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Abstract: In the present study, quantitative structure–activity-relationship (QSAR) study on 
a group of sulfonamide Schiff-base inhibitors of Carbonic Anhydrase (CA) enzyme has 
been carried out using Codessa Pro methodology and software. Linear regression QSAR 
models of the biological activity (Ki) of 38 inhibitors of carbonic anhydrase CA-II isozyme 
were established with 12 different molecular descriptors which were selected from more 
than hundreds of geometrical, topological, quantum-mechanical, and electronic types of 
descriptors and calculated using Codessa Pro software. Among the models presented in this 
study, statistically the most significant one is a five-parameter equation with correlation 
coefficient, R2 values of ca. 0.840, and the cross-validated correlation coefficient, R2 values 
of ca. 0.777. The obtained models allowed us to reveal some physicochemical and structural 
factors, which are strongly correlated with the biological activity of the compounds. 
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1. Introduction  

The metallo-protein carbonic anhydrase (CA, EC 4.2.1.1) is one of the most widely spread 
biological catalysts all over the phylogenetic tree. In humans, isozymes I, II, and IV are involved in 
respiration and regulation of the acid/base homeostasis. These complex processes involve both the 
transport of CO2/bicarbonate between metabolizing tissues and excretion sites (lungs, kidneys), 
facilitate CO2 elimination in capillaries and pulmonary microvasculature, eliminate H+ ions in the renal 
tubules and collecting ducts, as well as help in the reabsorption of bicarbonate in the brush border and 
thick ascending Henle loop of the kidneys. By producing the bicarbonate-rich aqueous humor 
secretion (mediated by ciliary processes isozymes CA I, II, CA IV and CA XII) within the eye, CAs 
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are involved in vision, and their misfunctioning leads to high intraocular pressure and glaucoma. CA II 
is also involved in the bone development and in functions such as the differentiation of osteoclasts or 
the provision of acid for bone resorption in osteoclasts [1-4]. The presence of these isozymes in so 
many tissues and in a number of different isoforms represents an attractive objective for the design of 
inhibitors with biomedical applications.  

Quantitative structure activity relationship (QSAR) studies are tools for predicting endpoints of 
interest in organic molecules acting as drugs [5]. Many physiological activities of a molecule can be 
related to their composition and structure. Molecular descriptors, which are numerical representations 
of the molecular structures, are used for performing QSAR analysis [6]. Sulfonamides represent the 
most important class of biologically active compounds as inhibitors of CAs. In the literature, there 
have been a number of QSAR studies of sulfonamides using quantum chemical [7-14] and topological 
[15-24] descriptors and 3-D approach of CoMFA and CoMSIA [25]. To the best of our knowledge, 
four QSAR studies [26-28, 10] have been carried out using sulfonamides with Schiff base as Carbonic 
anhydrase inhibitors.  

In this study, we investigated QSAR for 38 sulfanilamide Schiff’s base inhibitors of the 
physiologically relevant isozyme CAII using Codessa Pro approach [29]. To the best of our 
knowledge, all QSAR studies using sulfonamides with Schiff base have been performed on the same 
data set. The majority of molecules in our set have been newly synthesized and till now they have not 
been conducted in any QSAR study. The results of this study may help estimate the inhibition activity 
of sulfonamide with Schiff base of this series, prior to synthesis. 

