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Abstract: Carbon nanotubes (CNTs) can be effectively dispersed and functionalized by 

wrapping with long single-stranded DNA (ssDNA) synthesized by asymmetric PCR. The 

ssDNA-CNTs attached on surface of glass carbon electrode made it possible for 

electrochemical analysis and sensing, which was demonstrated by reduction of H2O2 on 

hemoglobin/ssDNA-CNTs modified electrodes. This research showed the potential 

application of DNA-functionalised CNTs in construction of future electrochemical 

biosensors. 
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1. Introduction 

Carbon nanotubes (CNTs) have intrigued great research interest due to their excellent thermal [1], 

electrical [2] and mechanical [3] properties. However, CNTs tend to form bundles in solution, which is 

one of the barricades for its application [4-6]. Therefore, there is great demand to effectively solubilize 
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CNTs in order to realize wide application of this interesting nanomaterial. A variety of approaches 

have been proposed to address this issue [7-9], and it appears that DNA polymer offers a great 

opportunity to solubilize CNT. Dwyer et al. reported that the use of amino-terminated DNA strands in 

functionalizing the open ends and defect sites of oxidatively prepared single-walled carbon nanotubes, 

which was an important first step in realizing a DNA-guided self-assembly process for carbon 

nanotubes [7]. O' Connell et al. reported that SWCNTs had been solubilized in water by non-covelent 

association with linear polymers mostly with polyvinyl pyrrolidone (PVP) and polystyrene sulfonate 

(PSS) [8]. Zhu et.al. described about the charged particles which could be employed in the dispersion 

of SWNTs in water, up to single nanotube level [9]. Zheng and co-workers first reported that 

chemically synthesized DNA oligonucleotides (several tens bases) could disperse and sort single-

walled carbon nanotubes (SWCNTs) [10,11], which was soon recognized to be a promising approach 

to solubilizing CNTs. In spite of its effectiveness, mass-production of oligonucleotide-dispersed CNTs 

are still limited by the high cost of chemical synthesis of oligonucleotides. In addition, only 

oligonucleotides with specific sequences could effectively wrap SWCNTs, which further limits its 

wide application. 

In order to overcome these barricades, Brittany et al proposed a PCR-based approach, which 

produced a large amount of genomic DNA by using polymerase-based DNA amplification. They 

showed that long genomic DNA, in its single-stranded form, could interact with SWCNTs and serve as 

an effective dispersion reagent. Nevertheless, the normal PCR protocol generates double-stranded (ds-) 

rather than singled-stranded (ss-) DNA. Thus they employed a complicated approach that involved 

thiolated primers and gold nanoparticle-based separation [12]. More recently, Li and coworker 

developed a novel strategy that avoided using gold nanoparticles. They employed an isothermal 

amplification, rolling circle amplification(RCA), rather than PCR, to amplify DNA [13,14]. RCA is 

known to produce only ssDNA, thus obviating the necessity to separate PCR-generated dsDNA. In 

spite of its simplicity, the use of RCA-based amplification is limited by the synthesis of circular DNA, 

which is still commercially unavailable. 

In this study, we employed a convenient and effective approach to obtain large amounts of ssDNA 

by using asymmetric PCR. A commercially available plasmid, pUC19, was employed as the template, 

and asymmetric PCR protocol was performed, which generated amplified ssDNA rather than dsDNA. 

It was demonstrated that long ssDNAs amplified from asymmetric PCR could easily wrap and make 

SWCNT dispersible (Scheme 1). We also demonstrated that the DNA/SWCNT complex could 

facilitate the electron transfer reaction of hemoglobin (Hb) at the electrode surface, showing this new 

material’s great potential in construction of novel electrochemical biosensors [15]. 

