(b) 

 
(c) 

Figure 1. The Microscope image of PAN (pulp) dissolution in [BMIM]Cl at different time: (a) 20min, 
(b) 60min, (c) 120min. 

2.3 Rheometry 

Steady state rheological measurements were performed on a HAAKE RS150L rotational rheometer 

using a 35mm, 1º cone and plate. The shear rate was linearly increased from 0.01 to 1000 1/s without 

oscillation. Dynamic rheological measurements were performed on a TA ARES-RFS rotational 

rheometer. 

2.4 Results and discussion 

The apparent viscosity aη  is shown as a function of shear rate for the PAN in two different solvents, 

[BMIM]Cl and DMF (see Figure 2). 

100 1000
0.1

1

10

100

 

 

A
pp

ar
en

t v
is

co
si

ty
 (

P
as

)

Shear rate (1/s)

A

B

 

Figure 2. Rheological behavior of PAN (14wt%, 70°C) in the two solvents: (A) [BMIM]Cl; (B) DMF 

 

Over the experimental range, the PAN/DMF solution is Newtonian fluid, while the PAN/[BMIM]Cl 

solution is pseudoplastic, that is, the apparent viscosity decreases with increasing shear rate. According 

to the so-called power law equation,  
nK γτ &=  or 

1−= n
a K γη &

  (1) 
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where K and n are constants, for pseudoplastic liquids the viscosity should decrease nearly linearly 

with shear rate on the log-log plot and the value of n is less than one. However, it is surprising to find 

that the data of PAN/[BMIM]Cl solution should be considered having two linear stages (see Figure 2). 

The values of n and R2 are listed in Table 1.  

Table 1. The values of n for PAN/[BMIM]Cl solutions. R2 = statistical correlation coefficient. 

PAN/[BMIM]Cl n R2 

Stage1 0.74504 0.993 

Stage2 -0.08613 0.981 

 

The value of n of the first stage is less than 1, according with the shear thinning rheological 

behavior. While at the second stage the apparent viscosity decreases so dramatically that even the value 

of n is negative. It is known that n is used to indicate the non-Newtonian property of fluids. The more 

the value of n deviates from 1, the more non-Newtonian the fluids would be. Usually, the value of n of 

PAN/traditional organic solvents solutions is between 0 and 1. Therefore, it could be postulated that 

there would be some much stronger interaction between PAN and the new solvent [BMIM]Cl which 

will be discussed in the following text. 

The data in Figure 3 shows that the viscosity-shear rate curves for the PAN/[BMIM]Cl solutions of 

different concentrations. 
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Figure 3. Rheological behavior of PAN/[BMIM]Cl solutions from 8 wt% to 22wt% at 70°C 

 

These curves show that solutions of lower concentration remain Newtonian in behavior at high 

shear rates than concentrated solutions. At high concentration, the rheological behavior of 

PAN/[BMIM]Cl solutions acts like that of liquid crystalline polymers[10] (LCP). The solvent 

[BMIM]Cl reduces the number of entanglements. Reducing the number of entanglements at a given 

shear rate reduces the amount of orientation of macromolecular. Since the orientation of 

macromolecular is the major cause of non-Newtonian behavior, increasing the shear rate would make 

the non-Newtonian behavior more noticeable. Besides, it could be found in Figure 3 that when at high 
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shear rate, the viscosity of high concentration solutions is lower than that of low concentration, for 

example, the viscosity of 22wt% solution is the lowest among all the solutions when the shear rate is 

close to 1000 1/s. As we known, liquid crystalline polymers usually have rigid chain segment such as 

aromatic polyamide and aromatic polyester. The flexibility of the C-C bond of the PAN main chain is 

smaller than the C-O bond, C-N bond and decrease because of the strong polarity of the –CN, but 

comparing to the liquid crystalline polymers, the PAN chain segment can not be oriented because of 

lack of strong rigid chain segment. In this case, high concentration means more entanglements, which 

indicates that only low shear rates would be needed to orient the macromolecules. And the amount of 

entanglements is so large that there is no enough time and much more difficulties for most of them to 

slip and disengage. With the increasing of the shear rate the number of the oriented segments increases, 

so that the viscosity of the high concentration PAN/[BMIM]Cl solution decreases greatly. 
The viscosity of most polymer solutions changes greatly with temperature. Commonly, the 

viscosity follows the Andrade or Arrhenius equation to a good approximation: 








=
RT

E
A expη   

In this equation, A is a constant, E is the activation energy. The slope of the straight line plotted by 
ηln versus 1/T is E/R. The value of the energy of activation depends strongly on whether the 

viscosities at various temperatures are evaluated at constant shear stress or at constant shear rate. Here 

E is evaluated at a constant shear rate. Figure 4 shows the viscosity as a function of temperature. 