2. Results and Discussion  

2.1. Computational details 

For all the molecules studied, 3-D modeling and calculations of quantum mechanical descriptors 
were performed using the Gaussian 03 quantum chemistry package [30]. To save computational time, 
initial geometry optimizations were carried out with the molecular mechanics (MM) method, using the 
MM+ force fields. The lowest energy conformations of the molecules obtained by the MM method 
were further optimized by the DFT [31] method by employing Becke’s three-parameter hybrid 
functional (B3LYP) [32] and the 6-31G (d) basis set. Their fundamental vibrations were also 
calculated using the same method to check if there were true minima. All the computations were 
carried out for the ground states of these molecules as single states. Codessa Pro was used for 
statistical analysis. This code uses diverse statistical structure property/activity correlation techniques 
for the analysis of experimental data in combination with the calculated molecular descriptors. It is 
worthy to mention here that we used a high level of theory (DFT/B3LYP) to obtain more precise data 
of descriptors during the calculation of the optimized 3-D geometry and quantum mechanical 
descriptors of the compounds, although no geometric, quantum mechanical, and thermo dynamical 
descriptors were involved in the obtained models presented in the following section. The heuristic 
method (HM) [33] implemented in Codessa Pro was employed for selecting the ‘best’ regression 
model. HM can either quickly give a good estimation about what quality of correlation to expect from 
the data, or can derive several best regression models. Besides, it will demonstrate as to which 
descriptors have bad or missing values, which descriptors are insignificant, and which descriptors are 
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highly inter-correlated. This information will be helpful in reducing the number of descriptors 
involved in the search for the best QSAR model. A pre-selection of descriptors is accomplished by 
HM as follows. All descriptors are checked to ensure that (a) value of each descriptor is available for 
every structure and (b) there is a variation in these values. The descriptors for which values are not 
available for every structure in the data in question are discarded. Descriptors having a constant value 
for all structures in the data set are also discarded. A printout showing descriptors thus discarded is 
provided. Thereafter, the one-parameter correlation equations for each descriptor are calculated. To 
further reduce the number in the ‘‘starting set’’ of descriptors, the following criteria are applied and a 
descriptor is eliminated if: (a) the F-test’s value for the one-parameter correlation with the descriptor is 
below 1.0, (b) the squared correlation coefficient of the one-parameter equation is less than R2 min 0.01 
by default, (c) the parameter’s t-value is less than t1 (where R2 min 0.1 by default and t1 1.5 by default 
are user-defined values), and (d) the descriptor is highly inter-correlated (above rfull, where rfull is a 
user-specified value by default 0.80), with another descriptor. All the remaining descriptors are then 
listed in the decreasing order according to the correlation coefficient of the corresponding one-
parameter correlation equation. All two parameter regression models with remaining descriptors are 
developed and ranked by the regression correlation coefficient R2. A stepwise addition of further 
descriptor scales is performed to find the best multi-parameter regression models with optimum values 
of statistical criteria (highest values of R2, the cross-validated, R2 CV, and the F value). In addition to 
the descriptors calculated using Gaussian 03 and Codessa Pro, we have also added two 
physicochemical properties of compounds, namely, logarithm of 1-octonal/water partition coefficient 
(logP) and logarithm of aqueous solubility (logS) to the descriptor pool. These two parameters were 
calculated using WEB tool of ALOGPS 2.1 software [34]. This WEB tool calculates logP and logS 
using six different softwares and algorithms including ALOGPS 2.1. The calculation results of the 
properties are listed in the WEB for each software and in the average of six softwares as well. We have 
used average values of logP and logS from six different softwares in the regression procedures.  

2.2. Results 

The structures of 38 Schiff-base sulfonamide compounds are shown in Figure 1. The experimental 
inhibitory activity of the compounds against CA II isozyme was taken from three references [35-37]. 
Table 1 shows the following information: (i) calculated molecular descriptor values involved in the 
models, (ii) experimental Ki (nM) values taken from the original references, and (iii) the calculated Ki 
(nM) values using the best model 5 obtained in this study. The plot of observed versus calculated Ki 
for CA II using model 5 is shown in Figure 2. The inter-correlation of descriptors is shown in Table 3.  

Using the HM, several regression equations were obtained in this study. Among the regression 
results, five equations (the best one, two, three, four, and five parameters) were selected as models and 
are given in Table 2. In these models, the correlation coefficient, R2, is a measure of the fit of the 
regression equation. F, the Fisher test value, reflects the ratio of the variance explained by the model 
and the variance due to the error in the model. Higher values of F-test indicate the significance of the 
equation. s2 is the standard deviation of the regression. R2

CV, the ‘leave one out’ (LOO) cross-validated 
coefficient, is a practical and reliable method for testing the predictive performance and stability of a 
regression model. LOO approach involves developing a number of models, with one sample omitted at 
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a time. After developing each model, the omitted data are predicted and the differences between the 
experimental and predicted activity values are calculated. The R2

CV values are then calculated 
according to the following formula [38]: 

 

where yi is the actual experimental activity, iy
−

 the average actual experimental activity, and îy
^

 the 

predicted activity of compound i computed by the new regression equation obtained each time after 
leaving out one datum point (No. i). 

