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Abstract: In this paper we give a GAP program for computing the Szeged and the PI 
indices of any graph. Also we compute the Szeged and PI indices of  and 

 nanotubes by this program. 
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1. Introduction 
 
One of the main distinctive characteristics of modern chemistry is the use of theoretical tools for 

the molecular modeling of physicochemical processes, chemical reaction, medicinal and toxicological 
events, etc., in which chemicals are involved. The success of the molecular modeling is judged by the 
insights that it offers on the nature of the processes studied, which permit better comprehension and a 
their rational modification. These properties, measured experimentally, are almost invariably 
expressed in quantitative terms, for instance boiling point, refraction index, transition state energy, 
percentage of inhibition of some enzymatic activity, lethal dose, and so forth. The paradigm for the 
modeling of such properties is the relationship that exists between them and the molecular structure of 
chemical. This fact highlights the first challenge for molecular modeling: the properties are expressed 
as number while the molecular structure is not. The way to solve this problem is by using molecular 
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descriptors, which are numbers representing information about different molecular features, to 
describe quantitatively the properties under study. These models are known as quantitative structure-
property (QSPR) and quantitative structure-activity relationships (QSAR), depending on the 
physicochemical or biological nature of the properties studied, respectively. 

Topological indices of nanotubes are numerical descriptors that are derived from graphs of 
chemical compounds. Such indices based on the distances in a graph are widely used for establishing 
relationships between the structure of nanotubes and their physicochemical properties. Usage of 
topological indices in biology and chemistry began in 1947, when the chemist Harold Wiener [1] 
introduced the so-called Wiener index to demonstrate correlations between physicochemical properties 
of organic compounds and the index of their molecular graphs. Wiener originally defined his index 
(W) on trees and studied its use for correlations of physicochemical properties of alkanes, alcohols, 
amines and their analogous compounds [2]. Starting from the middle of the 1970s, the Wiener index 
gained much popularity and, since then, new results related to it are constantly being reported. For a 
review, historical details and further bibliography on the chemical applications of the Wiener index see 
[3-5]. Another topological index was introduced by Gutman and called the Szeged index, abbreviated 
as Sz [2]. Let G be a connected graph. The vertex-set and edge-set of G denoted by V(G) and E(G) 
respectively. The distance between the vertices u and v, d(u,v), in a graph is the number of edges in a 
shortest path connecting them. Two graph vertices are adjacent if they are joined by a graph edge. Let 
e be an edge of a graph G connecting the vertices u and v. Two sets 1(N e G )  and 2 (N e G )  are defined 

as follows: 
1( ) { ( ) ( , ) ( , )N e G x V G d x u d x v= ∈ < }and 2 ( ) { ( ) ( , ) ( , )N e G x V G d x v d x u= ∈ < } . 

The number of elements of 1(N e G )  and 2 (N e G )  are denoted by 1(n e G )  and 2 ( )n e G  

respectively.  
The Szeged index of the graph G  is defined as 1 2

( )
( ) ( ). ( ).

e E G
Sz G n e G n e G

∈

= ∑  

For the reason of the coincidence of Wiener and Szeged indices in case of trees the authors in [6] 
and [7] introduced another Szeged/Wiener-like topological index and named it the Padmakar-Ivan 
index, abbreviated as PI.  In fact the PI index of the graph G is denoted by PI(G) and defined as 
follows: 

1 2
( )

( ) ( ) ( )
e E G

PI G n e G n e G
∈

= +∑ .  

