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Abstract: Phosphodiesterase-4 (PDE4) plays an important role in treatment of asthma and 

chronic obstructive pulmonary disease. Thirty-one analogs displaying variable inhibition of 

PDE4 were selected to develop models for establishing three-dimensional quantitative 

structure-activity relationships (3D-QSAR). Comparative molecular field analysis 

(CoMFA) was conducted on the group of analogs to determine the structural requirements 

for potency in inhibiting PDE4. The resulting model exhibited good q2 and r2 values up to 

0.741 and 0.954 for CoMFA. The contributions from the steric and electrostatic fields were 

0.915 and 0.085 respectively. The 3D-QSAR model should be very useful for design of 

novel PDE 4 inhibitors. 
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1. Introduction  

Asthma and chronic obstructive pulmonary disease (COPD) are the two most prevalent chronic 

airway diseases. COPD is a treatable and preventable disease but current predictions are that it will 

continue to increase as an important cause of mortality and morbidity worldwide [1-2]. 

Phosphodiesterases (PDEs) have been classified into at least 11 families (PDE 1-11) according to their 

substrate sensitivity, inhibitor selectivity, Ca2+/calmodulin requirement and amino acid sequences  

[3-4]. Phosphodiesterase-4 (PDE4) is a key enzyme in the hydrolysis of cAMP in mast cells, basophils, 

eosinophils, monocytes and lymphocytes, as well as areas in the brain and airway smooth muscle [5-6]. 



Int. J. Mol. Sci. 2007, 8                  

          

 

715

PDE4 plays a significant role in modulating the activity of cAMP, an important second messenger 

that mediates the relaxation of airway smooth muscle and suppresses inflammatory cell function, 

thereby attenuating the inflammatory response [7]. Increasing the intracellular concentration of cAMP 

in the airway tissues and cells suppresses inflammatory cell function and thus should be beneficial for 

treatment of asthma and COPD [8]. Over the last two decades pharmaceutical companies have placed 

numerous PDE4 inhibitors into clinical trials for asthma or COPD. Only a small number of these drugs 

have the potential to be approved for market [9-10]. 

Comparative molecular field analysis (CoMFA) is one of the well known 3D-QSAR descriptors 

which has been used regularly to produce the three dimensional models to indicate the regions that 

affect biological activity with a change in the chemical substitution [11]. The advantages of CoMFA 

are the ability to predict the biological activities of the molecules and to represent the relationships 

between steric/electrostatic property and biological activity in the form of contour maps gives key 

features on not only the ligand-receptor interaction but also the topology of the receptor [12]. 

We present here our 3D-QSAR studies using CoMFA method on a training set of 5,6-dihydro-

(9H)-pyrazolo-[4,3-c]-1,2,4-triazolo-[4,3-α]-pyridine derivatives as PDE4 inhibitors by considering the 

steric and electrostatic influences. The model deduced from this investigation provides underlying 

structural requirements and good predictive ability, which could aid new PDE4 inhibitors prior to their 

synthesis. 

2.  Computational methods 

2.1 Molecular Modeling 

The structures of the 5,6-dihydro-(9H)-pyrazolo-[4,3-c]-1,2,4-triazolo-[4,3-α]-pyridine derivatives 

and the biological activities data were obtained from the reference [8]. The negative logarithm of IC50 

(pIC50) was used as the biological activity in the 3D-QSAR study (Table 1). Three-dimensional 

structure building and all modeling were performed using the Sybyl 7.0 program package [13] on a 

personal computer equipped with a Pentium IV processor. Molecular building was done with 

molecular sketch program. Geometry optimization was carried out using MAXIMIN molecular 

mechanics and Tripos force field, Gasteiger–Hückle charge supplied within Sybyl7.0, with the 

convergence criterion set at 0.05 kcal/(Å mol).  

2.2 CoMFA analysis 

QSAR models were random derived from a training set of 27 molecules. An external test set 

consisting of four molecules was used to validate the CoMFA models. The most active molecule 24 

was used as a template molecule for alignment. A common substructure-based alignment was adopted 

in the present study, which attempted to align molecules to the template molecule on a common 

backbone. Molecule 24 is shown in Figure 1. The alignment of the training set molecules was derived 

by Sybyl 7.0 (Figure 2).  
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Table 1. Structures and biological activities of molecules used in the present study. 