In the present work, more than two hundred descriptors were exploited. In Codessa Pro, descriptors 
are divided into groups such as constitutional, topological, geometrical, electrostatic, quantum 
chemical, thermodynamic, and constructed. Constitutional descriptors are related to the number of 
atoms and bonds in each molecule. Topological descriptors include valence and non valence molecular 
connectivity indices calculated from the hydrogen-suppressed formula of the molecule, encoding 
information about the size, composition, and the degree of branching of a molecule. Geometrical 
descriptors are calculated from 3-D atomic coordinates of the molecule and comprise moments of 
inertia, shadow indices, molecular volumes, molecular surface areas, and gravitation indices. 
Electrostatic descriptors reflect characteristics of the charge distribution of the molecule. Quantum 
chemical descriptors encode the polar interactions between molecules or their chemical reactivity and 
the activation energy of the corresponding chemical reaction. Thermodynamic descriptors are quantum 
mechanically calculated on the basis of the total partition function of the molecule Q and its electronic, 
translational, rotational, and vibrational components. Codessa Pro also allows one to construct new 
descriptors by using the existing descriptors. In this way, the author has constructed some common 
quantum chemical indices, namely, chemical hardness, electronegativity, and electrophilicity from 
HOMO and LUMO orbital energies. The results shown in Table 2 have been quite surprising, which is 
attributed to the fact that no quantum chemical indices has turned out in our models. In our previous 
studies [13-14], the QSAR models have been drawn up from the quantum mechanical descriptors of a 
group of diverse aromatic and heterocyclic sulfonamides and from the inhibitory activity of these 
compounds against CA II isozyme. For comparison, we have tried to correlate inhibitory activity Ki-
CA II of molecule set of this study (Schiff base sulfonamides) with the same quantum mechanical 
descriptors involved in QSAR models in our previous works. The correlation coefficient was very 
poor, less than (R< 0.1). This result indicates that inhibition mechanism of Schiff-base sulfonamides is 
different from that of the aromatic and heterocyclic sulfonamides.  

According to the preliminary regression analysis, these two compounds exhibited unusual behaviors 
in all the models. When the heuristic method has been run with default for 38 compounds, the best 
one, two, three, four and five parameter equations have shown up as the program output. In all these 
five equations, compounds 29 and 38 have had the largest standard residual (almost twice of mean 
residua). After selecting these two compounds as outliers, the statistical quality of one, two, three, four 
and five parameter equations were increased dramatically such as statistical parameters for five 
parameter equation R2 from 0.71 to 0.84, F from 15.96 to 31.54, and s2 from 0.061 to 0.034. It is 
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worthy here mention that the descriptors involved in the best equations obtained for 38 compounds set 
and 36 compounds set are not the same. The best one, two, three, four and five parameter equations 
obtained from 36 compounds are presented as models in following.  

A perusal of Table 2 shows that twelve types of descriptors are involved in all the five models. The 
use of HM method yielded the best one-parameter regression expression as follows.  

LogCA II-Ki= 0.180 + 32.767 RNBR 

N=36; R2=0.527; R2 
CV=0.488; F=37.98; s2=0.090 

(1) 

Here and thereafter, N is the number of compounds, R2 is the correlation coefficient, R2 
CV is the 

‘leave one out’ (LOO) cross-validated coefficient, F is the Fisher-statistic value, and s2 is the standard 
deviation of the regression equation. In this model, as well as the models presented below, compounds 
29 and 38 are outliers. In this model, RNBR is the relative number of benzene rings. RNBR is the ratio 
between the numbers of benzene rings divided by the total number of atoms in the molecules. In the 
above equation, RNBR has a positive-sign coefficient. This means that increases in the magnitude of 
RNBR favors the exhibitions of the inhibitory activity of CA II-Ki.  

Among the obtained two-parameter models, statistically the best one is as below: 

LogCA II-Ki= 1.245 + 1.296 NBR – 0.119 NCA  

N = 36; R2 = 0.647; R2 
CV = 0.599; F = 30.27; s2 = 0.069 

(2) 

In this model, NBR is the number of benzene rings and NCA is the number of C atoms in the 
molecules. These two descriptors are constitutional. NBR has a coefficient with positive sign and NCA 
has a coefficient with a negative sign. When models 1 and 2 are considered together, both models 
highlight the same features of the molecules. According to the models, substituting benzene with nitro 
or hydroxy groups instead of methyl groups and decreasing the number of CH2 bond to imine nitrogen 
are favorable for an increase in the inhibition activity of the compounds.  

Among the obtained three-parameter models, statistically the best one is as follows: 

LogCA II-Ki= 6.182 - 16.733 RNDB – 0.0031 DPSA-1 + 24.267MiPCN 

 N=36; R2=0.729; R2 
CV=0.618; F=28.74; s2=0.055. 