Applications of the PI index to QSRP/QSAR were studied in [8]. The index was mostly compared 
with the Wiener and the Szeged indices. It turned out that the PI index has similar discriminating 
power as the other two indices and in many cases (for instance to model ¢max, the so called difference 
in doublet of deformation mode, of unbranched cycloalkanes) it gives better results. As we already 
mentioned, The Szeged index incorporates the distribution of vertices of a molecular graph, while the 
PI index does this job for the edges. Hence it seems that a combination of both could give good results 
in QSRP/QSAR studies. Indeed, the combination of the PI index and the Szeged index is the best for 
modeling polychlorinated biphenyls (PCBs) in environment among the three possible pairs of indices 
selected from the PI index, the Szeged index, and the Wiener index [8]. For the Wiener and the Szeged 
indices such studies were previously done in [9,10]. The Szeged and PI indices of some nanotubes 
were computed in [11-14]. 
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The computation of Szeged and PI indices seems straightforward, but this is not entirely true. For 
computing the Szeged (or PI ) index of any graph, we must obtain 1(n e G )  and 2 (n e G )  for any edge 
in the graph and this takes very long time.  Up to now, many papers have been published in the 
international scientific literature which computed the Szeged index (or PI index) of some nanotubes by 
the above explanation [11-22]. In our paper, we obtain an algorithm which is faster than the direct 
implementation. Also, since up to now, not give any algorithm for computing these indexes, it is the 
best algorithm by GAP program and therefore, our paper is the first paper in this subject which give an 
algorithm for computation of Szeged and PI indices of any graph. 

 
2.  An algorithm for the computation of the Szeged and PI indices for an arbitrary graph. 
 

In this section, we give an algorithm that enables us to compute the Szeged and PI indices of any 
graph. For this purpose, the following algorithm is presented: 

1- We assign one number to any vertex.  
2- We determine all of adjacent vertices set of the vertex Vii ∈, (G) and this set is denoted by  

The set of vertices that their distance to vertex i  is equal to 
). N(i

( )0≥tt  is denoted by and 
considering Let be an edge connecting the vertices  and

 ti, D
}.{0, iDi = ije = i j , then we have the 

following result: 
a) (G). ViDV tit ∈= ≥ ,,0U

b)  .1,)()\( 1,1,,, ≥⊆ +− tDDDD tjtjtjti U

c) , , 1 2 , , 1 1( ) ( ) ( )i t j t i t j tD D N e G and D D N e G t− +⊆ ⊆I I 1≥ . 
d) ).()}{(\)}{()()}{(\)}{( 21,1,11,1, GeNiDjDandGeNjDiD ijji ⊆⊆ UUUU  
According to the above relations, by determining , we can obtain 1,, ≥tD ti )(1 GeN  and )(2 GeN  

for each edge e and therefore the Szeged and PI indices of the graph G is computed. In the following 
section we obtain the  for each vertex i .  ,1,, ≥tD ti

 3- The distance between vertex i  and its adjacent vertices is equal to 1, therefore  For 
each , the distance between each vertex of set  and the vertex i  is 
equal to , thus we have  

).iN(D 1i, =
1,, ≥∈ tDj ti )(\)( 1,, −titi DDjN U

1+t
.1,)(\)(( 1,,1, ,

≥= −∈+ tDDjND titiDjti ti
UU  

According to the above equation we can obtain   for each 2, ≥tD ti Vi∈ (G). 
 4- At the start of program we set and equal to zero and T equal to empty set. At the end of 

program the values and are equal to the Szeged and PI indices of the graph G respectively. For 
each vertex i , , and each vertex 

ZS PI
ZS PI

ni ≤≤1 j  in , we determine )(iN )(1 GeN and )(2 GeN for 
edge then add the values of ,ije = )(.)( 21 GenGen  and )()( 21 GenGen +  to and respectively. 
Since the edge 

ZS PI
ij  is equal to  we add the vertex i to T and continue this step for the vertex i+1 and 

for each vertex in . 
,ij

\)1( TiN +
GAP stands for Groups, Algorithms and Programming [23]. The name was chosen to reflect the 

aim of the system, which is group theoretical software for solving computational problems in group 
theory. The last years have seen a rapid spread of interest in the understanding, design and even 
implementation of group theoretical algorithms. GAP software was constructed by GAP's team in 
Aachen. We encourage the reader to consult Refs. [24] and [25] for background materials and 
computational techniques related to applications of GAP in solving some problems in chemistry and 
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d

3,

,k d

biology. According to the above algorithm, we prepared a GAP program to compute the Szeged and PI 
indices of dendrimers . kT ,

2.1. Example 

The Wiener index of tree dendrimers is computed in [26,27]. Since the Wiener 
and Szeged index coincide on trees [28,29], thus the Szeged index of T  is equal to its Wiener index.  