2. Results and Discussion 

2.1. Amplification of DNA Templates Using Asymmetric PCR 

We first tested whether the 1888-base ssDNA could be amplified through the asymmetric PCR 

protocol. Figure 1 shows the electrophoresis patterns of negative control (lane 1), symmetric PCR 

products (lane 2) and asymmetric PCR products with different primer ratios (lanes 3, 4 and 5). The 

concentration of reverse primer AS2395 solutions in the experiment was fixed to 10 µM, while the 
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forward primer S525’s concentration ranged from 0.1 to 10 µM, in order to investigate the optimal 

ratio of primers that could produce most amounts of ssDNA. The primer ratios in lane 1 and 2 were 1:1 

while no templates were added to lane 1’s mastermix. Compared to the blank result of negative 

control, the obvious band in lane 1 coincides with our previous expectation. As for the asymmetric 

ones, the results in lane 3, 4 and 5 represents the primer ratio of 1:10, 1:50 and 1:100, respectively. The 

band in lane 3 was parallel with that in lane 2, though a bit dimmer, suggesting that the majority of 

products in this ratio are still double stranded. There were two bands observed in each lane of 4 and 5. 

The main product bands in both lanes are on upward side of symmetric PCR results, corresponding to 

the principal that ssDNA moves slower than the double-strand ones in agarose electrophoresis. And the 

lower blurry band can be assigned as the dsDNA amplified in several cycles at the beginning. These 

results obviously indicate that the PCR products prepared according to our protocol are indeed single-

stranded. 

 

 

 

 

Scheme 1. Single-walled carbon nanotubes (SWCNTs) are dispersed by long single-strand DNA 
(ssDNA) generated from asymmetric PCR. 

2.2. Solubilization of DNA-SWCNTs 

As expected, in the absence of DNA, SWCNTs were not soluble in water (Figure 2C) because they 

aligned parallel to each other and pack into bundles due to strong intertube van der Waals attraction 

[5]. The dsDNA amplified from symmetric PCR didn’t disperse the CNTs into solutions as well 

(Figure 2B). By contrast, SWCNTs were readily dispersed in the presence of the asymmetric PCR 

product (Figure 2A) and, after centrifugation at 3000 rpm for 30 min, the supernatant could sustain in a 

stable state without apparent deposition for at least 1 week. We ascribe the solubilization effect of 

asymmetric PCR amplicons to the DNA base stacking on the SWCNT surface, leaving highly charged 

phosphate backbones exposed to water [11]. As a result, wrapping of SWCNTs with a hydrophilic 

shell readily disperses them in water. 
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Figure 1. Electrophoresis patterns of symmetric and asymmetric PCR products in 1% agarose gel. 

Lane M, DNA Marker G (300~2500bp); lane 1, negative control; lane 2, 1888-bp amplified using 10 

µM S525 and 10 µM AS2395 as primers; lane 3 asymmetrically amplified using 1 µM S525 and 10 

µM AS2395; lane 4 asymmetrically amplified using 0.2 µM S525 and 10 µM AS2395; lane 5 

asymmetrically amplified using 0.1 µM S525 and 10 µM AS2395. 

It was found that the ssDNA-SWCNTs hybrid could firmly attach onto a glass carbon substrate and 

form a uniform film. This is due to the high dispersity of ssDNA-SWCNTs. The strains among all of 

the nanotubes to form the film are equivalent in all directions, since they are individually suspended in 

water. If the nanotubes are not individually suspended in water, the asymmetric strain from nanotubes 

will result in uneven film, which cannot adhere tightly to the surface of glass-based materials and will 

easily fall off when put into solution [16]. 