(3) 

In this model, RNDB is the relative number of double bonds, DPSA-1 is defined as the difference in 
CPSAs (PPSA1 (partial positive surface area) -PNSA1 (partial negative surface area)) [Zefirov's PC] 
and MiPCN is the Min partial charge for a N atom [Zefirov's PC]. RNDB is a constitutional descriptor 
and has a coefficient with a negative sign. A decrease in the magnitude of RNDB favors the 
exhibitions of the inhibitory activity of CA II-Ki. DPSA-1 is an electrostatically charged partial 
surface-area descriptor and encodes features responsible for polar interactions between molecules. The 
negative sign of coefficient of DPSA-1 highlights a decrease in the magnitude of RNDB, which favors 
the exhibitions of the inhibitory activity of CA II-Ki. MiPCN is an electrostatic descriptor and reflects 
minimum partial charge on the N atom in the molecules. The positive sign of the coefficient of MiPCN 
indicates that increases in the magnitude of MiPCN are favorable for an increase of inhibition activity 
of the compounds.  
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Among the obtained four-parameter models, statistically the best one is as shown below: 

LogCA II-Ki= 1.061 – 0.462 ALS – 0.125 3χ - 9.122 RNDB + 7.577 RPCG  

 N=36; R2=0.786; R2 
CV=0.716; F=28.48; s2=0.045. 

(4) 

In this model, ALS is the Average LogS, 3χ is the Randic index (order 3), RPCG is the Relative 
positive charge (QMPOS/QTPLUS) [Zefirov's PC], and RNDB is the relative number of double bonds 
as in model 4. ALS is the logarithm of aqueous solubility of the compounds. The negative sign of the 
coefficient of ALS highlights a decrease in the magnitude of ALS, which favors the exhibitions of 
inhibitory activity of CA II-Ki. 3χ is a topological descriptor, and describes the atomic connectivity and 
branching information of the molecules. 3χ has a coefficient with a negative sign. This means that the 
third-order branching is not the favorable parameter for the exhibition of the inhibitory activity. 
RPCG, the RPCG Relative positive charge (QMPOS/QTPLUS) is an electrostatic descriptor, and 
reflects characteristics of the charge distribution of the molecules. The positive sign of the coefficient 
of RPCG indicates that increases in the magnitude of relative positive charge of molecules are 
favorable for an increase of the inhibition activity of the compounds.  

During our regression analysis using HM, we obtained several five-parameter equations. Out of 
these five-parameter equations, equation 5 consisting of NBR the Number of benzene rings, NCA the 
Number of C atoms, NNA the Number of N atoms, ALP the Average logP, and 2AIC the Average 
information content (order 2) is the best. This model is as shown below: 

LogCA II-Ki= -2.205 + 1.739 NBR – 0.279 NCA + 0.182 NNA + 0.282 ALP + 0.977 2AIC 

 N=36; R2=0.840; R2 
CV=0.777; F=31.54; s2=0.034. 

(5) 

In this model, the sign of coefficients of NBR and NCA is the same as in that in the model 2 and 
thus they carry the same significance as in that model. NNA is a constitutional descriptor. It has a 
positive sign of coefficient. This means that the increase in the magnitude of NNA is the favorable 
parameter for the exhibition of the inhibitory activity. ALP is the logarithm of 1-octonal/water partition 
coefficient and exhibits hydrophobicity of compounds. The positive sign of coefficient of ALP 
indicates that Log CA II-Ki increases with increase in the magnitude of Average logP. 2AIC is the 
second-order average complementary information content that could be considered an index of 
heterogeneity of a molecule [38]. The positive sign of coefficient of 2AIC indicates that increases in the 
magnitude of 2AIC are favorable for an increase of inhibition activity of the compounds.  

By default setting, HM uses maximum five descriptors to construct a regression model. We have 
changed the default setting of the software in order to allow for the use of more than five descriptors. 
This has yielded several six- and seven-parameter regression equations. None of those equations has 
better statistic parameters than the above five parameters (equation 5). Although R2 values of those 
six- and seven-parameter equations were greater than those of equation 5, they were not selected as 
models in this study due to their relatively low F value.  