, , 1,k dT k d≥ ≥

 
Figure 1. Molecular graphs of dendrimers . ,k dT

 
 

The following results are obtained in [26,27]. 
For every the tree  has order  3,d ≥ ,k dT

[ ]1)1(
2

1)( , −−
−

+= k
dk d

d
dTn

 
and its Szeged index is equal to Wiener index , i.e. 

2 3 2 2
, , 3

1( ) ( ) ( 1) [ 2( 1) ] 2 ( 1)
( 2)

k k
k d k dSz T W T d kd k d d d d d

d
⎡ ⎤= = − − + + + − −⎣ ⎦−

. 

For computation of the Szeged and PI indices of  by the above program, at first we assign to any 
vertex one number (See figure 1); according to this numbering, the set of adjacent vertices to each vertex, 
1≤i≤n, is obtained by the following program (part 1). In fact part 1 of the program is the presentation of 
the graph. We use part 2 for compute the Szeged and PI indices of the graph. 

,k dT

The following program computes the Szeged and PI indices of the Tk,d for arbitrary values of d and k.  
d:=3; k:=3;#(For example) 
n:=1+(d/(d-2) )*((d-1)^k - 1); 
N:=[]; 
K1:=[2..d+1]; 
N[1]:=K1; 
for i in K1 do 
 if k=1 then N[i]:=[1]; 
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  else  
  N[i]:=[(d-1)*i+4-d..(d-1)*i+2]; 
 Add(N[i],1);fi; 
od; 
K2:=[d+2..1+(d/(d-2) )*((d-1)^(k-1) - 1)]; 
for i in K2 do 
 N[i]:=[(d-1)*i+4-d..(d-1)*i+2]; 
 Add(N[i],Int((i-4+d)/(d-1))); 
od; 
K3:=[2+(d/(d-2) )*((d-1)^(k-1) - 1)..n]; 
for i in K3 do  
 if k=1 then N[i]:=[1]; 
  else 
 N[i]:=[Int((i-4+d)/(d-1))]; fi; 
od; 
# (Part2) 
D:=[]; 
for i in [1..n] do 
   D[i]:=[]; 
   u:=[i]; 
   D[i][1]:=N[i]; 
   u:=Union(u,D[i][1]); 
   s:=1; 
   t:=1; 
   while s<>0 do 
     D[i][t+1]:=[]; 
     for j in D[i][t] do  
       for m in Difference(N[j],u) do 
         AddSet(D[i][t+1],m); 
       od; 
     od; 
   u:=Union(u,D[i][t+1]); 
       if D[i][t+1]=[] then  
      s:=0; 
   fi;  
   t:=t+1; 
   od; 
od; 
T:=[]; 
sz:=0; 
pi:=0; 
for i in [1..n-1] do 
N1:=[]; 
  for j in Difference(N[i],T) do 
N2:=[]; 
    N1[j]:=Union(Difference(N[i],Union([j],N[j])),[i]); 
    N2[i]:=Union(Difference(N[j],Union([i],N[i])),[j]);        
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      for t in [2..Size(D[i])-1] do 
        for x in Difference(D[i][t],Union(D[j][t],[j])) do 
          if not x in D[j][t-1] then  
             AddSet(N1[j],x); 
           elif x  in D[j][t-1] then  
            AddSet(N2[i],x);  
         fi; 
        od; 
od; 
   sz:=sz+Size(N1[j])*Size(N2[i]); 
   pi:=pi+Size(N1[j])+Size(N2[i]); 
  od;  
  Add(T,i); 
od; 

sz;# (The value of sz  is equal to Szeged index of the graph) 
pi; # (The value of pi is equal to PI index of the graph) 
 
3. Computation of the Szeged and PI indices of VC5C7[p,q] nanotubes with the GAP program  

 
A C C net is a trivalent decoration made by alternating C  and C . It can cover either a cylinder or 

a torus. In this section we compute the Szeged and PI indices of VC C [p,q] nanotubes by GAP 
program

5 7 5 7

5 7

. 