N N
N

N N

R

 

Compound R 
pIC50 

(Observed) 
    pIC50 

   (Predicted) 
     Residual 

  1△ phenyl 6.921 6.657 0.264 

2 2-methoxyphenyl 6.237 6.413 -0.176 

3 2-methylphenyl 6.796 6.564 0.232 

4 2-chlorophernyl 6.538 6.559 -0.021 

5 2-trifluoromethylphenyl 6.367 6.296 0.071 

6 3-methoxyphenyl 5.886 5.863 0.023 

7 3-chlorophenyl 5.854 6.223 -0.369 

8 4-methoxyphenyl 4.523 4.527 -0.004 

9 4-methylphenyl 4.658 4.664 -0.006 

  10△ 4-chlorophernyl 4.444 4.471 -0.027 

11 4-trifluoromethylphenyl 4.244 4.24 0.004 

12 2-pyridyl 6.585 6.659 -0.074 

13 3-pyridyl 5.921 6.441 -0.520 

14 4-pyridyl 7.046 6.812 0.234 

15 2-furanyl 6.553 6.582 -0.029 

16 2-thienyl 6.854 6.591 0.263 

17 3-chloro-4-methylthien-2-yl 6.000 6.049 -0.049 

18 benzyl 6.398 6.551 -0.153 

19 3-thenyl 6.921 6.595 0.326 

  20△ methyl 6.041 5.948 0.093 

21 ethyl 6.886 7.021 -0.135 

  22△ propyl 6.745 7.009 -0.264 

23 butyl 7.398 7.217 0.181 

24 cyclobutyl 7.523 7.417 0.106 

25 cyclopentyl 7.046 7.185 -0.139 

26 cyclohexyl 6.854 6.759 0.095 

27 4-tetrahydropyranyl 6.638 6.867 -0.229 

28 3-pentyl 7.523 7.448 0.075 

29 1-methylcyclohex-1-yl 7.398 7.365 0.033 

30 tert-butyl 7.097 7.132 -0.035 

31 Bicycle[2.2.2]octanyl 5.620 5.385 0.235 

△The molecule was included in test set 
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CoMFA of these molecules was carried out on the steric and electrostatic fields using the default 

values. The steric and electrostatic CoMFA potential fields were calculated at each lattice intersection 

of a regularly spaced grid of 2.0 Å. The grid box dimensions were determined automatically in such a 

way that the region boundaries were extended beyond 4 Å in each direction from the coordinates of 

each molecule. The steric and electrostatic fields were calculated separately for each molecule using 

sp3 carbon atom probe with a charge of 1 (default probe atom in SYBYL) and energy cut-off values of 

30 kcal/mol for both steric and electrostatic fields. 

 

 

N N
N

N N

                                           
.                              

Figure 1. Molecule 24. 

 

 

 
 

Figure 2. Alignment of the compounds used in the training set of 3D-QSAR analysis.  

2.3. Partial least squares (PLS) analysis 

The relationship between the structural parameters (CoMFA interaction energies) and the 

biological activities has been quantified by the PLS algorithm. PLS regression technique is especially 

useful in quite common case where the number of descriptors (independent variables) is comparable to 

or greater than the number of compounds (data points) and/or there exist other factors leading to 

correlations between variables [14]. The cross-validation analysis was carried out using Leave-One-

Out (LOO) method where one compound is removed from the dataset and its activity is predicted using 

the model derived from the rest of the dataset. The cross-validated q2 and the optimum number of 

components were obtained. To speed up the analysis and reduce noise, a minimum column filtering 

value (σ) of 2.00 kcal/mol was used for the cross-validation. Finally, non-cross-validated analysis was 

performed to calculate non-cross-validated r2 using the optimal number of previously identified 

components and was employed to analyze the result of the CoMFA. 
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3.  Results and Discussion 

Thirty-one molecules were randomly partitioned into a training set of 27 and a test set of four 

compounds with bias given to both chemical and biological diversity in both the training set and the 

test set molecules. Despite the ambiguity of drug-receptor interactions in general, a statistically 

significant model was obtained from the CoMFA study. A “cross-validated q2” may then be defined, 

completely analogously to the definition of the conventional q2, as  

cross-validated q2 = (SD - press)/SD 

where press is the standard errors of the cross-validated predictions and SD is the sum of squared 

deviations of each biological property value from their mean and press, or predictive sum of squares, is 

the sum, over all compounds, of the squared differences between the actual and “predicted” biological 

property values[15]. 

Often for QSARs developed with CoMFA a shift in the q2 values is observed as the grid spacing is 

altered. To examine this possibility with these data, the different grid boxes with 1.0, 1.5, 2.0, 2.5, and 

3.0 Å grid spacing, respectively, were used for the CoMFA calculations. The influence of the different 

grid spacing to CoMFA model is obvious. Only from the q2 after leave-one-out cross-validation, the 

model with the grid spacing of 2.0 Å  was selected as the best model (see Table 2). 