2.3. Discussion 

Twelve types of descriptors were involved in the models. Two of the descriptors are 
physicochemical property, namely, ALS, average logS, and ALP, average logP. In model 4, average 
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logS negatively contribute to the inhibitory activity. In model 5, average logP positively contributes to 
the inhibitory activity. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Molecular structure of Schiff-base sulfonamides used in the present study 
 
This result is expected due to the fact that the average logP is inversely proportional to the average 
logS. Five of the involved descriptors are constitutional. RNBR, the relative number of benzene rings 
in model 1, and NBR, the number of benzene rings in the models 2 and 5 positively contribute to the 
inhibitory activity. On the contrary, NCA, the number of C atoms, negatively contribute to the 
inhibitory activity in the models 2 and 3. When these two results are combined together, one could 
draw a conclusion that one should avoid substituting benzene rings with C-containing groups and 
adding CH2 bond to imine nitrogen for designing Schiff-base sulfonamide compounds with increased 
inhibitory activity. Another constitutional descriptor is NNA, the number of N atoms which positively 
contribute to the inhibitory activity in model 5. As a consequence, substituting benzene ring with nitro 
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groups or inserting an N-containing ring to a Schiff-base sulfonamide compound may help increase the 
inhibitory activity. Two descriptors, 3χ and 2AIC, out of twelve are topological index. 3χ is the third-
order Randic index which negatively contributes to the inhibitory activity in model 4. This means that 
if one wants to design a Schiff-base sulfonamide with high inhibitory activity, it should be considered 
that the third-order branching is not the favorable parameter. Another topological index is 2AIC, the 
second-order average information content. This descriptor reflects the heterogeneity of a molecule and 
positively contributes to the inhibitory activity in model 5. Remaining three descriptors are 
electrostatic index, and they characterize the charge distribution of the molecules. MiPCN, Min partial 
charge for a N atom [Zefirov's PC], and RPCG Relative positive charge (QMPOS/QTPLUS) [Zefirov's 
PC], positively contribute to the inhibitory activity in models 3 and 4, respectively. DPSA-1, 
Difference in CPSAs (PPSA1-PNSA1) [Zefirov's PC], negatively contributes to the inhibitory activity 
in model 3. The values of these electrostatic indexes of molecules are affected by substituting groups. 
This should be taken into account when one tries to design a new molecule. 

2.4. Conclusion 

 In the present study, the structural descriptors of 36 sulfonamide Schiff-base inhibitors of 
Carbonic Anhydrase CA II enzyme have been correlated with the their inhibition constant Ki using 
Codessa Pro methodology. Among the obtained model, five-parameter equation consists of the 
descriptors namely the Number of benzene rings, the Number of C atoms, the Number of N atoms, the 
Average logP, and the Average information content (order 2) is the best one. The statistical parameters 
of this model are the R2 = 0.84, R2 

CV=0.77, F= 31.54, and s2 = 0.034. 
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Figure 2. Description Plot of observed versus predicted LogKi CA II values using model 5.
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Table 1. Calculated descriptors involved in the models and LogCA II-Ki of 38 sulfonamides compounds predicted by model 5. 

Comp. RNBR NBR NCA RNDB DPSA-1 MiPCN ALS 3χ RPCG NNA ALP 2AIC Obs. Ki Pre. Ki Residue 

1 0.0571 2.0000 16.0000 0.1351 21.4428 -0.0912 -4.0600 8.3122 0.0934 2.0000 1.4900 4.1579 1.447a 1.6557 0.2087 

2 0.0526 2.0000 17.0000 0.1250 68.0099 -0.0967 -4.1400 8.5538 0.0894 2.0000 1.6600 4.3006 1.146a 1.5640 0.418 

3 0.0488 2.0000 18.0000 0.1163 105.7782 -0.0980 -4.1300 8.8038 0.0855 2.0000 1.9700 4.4307 1.322a 1.4996 0.1776 

4 0.0526 2.0000 17.0000 0.1250 54.8184 -0.0912 -4.3100 8.6547 0.0902 2.0000 1.9000 4.3951 1.544a 1.7243 0.1803 

5 0.0488 2.0000 18.0000 0.1163 113.8093 -0.0967 -4.4600 8.8962 0.0865 2.0000 2.0800 4.4512 1.740a 1.5507 -0.1893 

6 0.0455 2.0000 19.0000 0.1087 165.0231 -0.0980 -4.3200 9.1462 0.0828 5.0000 2.3900 4.5694 1.778a 1.4747 -0.3033 

7 0.0444 2.0000 20.0000 0.1042 59.8359 -0.1043 -4.7700 10.8703 0.0693 5.0000 1.7700 4.6356 1.518a 1.6333 0.1153 

8 0.0417 2.0000 21.0000 0.0980 117.0900 -0.1043 -4.9300 11.2127 0.0675 3.0000 2.1800 4.8192 1.612a 1.6494 0.0374 

9 0.0465 2.0000 17.0000 0.1556 -111.7607 -0.0872 -5.4600 10.5070 0.1504 3.0000 2.0600 4.4434 2.008a 1.9995 -0.0085 