Figure 2. VC C  [4, 2] 5 7 nanotube. 

 
 
We denote the number of pentagons in the first row by p, in this nanotube the four first rows of 

vertices and edges are repeated alternatively, we denote the number of this repetition by . In each 
period there are vertices and vertices which are joined to the end of the graph and hence the 
number of vertices in this nanotube is equal to

q
p16 p3

ppq 316 + . 
We partition the vertices of the graph to the following sets: 

1K : The vertices of the first row whose number is  p6 .

2K : The vertices of the first row in each period except the first one whose number is )1(6 −qp . 

3K  : The vertices of the second rows in each period whose number is  pq2 .

4K : The vertices of the third row in each period whose number is  pq6 .
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5K : The vertices of the fourth row in each period whose number is  pq2 .

6K : The last vertices of the graph whose number is  .3p

 
Figure 3. Rows of m-th period. 

 
We write a program to obtain the adjacent vertices set to each vertex in the sets  i=1…6. We 

can obtain the adjacent vertices set to each vertex by the join of these programs. In this program, the 
value of x is the assign number of vertex  in that row. 

,iK

i
The following program computes the Szeged and PI indices of VC5C7[p,q] nanotubes for arbitrary 

values p and . q
p:=4; q:=2; # (for example) 
n:=16*p*q+3*p; 
N:=[]; 
K1:=[1..6*p]; 
V1:=[2..6*p -1]; 
for i in V1 do  
 if i mod 6=1 then N[i]:=[i-1,i+1,i+8*p]; 
  elif i mod 6 in [0,2,4] then N[i]:=[i-1,i+1]; 
   elif i mod 6=3 then N[i]:=[i-1,i+1,(1/3)*(i-3)+6*p+1]; 
    elif i mod 6=5 then N[i]:=[i-1,i+1,(1/3)*(i-5)+6*p +2];fi; 
 N[1]:=[2,6*p,8*p+1]; 
 N[6*p]:=[6*p-1,1]; 
od; 
K:=[6*p+1..16*p*q]; 
K2:=Filtered(K,i->i mod (16*p) in [1..6*p]); 
for i in K2 do  
 x:= i mod (16*p); 
 if x mod 6=1 then N[i]:=[i-1,i+1,i+8*p];  
  elif x mod 6=2 then N[i]:=[i-1,i+1,(1/3)*(x-2)+2+i-x-2*p];  
   elif x mod 6=3 then N[i]:=[i-1,i+1,(1/3)*(x-3)+1+i-x+6*p]; 
    elif x mod 6=4 then N[i]:=[i-1,i+1,i-8*p]; 
     elif x mod 6=5 then N[i]:=[i-1,i+1,(1/3)*(x-5) +2+i-x+6*p]; 
      elif x mod 6=0 then N[i]:=[i-1,i+1,(1/3)*x +1+i-x-2*p];fi; 
 if x=1 then N[i]:=[i+1,i-1+6*p,i+8*p];fi; 
 if x=6*p then N[i]:=[i-1,i- 6*p+1,i- 8*p+1];fi; 
od; 
K3:=Filtered(K,i->i mod (16*p) in [6*p+1..8*p]); 
for i in K3 do 
 x:=(i-6*p) mod (16*p); 
 if x mod 2=0 then N[i]:=[i-1,3*(x-2)+5+i-x- 6*p,3*(x-2)+5+i-x+2*p];  