 
Table 2. Influence of Different Grids on the CoMFA models. 

grid spacing (Å) 1.0 1.5 2.0 2.5 3.0 
q2 0.335 0.297 0.741 0.295 0.223 

r2 0.540 0.524 0.954 0.566 0.345 

standard error 0.630 0.641 0.211 0.623 0.738 

 

The statistical parameters of CoMFA analysis is summarized in Table 3. The leave-one-out cross-

validated PLS analysis of the best model gave rise to a cross-validated value (q2) of 0.741, suggesting 

that the model is a useful tool for predicting PDE4 inhibitory activity [16]. The correlation coefficient 

between the calculated and experimental activities, non-cross-validated value (r2) of 0.954 with 

standard error estimate 0.211. The respective relative contributions of steric and electrostatic fields 

were 0.915 and 0.085, indicating that steric field is more predominant. Then the condition without 

electrostatic were studied and the new q2 and r2 values were 0.739 and 0.953 respectively. In fact, the 

electrostatic contribution was nearly negligible. The actual and predicted values of the training set by 

the best model are given in Table 1, and the graph of observed activity versus predicted activities of 

training set molecules from CoMFA analysis is illustrated in Figure 3. The 3D-QSAR model was 

validated using a test set (in Table 1) of 4 compounds, which were not included in the development of 

the model. On the basis of the PLS statistics of CoMFA model, this is further validated by the residual 

values of the test set (Table 1). Figure 4 represents the graph of the actual versus predicted pIC50 values 

of the test set molecules for CoMFA model. 
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Table 3.  PLS statistics of CoMFA 3D-QSAR model. 

PLS statistics CoMFA 

q2 (leave-one out cross-validated predicted power of model) 0.741 

r2 (correlation coefficient squared of PLS analysis) 0.954 

N (optimum number of components obtained from cross-validated PLS 

analysis and the same used in final non cross-validated analysis) 

5 

Standard error of estimate (SEE) 0.211 

F-test value (F-value) 103.397 

Steric field contribution from CoMFA 0.915 

Electrostatic field contribution from CoMFA 0.085 
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Figure 3. Graph of observed versus predicted          Figure 4. Graph of observed versus predicted 

 activities of the training set.                                           activities of the test set. 

 

The contour plot representations of the CoMFA results for PDE4 inhibitors are presented in 

Figures 5 and 6 using compound 24 as reference structure. The green-colored regions indicate areas 

where steric bulk enhances PDE4 inhibitory activity, while the yellow contours indicate regions where 

steric bulk is detrimental for the biological activity. Blue-colored regions show areas where 

electropositive charged groups enhance PDE4 inhibitory activity, while red regions represent where 

electronegative charged groups improve the activity. 

The electrostatic contour map displayed in Figure 5 shows a region of red polyhedral space, 

indicating that the electron-rich groups are beneficial to the activity. Compounds 4 and 7 have higher 

inhibition activity than compound 10 because the chlorine atom is placed within the electron-rich 

charge red contour. Additionally, a blue polyhedron in the top left corner of Figure 5, indicates that 

electron-rich substituents will reduce the biological activity. Compound 11, with a strong electron 

withdrawing substituent, 4-trifluoromethylphenyl, can not fit into the electropositively charged blue 

contour. Thereby, compound 11 has lower activity than other compounds in the model. 
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Figure 5. CoMFA contour map of the electrostatic field with compound 24. 

 

      

Figure 6. CoMFA contour maps of steric field with compound 24. 

 

The steric contour map is displayed in Figure 6. The plot shows the cyclobutyl group of molecule 

24 placed between two big green polyhedrons. If a substituent, such as 3-pentyl group, is attached on 

molecule 28, it occupies the green contour and enhances the activity. In compounds 25 and 29, where 

the substituent group R is cyclopentyl and 1-methylcyclohex-1-yl, respectively, these fit into the green 

contour, and the activity of these compounds are higher. Compounds 20, 21 and 22, with methyl, ethyl 

and propyl substituents, show less activity than compound 28. Additionally, the contour plot shows a 

yellow polyhedron in the top left corner of Figure 6. If a bulky substituent occupies the yellow contour 

this will depress the biological activity. Compounds 8, 9 and 11, with 4-methoxyphenyl, 4-chloro-

phenyl and 4-trifluoromethylphenyl substituents, respectively, are very close to the yellow contour 

which represents the unfavored steric region. Consequently, these compounds almost have no activity. 

4.  Conclusions 

3D QSAR studies were performed using CoMFA on a series of derivatives with inhibitory activity 

on phosphodiesterase-4. A satisfactory CoMFA model was obtained with LOO cross-validation q2
 and 

non-cross-validated r2 values of 0.741 and 0.954 respectively. The developed model also possesses 
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promising predictive ability as discerned by the testing on the external test set, and should be useful to 

elucidate the relationship between compound structures and biological activities and to facilitate design 

of more potent phosphodiesterase-4 inhibitors. For example, use of a p-trifluoromethyl substituent in a 

cyclobutyl maybe increase the biological activity, since a fluorine atom at that position participates in 

the electron-rich charge red contour and the trifluoromethyl will fit into the green contour. Similarly, 

other p-substituents on the cycylobutyl moiety might show even greater inhibitory power than a simple 

cyclobutyl. 
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