10 0.0435 2.0000 18.0000 0.1458 -67.6019 -0.0872 -5.9000 10.8494 0.1474 2.0000 2.4600 4.6297 2.123a 2.0154 -0.1076 

11 0.0667 2.0000 13.0000 0.0968 31.6593 -0.0932 -4.2600 6.3063 0.1267 2.0000 2.3900 3.7736 2.461b 2.3724 -0.0886 

12 0.0588 2.0000 14.0000 0.0857 130.0701 -0.0935 -3.7900 6.6081 0.1082 2.0000 1.9000 3.9476 2.230b 2.1247 -0.1053 

13 0.0606 2.0000 14.0000 0.0882 20.6325 -0.0986 -4.3900 6.5479 0.1193 2.0000 2.4700 3.9535 1.954b 2.2916 0.3376 

14 0.0541 2.0000 15.0000 0.0789 138.1794 -0.1001 -3.9200 6.8399 0.1040 3.0000 1.9300 4.0539 2.079b 1.9578 -0.1212 

15 0.0500 2.0000 16.0000 0.0976 111.5054 -0.1002 -3.8000 7.0673 0.0950 3.0000 1.2600 4.2531 2.041b 1.8666 -0.1744 

16 0.0571 2.0000 14.0000 0.0833 -18.8479 -0.0984 -4.0900 7.0830 0.1145 3.0000 1.8300 4.0436 2.477b 2.3815 -0.0955 

17 0.0571 2.0000 14.0000 0.0833 -22.6421 -0.1000 -4.1100 7.1305 0.1169 2.0000 1.8300 3.9864 2.146b 2.3257 0.1797 

18 0.0444 2.0000 17.0000 0.0652 291.3417 -0.0991 -3.9900 8.2996 0.0693 2.0000 1.6400 3.9908 1.301b 1.2556 -0.0454 

19 0.0556 2.0000 15.0000 0.0811 65.0019 -0.0999 -4.4000 6.7979 0.1125 3.0000 2.8900 4.1144 2.322b 2.2884 -0.0336 

20 0.0465 2.0000 17.0000 0.0909 140.9603 -0.1015 -3.9200 7.3173 0.0906 3.0000 1.6000 4.3855 1.602b 1.8128 0.2108 

21 0.0500 2.0000 15.0000 0.0732 122.8380 -0.1001 -4.0600 7.3330 0.1367 3.0000 1.6100 4.2719 2.397b 2.2632 -0.1338 

22 0.0588 2.0000 15.0000 0.1143 40.6266 -0.0956 -3.7700 6.2710 0.1287 2.0000 2.5200 3.7556 1.698b 1.8331 0.1351 

23 0.0323 1.0000 12.0000 0.1250 90.8476 -0.1147 -2.5200 6.0563 0.1241 3.0000 0.6900 4.1682 1.000b 1.0004 0.0004 

24 0.0303 1.0000 12.0000 0.1176 155.8272 -0.1064 -2.1200 6.2979 0.1070 4.0000 -0.3000 4.3549 1.301b 1.0857 -0.2153 
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25 0.0278 1.0000 13.0000 0.1081 209.1037 -0.1064 -2.3600 6.5479 0.1015 4.0000 0.1200 4.4823 1.000b 1.0497 0.0497 

26 0.0645 2.0000 13.0000 0.0938 43.8927 -0.0934 -3.2500 6.3063 0.1498 2.0000 1.5000 3.8574 2.230c 2.2027 -0.0273 

27 0.0667 2.0000 13.0000 0.0968 -5.1570 -0.0932 -4.2600 6.3063 0.1267 2.0000 2.4500 3.7736 2.462c 2.3894 -0.0726 

28 0.0500 2.0000 16.0000 0.0976 186.4766 -0.0941 -4.1900 7.6016 0.0993 2.0000 1.5200 4.3929 2.000c 1.8939 -0.1061 

29d 0.0625 2.0000 13.0000 0.0909 -51.7829 -0.0946 -4.0500 6.8889 0.1241 3.0000 1.7600 3.8125 1.698c -- -- 

30 0.0667 2.0000 13.0000 0.0968 -23.5748 -0.0946 -4.2700 6.1901 0.1294 2.0000 2.4800 3.7069 2.447c 2.3327 -0.1143 

31 0.0645 2.0000 13.0000 0.0938 32.0889 -0.0947 -3.3500 6.1901 0.1511 2.0000 1.3700 3.7929 2.278c 2.1029 -0.1751 