Here the two molecular weights are high enough to become entangled. Since low molecular weight 

polymers has fewer entanglements than high molecular weight ones, it is not surprising that deviations 

from Newtonian behavior start at higher shear rates for the low molecular weight solutions. However, 

in Figure 5, when the shear rate up to 210 1/s the viscosity of the high molecular weight 

PAN/[BMIM]Cl solution is lower than the other one. 
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Figure 4. Viscosity as a function of temperature for PAN/[BMIM]Cl solution (12wt%) at different 
shear rates (1/s). 
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Figure 5. Rheological behavior of PAN/BMIM-Cl solutions (90°C, 18wt%): (A) Mη=45000; 
(B)Mη=60000 

 

The viscoelasticity of polymer is usually characterized by dynamic rheological experiment in which 

the sample is subjected to a sinusoidal strain of infinitesimal amplitude and fixed angular frequency. 

The term G’, called the storage modulus, is the in-phase component of the modulus and represents the 

energy stored and recovered per cycle. Correspondingly, the term G”, called the loss modulus, is the 

out-of-phase component of the modulus and represents the energy dissipated as heat per cycle of 

deformation. Figure 6 shows the modulus-angular frequency curves for the PAN/[BMIM]Cl solutions 

of different concentrations(90°C)(a) and temperature(14wt%)(b). The data shows that the loss modulus 

G” is much higher than the storage modulus G’. Either module increases when the concentration 

increases or the temperature decreases. The storage modulus G’ increases faster than the loss modulus 

G” because the elasticity of the solution increases. 
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Figure 6. The modulus-angular frequency curves for the PAN/[BMIM]Cl solutions of different 
concentrations(90°C) (a) and temperature(14wt%)(b). 
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The data in Fig. 7 shows that the complex viscosity-angular frequency curves for the 

PAN/[BMIM]Cl solutions of different concentrations(90°C)(a) and temperature(14wt%)(b). The 

curves show that the complex viscosity decreases when the angular frequency increases. That means 

the complex viscosity also have pseudoplastic behavior. The complex viscosity of the solution 

increases when the concentration increases or the temperature decreases. The trend of complex 

viscosity is similar to the result of static rheological measurement. This non-Newtonian behavior is of 

tremendous practical importance in the processing and fabrication of polymer material. First, the 

decreased viscosity makes the polymer solution easier to process or squirt through small channels, such 

as spinning. Second, the decrease in viscosity is associated with the development of elasticity in the 

polymer solution. This elasticity produces such phenomena as die swell, or the “puff-up” of extruded 

strands. Molecular orientation in molded objects also is closely related to polymer elasticity. 
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Figure 7. The complex viscosity-angular frequency curves for the PAN/[BMIM]Cl solutions of 
different concentrations(90°C)(a) and temperature(14wt%)(b). 

 

The possible dissolution mechanism of PAN in ionic liquid [BMIM]Cl is shown in Figure 8. It has 

been proved that the miscibility of ionic liquid with polymer is the function of their structural 

characteristic [11]. We here focus on the polar group of PAN which has strong interaction with the ionic 

liquid. Because the electronegativity of the nitrogen atom on the nitrile grouping is very strong when 

the electron density is very large, the nitrogen atom on the nitrile grouping donate electrons and the 

carbon atom on the nitrile grouping attract electrons. As a result, there is strong interaction between the 

cation and the nitrogen atom on the nitrile grouping. Similarly, there is strong interaction between the 

anion and the carbon atom on the nitrile grouping. Similar interaction was also identified by other 

researchers[12].  

 

Figure 8. The interaction between PAN and [BMIM]Cl. 
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Conclusions 

Within the limits of the experimental techniques accessible to us, the results obtained for 

PAN/[BMIM]Cl solutions show that they are pseudoplastic, similar to the PAN/traditional organic 

solvents solutions. The viscosity decreases with the increasing of shear rate. The dependence on 

concentration and molecular weight shows that entanglements play an important role in the rheological 

behaviors of PAN/[BMIM]Cl concentrated solutions. The Eη decrease when the shear rates increase. 

The dynamic rheological measurement indicates the elasticity of the solution increases when the 

concentration is increasing or the temperature decreasing. The trend of complex viscosity is similar 

with the result of static rheological measurement. The interaction between PAN and ionic liquid 

[BMIM]Cl is discussed. The rheological behaviors of the concentrated solution at high share rate are 

directive to the spinning of PAN fiber. 
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