 

 

 

 
Figure 2. Photograph of SWCNT–water mixture in the absence (C), presence of the symmetric PCR 

product (B) and asymmetric PCR product (A) after centrifugation at 3000 rpm for 30 min. 
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2.3. Electrochemical investigation of DNA-SWCNTs 

Immobilization of protein molecules in biocompatible films or matrix, especially in DNA films, 

have attracted much attention since Nassar and Rusling reported DNA can enhance electron transfer 

between electrode and heme proteins in myoglobin–DNA films[17]. As is well known, Hb is very 

difficult to perform direct electrochemistry due to its large and complex structure [18] while 

incorporation of Hb in the DNA based films can enhance the Hb electron transfer rate due to its three 

dimensional structure and its potential conductive nature[19]. Here, we use the DNA/SWCNTs as the 

electron relay. As our previous study has shown, DNA single strand can be a good electron transfer 

mediator for proteins on surface of electrodes[20]. And in this part, ssDNA is used not only to disperse 

SWCNTs in solution but to help getting amplified protein electron transfer reactions on electrodes as 

well. Fig.3a displays the cyclic voltammograms obtained at an Hb/ssDNA-SWCNTs film modified 

electrode in a 0.1 M phosphate buffer solution (PBS) at pH 7.0. A pair of redox peaks can be observed 

attributing to the redox reaction of Hb at the electrode. The cathodic and anodic peak potentials of Hb 

are located at -0.380 V and -0.190 V, respectively. The formal potential (E0’) is calculated to be -

0.285V, which is similar to the previous reports[21]. Compared with the cathodic peak, the anodic 

peak of Hb is not obvious, which suggests that the ferrous Hb (reduced form of Hb) on the electrode 

surface is only partially converted to ferric Hb (oxidized form of Hb). It clearly demonstrates that 

although the electron transfer between Hb and SWCNT electrode performs better than that with bare 

electrode, it is still not quick enough, which is due to the fact that SWCNTs is a mixture of metallic 

and semi-conducting ones, usually in ratio of 1:2. Obviously, most part of SWCNTs can not perform 

satisfactory function of electron relay between Hb and electrode because of their semi-conducting 

properties. We suppose that electron transfer rate between Hb in the ssDNA-SWCNTs and electrode 

might be greatly improved if most SWCNTs is metallic. Though the main function of Hb in vivo is to 

transport oxygen, it also has potential peroxidase activity to catalyze the reduction of some small 

molecules, such as H2O2[22-26]. Therefore, H2O2 is chosen as a model to interrogate such peroxidase 

function of Hb in ssDNA-SWCNTs. Fig.3b shows the cyclic voltammograms of Hb/ssDNA-SWCNTs 

modified electrode in 0.1 M PBS at pH 7.0 containing 7.96×10-4 M H2O2. It can be obviously observed 

that the reduction peak of the protein increases largely, while, the anodic peak of serum responsive 

element (SRE) Hb is totally disappeared. This is attributed to the oxidation of Fe(II) to Fe(III) of SRE 

Hb by H2O2. It demonstrates that peroxidase activity of Hb is well maintained in ssDNA-SWCNTs 

while voltammograms of electrodes modified with proteins without catalytic ability remained 

unchanged along with the elevation of H2O2 concentration. It also implies that Hb/ssDNA-SWCNTs 

modified electrode may be used as a biosensor for H2O2. 
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Figure 3. Cyclic voltammetric detection at ssDNA-SWCNTelectrode before (a) and after (b) adding of 

H2O2 in 0.1 M PBS, pH 7.0 

3. Experimental Section 

pUC19 in this experiment was purchased from SABC at the concentration of 0.8 µg/µl, which was 

diluted by 1000 times before being used as the template of asymmetric PCR. All of the PCR reagents 

(10×buffer, MgCl2, dNTP and taq DNA polymerase) were from Bio-Basic’s PCR kit. Single-walled 

carbon nanotubes used in the study were obtained from Shenzhen Nanotech Port Co. Ltd, while pig 

hemoglobin from Sigma. The sequences of the two primers were as follows:  