32 0.0476 1.0000 7.0000 0.1429 2.8615 -0.0749 -2.2300 3.5542 0.1785 2.0000 0.6400 3.7257 1.602c 1.7672 0.1652 

33 0.0588 2.0000 14.0000 0.0857 61.6262 -0.1001 -3.3600 6.4317 0.1432 2.0000 1.4100 3.9698 1.845c 2.0079 0.1629 

34 0.0500 2.0000 16.0000 0.0976 112.8082 -0.1002 -3.8000 7.0673 0.0950 3.0000 1.2300 4.2531 2.041c 1.8581 -0.1829 

35 0.0571 2.0000 14.0000 0.0833 -22.7851 -0.0997 -4.1100 7.0624 0.1164 3.0000 1.8400 4.1007 2.255c 2.4402 0.1852 

36 0.0541 2.0000 15.0000 0.0789 135.7274 -0.1001 -3.3700 6.7979 0.1350 2.0000 2.0600 4.1824 2.113c 2.1202 0.0072 

37 0.0556 2.0000 15.0000 0.0811 112.8082 -0.1017 -3.7200 6.2710 0.1224 2.0000 2.3200 3.8565 2.146c 1.8751 -0.2709 

38d 0.0526 2.0000 15.0000 0.0769 8.6366 -0.1013 -4.1900 7.3805 0.1103 3.0000 2.2200 4.1427 1.301c -- -- 

RNBR, Relative number of benzene rings; NBR, Number of benzene rings; NCA, Number of C atoms ; RNDB, Relative number of double bonds; DPSA-1 Difference in 
CPSAs (PPSA1-PNSA1) [Zefirov's PC]; MiPCN, Min partial charge for a N atom [Zefirov's PC]; ALS, Average logS; 3χ, Randic index (order 3); RPCG, RPCG Relative 
positive charge (QMPOS/QTPLUS) [Zefirov's PC]; NNA, Number of N atoms; ALP, Average logP; and 2AIC, Average Information content (order 2) 
 
a) From Ref. [37]; b) From Ref. [35]; c) From Ref. [36]; d) Compounds 29 and 38 are outliers and were deleted from the regression procedure of model 5. 
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Table 2. Regression parameters and statistical quality of the correlations of the activity LogKi -CAII in the present study. 

Models Descriptors involved t-test Coefficient 

Ai (i=1,2,3,4,5) 

B 

(intercept) 

Statistical Parameters 

N R2 R2 cv
 F s2 

Equ. 1  RNBR Relative number of benzene rings 6.163 32.767(5.316) 0.180 

(0.280) 

36 0.527 0.488 37.98 0.090 

Equ. 2 NBR Number of benzene rings 

NCA Number of C atoms 

 

7.590 

-5.745 

1.296(0.170) 

-0.119(0.020) 

1.245 

(0.298) 

36 0.647 0.599 30.27 0.069 

Equ. 3  RNDB Relative number of double bonds 

DPSA-1 Difference in CPSAs (PPSA1-PNSA1) [Zefirov's PC] 

MiPCN Minimum partial charge for a N atom [Zefirov's PC] 

 

-7.939 

-5.458 

3.406 

 

-16.73(2.107) 

-0.0031(0.0005) 

24.276(7.127) 

6.182 

(0.776) 

36 0.729 0.618 28.74 0.055 

Equ. 4 ALS Average logS 
3χ Randic index (order 3) 

RNDB Relative number of double bonds 

RPCG Relative positive charge (QMPOS/QTPLUS) [Zefirov's PC] 

 

-5.887 

-2.571 

-4.515 

3.924 

-0.462(0.078) 

-0.125(0.048) 

-9.122(2.020) 

7.577(1.930) 

1.061 

(0.330) 

36 0.786 0.716 29.98 0.045 

Equ. 5 NBR Number of benzene rings 

NCA Number of C atoms 

NNA Number of N atoms 

ALP Average logP 

 2AIC Average Information content (order 2) 

7.826 

-7.510 

3.578 

3.609 

3.488 

1.739(0.222) 

-0.279(0.037) 

0.182(0.051) 

0.282(0.078) 

0.977(0.280) 

-2.205 

(0.940) 

36 0.840 0.777 31.54 0.034 
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Table 3. Correlation matrix for the inter-correlation of various molecular descriptors involved in the obtained models. 