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   else N[i]:=[i+1,2*x+i- 6*p,2*x+i+2*p];fi; 
od; 
K4:=Filtered(K,i->i mod (16*p) in [8*p+1..14*p]); 
for i in K4 do 
 x:=(i- 8*p) mod (16*p); 
 if x mod 6=1 then N[i]:=[i-1,i+1,i- 8*p];  
  elif x mod 6=2 then N[i]:=[i-1,i+1,(1/3)*(x-2)+2+i-x+6*p];  
   elif x mod 6=3 then N[i]:=[i-1,i+1,(1/3)*(x-3)+1+i-x-2*p];  
    elif x mod 6=4 then N[i]:=[i-1,i+1,i+8*p];  
     elif x mod 6=5 then N[i]:=[i-1,i+1,(1/3)*(x-5)+2+i-x- 2*p];  
      elif x mod 6=0 then N[i]:=[i-1,i+1,(1/3)*x+1+i-x+6*p];fi; 
 if x=1 then N[i]:=[i-8*p,i+1,i+6*p-1];fi; 
 if x=6*p then N[i]:=[i-1,i-6*p+1,i+1];fi; 
od; 
K5:=Filtered(K,i->i mod (16*p) in Union([14*p+1..16*p-1],[0])); 
for i in K5 do 
 x:=(i-14*p) mod (16*p); 
 if x mod 2=1 then N[i]:=[i+1,3*(x-1)+i-x-6*p,3*(x-1)+i-x+2*p];  
  else N[i]:=[i-1,3*(x-2)+2+i-x-6*p,3*(x-2)+2+i-x+2*p];fi; 
 if x=1 then N[i]:=[i+1,i-1,i-1+8*p];fi; 
 if x=2*p then N[i]:=[i-1,3*(x-2)+2+i-x-6*p,3*(x-2)+2+i-x+2*p];fi;  
od; 
K6:=[16*p*q+1..n]; 
for i in K6 do 
 x:=i mod (16*p); 
 if x mod 3=1 then y:= (2/3)*(x-1)+2+i-x- 2*p; 
  elif x mod 3=2 then y:=i+x- 8*p; 
   elif x mod 3=0 then y:=(2/3)*(x- 3)+3+i-x-2*p;fi;  
if x=3*p  then y:=i- 5*p+1;fi; 
 N[i]:=[y]; 
 N[y][3]:=i; 
od; 
D:=[]; 
for i in [1..n] do 
   D[i]:=[]; 
   u:=[i]; 
   D[i][1]:=N[i]; 
   u:=Union(u,D[i][1]); 
   s:=1; 
   t:=1; 
   while s<>0 do 
     D[i][t+1]:=[]; 
     for j in D[i][t] do  
       for m in Difference(N[j],u) do 
         AddSet(D[i][t+1],m); 
       od; 
     od; 
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   u:=Union(u,D[i][t+1]); 
       if D[i][t+1]=[] then  
      s:=0; 
   fi;  
   t:=t+1; 
   od; 
od; 
T:=[]; 
sz:=0; 
pi:=0; 
for i in [1..n-1] do 
N1:=[]; 
  for j in Difference(N[i],T) do 
N2:=[]; 
    N1[j]:=Union(Difference(N[i],Union([j],N[j])),[i]); 
    N2[i]:=Union(Difference(N[j],Union([i],N[i])),[j]);        
      for t in [2..Size(D[i])-1] do 
        for x in Difference(D[i][t],Union(D[j][t],[j])) do 
          if not x in D[j][t-1] then  
             AddSet(N1[j],x); 
           elif x  in D[j][t-1] then  
            AddSet(N2[i],x);  
         fi; 
        od; 
     od; 
   sz:=sz+ Size(N1[j])*Size(N2[i]); 
   pi:=pi+ Size(N1[j])+Size(N2[i]); 
  od;  
  Add(T,i); 
od; 
sz; # (The value of sz is equal to Szeged index of the graph ) 
pi; # (The value of pi is equal to PI index of the graph ) 