5’-CGCAAGCATAAAGTGTAAAG-3’ (S525); 5’-AGAAACGCTGGTGAAAGT-3’ (AS2395). They 

were designed to obtain an amplicon of 1888 bp length. PCR reaction was applied on PTC-200 

recycler (MJ Research Incorporated). The electrochemical measurements were performed on a CHI 

electrochemical analyzer (CH Instruments Inc). For each PCR experiment, 100 µl of mastermix was 

prepared. It contained 10 µl of 10×PCR buffer (200 mM Tris-HCl, pH 8.4, 500 mM KCl), 8 µl of  

25 mM MgCl2, 10 µl of 10 mM dNTPs, 5 µl of forward primer ranging from 0.1~10 µM, 5 µl of 10 

µM reverse primer, 10 µl of 5 µg/µl bovine serum albumin (BSA), 10 µl of 1 ng/µl DNA 

template(Puc19), 0.5 µl of 5 units/µl Taq DNA polymerase, and 41.5 µl autoclaved double-deionized 

water.  

The mastermix was subjected to the following thermal cycling profile: initial denaturation at  

95 °C for 2 min, 40 cycles at 95 °C for 30 s, at 48 °C for 40 s, at 72 °C for 2 min, and a final extension 

at 72 °C for 10 min. To confirm the fidelity of the reaction, PCR products were loaded in a 1% agarose 

gel prepared with TBE buffer (44.5 mM Tris, 44.5 mM boric acid, and 1 mM EDTA) containing  

0.5 µg/ml ethidium bromide and electrophoresed at 80 V for 1.5 h. Then, the sample was visualized by 

UV transillumination and its size was compared with a known DNA Marker G (300~2500 bp, Bio-

basic Inc.).  

The capability of the PCR product to disperse SWCNTs was examined. In a typical experiment, the 

DNA (20 µl) and SWCNTs (0.3 mg, 50~70 %, 1.2~1.5 nm in diameter and 2~5 mm in length) were 

mixed in milli-Q water to a final volume of 500 µl. The mixture was sonicated for 10 min. After 
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sonication, the sample was centrifuged for 30 min at 3000 rpm. As control experiments, blank samples 

without DNA and solutions of dsDNA that had been produced by common symmetric PCR of the same 

primers were also sonicated and centrifuged. The resulting supernatant was then examined using 

electrochemical analyzer to investigate its biological activity on surface of glass-carbon electrode.  

Glass-carbon electrodes (3 mm in diameter, CH Instruments Inc.) were first polished on microcloth 

(Buehler) with Gamma micropolish deagglomerated alumina suspension (0.05 µm) for 5 min. These 

electrodes were then sonicated in ethanol and Milli-Q water for 5 min, respectively. After drying with 

nitrogen, 20 µl mixed solution of Hb (8 mg/ml) and ssDNA-SWCNT in the volume ratio of 1:1 was 

spread evenly onto its surface and allowed to dry at room temperature (about 30 min). Finally it was 

thoroughly rinsed with Milli-Q water and was ready for use.  

Electrochemical experiments were carried out in a 3 ml cell using a glass-carbon working electrode, 

a Pt counter electrode, and an Ag/AgCl reference electrode (immersed in a 3 M NaCl filling solution 

saturated with AgCl). Cyclic voltammetry (CV) was carried out at a scan rate of 50 mV/s. A 0.1 M 

phosphate buffer solution (KH2PO4 + Na2HPO4, pH7) was used as the supporting electrolyte. All 

electrochemical experiments were conducted under nitrogen atmosphere at the ambient temperature  

25 ± 1 °C. The GC electrode was coated by casting 20 µl of supernatant of the ssDNA-SWCNT and 

dried before measurement. Prior to the electrochemical experiments, the test buffer solution was first 

bubbled thoroughly with high-purity nitrogen for at least 10 min. Then a stream of nitrogen was blown 

gently across the surface of the solution in order to maintain an anaerobic solution throughout the 

experiment. Cyclic voltammetry was carried out in the scan range of -0.8~0.2 V. All the experiments 

were performed at a temperature of 20 ± 0.5 °C. 
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