 RNBR NBR NCA RNDB DPSA-1 MiPCN ALS 
3χ RPCG NNA ALP 2AIC

RNBR 1.000            

NBR 0.6504 1.000           

NCA -0.1979 0.5717 1.000          

RNDB -0.3454 -0.3573 0.0337 1.000         

DPSA-1 -0.4510 -0.1773 0.2007 -0.4079 1.000        

MiPCN 0.4106 0.1693 -0.2183 0.4310 -0.4810 1.000       

ALS -0.2483 -0.3005 0.3372 0.6106 0.5991 -0.6935 1.000      
3χ -0.3005 0.4068 -0.2031 -0.2953 0.7793 -0.0203 -0.7565 1.000     

RPCG 0.3372 -0.2031 -0.7013 0.2939 0.4134 0.7380 0.2244 -0.5260 1.000    

NNA -0.6106 -0.2953 0.2939 0.0882 -0.1964 0.3227 -0.0431 0.4294 -0.3141 1.000   

ALP 0.5991 0.7793 0.4134 -0.1964 -0.3333 0.2484 -0.7649 0.3105 -0.0307 -0.3609 1.000  
2AIC -0.6935 -0.0203 0.7380 0.3227 0.2484 -0.2802 -0.3572 0.7993 -0.5658 0.6052 -0.1155 1.000 

RNBR, Relative number of benzene rings; NBR, Number of benzene rings; NCA, Number of C atoms ; RNDB, Relative number of double bonds; DPSA-1 
Difference in CPSAs (PPSA1-PNSA1) [Zefirov's PC]; MiPCN, Min partial charge for a N atom [Zefirov's PC]; ALS, Average logS; 3χ, Randic index (order 3); 
RPCG Relative positive charge (QMPOS/QTPLUS) [Zefirov's PC]; NNA, Number of N atoms; ALP, Average logP; and 2AIC, Average Information content 
(order 2).  
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3. Experimental Section  

Inhibition of CA II 
 
The inhibition value LogCA II-Ki was adopted from the references [35-37].  
 
Topological indexes 
 
Two topological indexes were involved in our models. These two indices are defined using the 
formula given below according to Codessa Pro reference Manual [33]. 
 
Randic and Kier & Hall indices (order 0-3). The general formula for the calculation of these indexes is 
as follows: 

( )∑
−−−

−
+=

SBN

nlengthofpaths
ini

n

)(

2/1
1...1 δδχ  

 
where iδ  and jδ ( ji ≠ ) correspond to the coordination numbers of atoms (Randic index [40]) or to 

the values of the atomic connectivity (valence connectivity index υχn  by Kier and Hall [41]). The 
atomic connectivity for the i-th atom in the molecular skeleton is calculated using the formula: 
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ii
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where iZ  is the total number of electrons in the i-th atom, υ
iZ  is the number of valence electrons, and 

iH  is the number of hydrogens directly attached to the i-th atom. 
 
Information content index and its derivatives (order 0-2). The average information content is defined 
on the basis of the Shannon information theory and is calculated as follows [42-43]: 

n
n

n
n

CI i

i

ik
2log∑−=  

where in  is a number of atoms in the i-th class and n is a total number of atoms in the molecule. The 

division of atoms into different classes depends upon the coordination sphere taken into account. This 
leads to the indices of different order k. The information content (IC) is equal to average information 
content multiplied by the total number of atoms. Other information content indices (SIC – structural 
IC, CIC – complementary IC, and BIC – bonding IC) are defined as follows [44]: 

nICSIC kk
2log/=  
ICnCIC kk −= 2log  
qICBIC kk

2log/=  
where q is a number of edges in the structural graph of the molecule. 
 
Electrostatic indexes 
 
According to Codessa Pro reference Manual [33], electrostatic indexes were involved in our models 
and are calculated using the formulae given below.  
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Charged partial surface-area descriptors. Charged partial surface-area (CSPA) descriptors have been 
invented by Jurs et al. [45-46] in terms of the whole surface area of the molecule and in terms of 
functional group portions. 

Descriptors involved in this study are as follows: 
a) DPSA-1 Difference in CPSAs (PPSA1-PNSA1) [Zefirov's PC].  
b) RPCG Relative positive charge (QMPOS/QTPLUS) [Zefirov's PC].  

 
Minimum and maximum partial charges for particular types of atoms (e.g. C, O, N etc.). The empirical 
partial charges in the molecule are calculated using the approach proposed by Zefirov [47-48]. This 
method is based on the Sanderson electronegativity scale and uses the concept which represents the 
molecular electronegativity as a geometric mean of atomic electronegativities. 
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