 
4. Computation of the Szeged and PI indices of HC C [p,q] 5 7 nanotubes with the GAP program. 

 
In this section we compute the Szeged and PI indices of HC5C7[p,q] nanotubes similar to the 

previous section. HC5C7[p,q] nanotubes consists of heptagon and pentagon nets as seen below: 
 

Figure 4. HC C  [4,2] 5 7  nanotube.
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We denote the number of heptagons in the first row by p. In this nanotube the four first rows of 

vertices and edges are repeated alternatively; we denote the number of this repetition by q. In each 
period there are 16p vertices and 2p vertices are joined to the end of the graph, and hence the number 
of vertices in this nanotube is equal to 16pq + 2p.  

 The following program is the same as the last program. In this program, value of x is the number 
of vertex in a row. i

p:=6;q:=7;# (for example) 
n:=16*p*q+2*p; 
N:=[]; 
for i in [1..5*p] do 
 if i mod 5=1 then N[i]:=[i-1,i+1,(3/5)*(i-1)+1+5*p]; 
  elif i mod 5 in [0,2] then N[i]:=[i-1,i+1]; 
   elif i mod 5=3 then N[i]:=[i-1,i+1,(3/5)*(i-3)+2+5*p]; 
    elif i mod 5=4 then N[i]:=[i-1,i+1,(3/5)*(i-4)+3+5*p];fi; 
 N[1]:=[2,5*p,5*p+1]; 
 N[5*p]:=[1,5*p-1]; 
od; 
K:=[5*p+1..16*p*q]; 
K1:=Filtered(K,i->i mod (16*p) in [1..5*p]); 
for i in K1 do 
 x:=(i) mod (16*p); 
 if x mod 5=1 then N[i]:=[i-1,i+1,(3/5)*(x-1)+1+i-x+5*p]; 
  elif x mod 5=2 then N[i]:=[i-1,i+1,(3/5)*(x-2)+1+i-x-3*p]; 
   elif x mod 5=3 then N[i]:=[i-1,i+1,(3/5)*(x-3)+2+i-x+5*p]; 
    elif x mod 5=4 then N[i]:=[i-1,i+1,(3/5)*(x-4)+3+i-x+5*p]; 
     elif x mod 5=0 then N[i]:=[i-1,i+1,(3/5)*x+i-x-3*p];fi; 
 if x=1 then N[i]:=[i+1,i-1+5*p,i+(5*p)];fi; 
 if x=5*p then N[i]:=[i-1,i-5*p,i+1-5*p];fi; 
od; 
K2:=Filtered(K,i->i mod (16*p) in[5*p+1..8*p]); 
for i in K2 do 
 x:=(i- 5*p) mod (16*p); 
 if x mod 3 =1 then N[i]:=[i-1,i+1,(5/3)*(x-1)+1+i-x- 5*p]; 
  elif x mod 3 =2 then N[i]:=[i-1,(5/3)*(x-2)+3+i-x- 5*p,(5/3)*(x-2)+3+i-x+3*p]; 
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   elif x mod 3 =0 then N[i]:=[i+1,(5/3)*x-1+i-x- 5*p,(5/3)*x +i-x+3*p];fi; 
 if x=3*p then N[i]:=[i-3*p+1,(5/3)*x-1+i-x- 5*p,(5/3)*x +i-x+3*p];fi; 
 if x=1 then N[i]:=[i-5*p,i+1,i-1+3*p];fi; 
od; 
K3:=Filtered(K,i->i mod (16*p) in [8*p+1..13*p]); 
for i in K3 do 
 x:=(i- 8*p) mod (16*p); 
 if x mod 5=1 then N[i]:=[i-1,i+1,(3/5)*(x-1) +i-x+5*p] ; 
   elif x mod 5=2 then N[i]:=[i-1,i+1,(3/5)*(x-2)+1+i-x+5*p]; 
    elif x mod 5=3 then N[i]:=[i-1,i+1,(3/5)*(x-3)+2+i-x-3*p]; 
     elif x mod 5=4 then N[i]:=[i-1,i+1,(3/5)*(x-4)+2+i-x+5*p]; 
      elif x mod 5=0 then N[i]:=[i-1,i+1,(3/5)*x +i-x-3*p];fi; 
 if x=1 then N[i]:=[i+1,i-1+5*p,i-1+8*p];fi; 
 if x=5*p then N[i]:=[i-1,i-5*p,i+1-5*p];fi; 
od; 
K4:=Filtered(K,i->i mod (16*p) in Union([13*p+1..16*p-1],[0])); 
for i in K4 do 
 x:=(i-13*p) mod (16*p); 
 if x mod 3=1 then N[i]:=[i+1,(5/3)*(x-1)+2+i-x-5*p,(5/3)*(x-1)+2+i-x+3*p]; 
  elif x mod 3=2 then N[i]:=[i-1,i+1,(5/3)*(x-2)+4+i-x-5*p]; 
   elif x mod 3=0 then N[i]:=[i-1,(5/3)*x+1+i-x-5*p,(5/3)*x+i-x+3*p];fi; 
 if x=3*p then N[i]:=[i-1,i+1-8*p,(5/3)*x+i-x+3*p]; fi; 
od; 
K5:=[16*p*q+1..n]; 
for i in K5 do 
 x:=i mod(16*p); 
 if x mod 2=0 then y:=(3/2)*x+i-x-3*p; 
  else  y:=(3/2)*(x-1)+1+i-x-3*p;fi; 
 N[i]:=[y]; 
 N[y][3]:=i; 
od; 
D:=[]; 
for i in [1..n] do 
   D[i]:=[]; 
   u:=[i]; 
   D[i][1]:=N[i]; 
   u:=Union(u,D[i][1]); 
   s:=1; 
   t:=1; 
   while s<>0 do 
     D[i][t+1]:=[]; 
     for j in D[i][t] do  
       for m in Difference(N[j],u) do 
         AddSet(D[i][t+1],m); 
       od; 
     od; 
   u:=Union(u,D[i][t+1]); 
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       if D[i][t+1]=[] then  
      s:=0; 
   fi;  
   t:=t+1; 
   od; 
od; 
T:=[]; 
sz:=0; 
pi:=0; 
for i in [1..n-1] do 
N1:=[]; 
  for j in Difference(N[i],T) do 
N2:=[]; 
    N1[j]:=Union(Difference(N[i],Union([j],N[j])),[i]); 
    N2[i]:=Union(Difference(N[j],Union([i],N[i])),[j]);        
      for t in [2..Size(D[i])-1] do 
        for x in Difference(D[i][t],Union(D[j][t],[j])) do 
          if not x in D[j][t-1] then  
             AddSet(N1[j],x); 
           elif x  in D[j][t-1] then  
            AddSet(N2[i],x);  
         fi; 
        od; 
     od; 
   sz:=sz+Size(N1[j])*Size(N2[i]); 
   pi:=pi+Size(N1[j])+Size(N2[i]); 
  od;  
  Add(T,i); 
od; 
sz;# (The value of sz is equal to Szeged index of the graph) 
pi;# (The value of pi is equal to PI index of the graph) 
 

Conclusions 
 

It takes a long time to compute the Szeged and PI indices of a graph theoretically, especially when 
the graph has many vertices. According to the algorithm presented in this paper and using the GAP 
program, we can write a program to compute these indices quickly. This method has been used here 
for the first time. We teste the algorithm to calculate the Szeged and PI indices of denderimers Tk,d  that 
were computed in [26,27]. In addition we compute these indices for  and   

nanotubes. 

],[75 qpCHC ],[75 qpCVC
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