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Abstract: The PI polynomial of a molecular graph is defined to be the sum X|E(G)|−N(e) + 
|V(G)|(|V(G)|+1)/2 − |E(G)| over all edges of G, where N(e) is the number of edges parallel 
to e. In this paper, the PI polynomial of the phenylenic nanotubes and nanotori are 
computed. Several open questions are also included. 
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1.  Introduction 
 

Let G be a simple molecular graph without loops, directed and multiple edges .The vertex and edge 
sets of G are represented by V(G) and E(G), respectively. A topological index is a numeric quantity 
derived from the structural graph of a molecule. Usage of topological indices in chemistry began in 
1947, when Harold Wiener developed the most widely known topological descriptor, the Wiener 
index, and used it to determine physical properties of the type of alkanes known as paraffins [1]. The 
Hosoya polynomial of a graph G is defined to be W(G;X) = Σuv∈V(G)Xd(u,v), where d(u,v) denotes the 
length of a minimum path between u and v. In [2], Hosoya used the name Wiener polynomial while 
some authors later used the name Hosoya polynomial. 

Let G be a connected molecular graph and e=uv an edge of G, neu(e|G) denotes the number of 
edges lying closer to the vertex u than the vertex v, and nev(e|G) is the number of edges lying closer to 
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the vertex v than the vertex u. The Padmakar-Ivan (PI) index of a graph G is defined to be PI (G) = 
Σe∈E(G)[neu(e|G) + nev(e|G)], see [3] and [4]. 

In a series of papers [5, 6] Ashrafi et al. defined a new polynomial which they named the 
Padmakar-Ivan polynomial. They abbreviated this new polynomial as PI(G,X), for a molecular graph 
G. We define PI(G;X) = Σuv∈V(G) XN(u,v), where for an edge e = uv, N(u,v) = neu(e|G) + nev(e|G) and 
zero otherwise.This polynomial is very important in computing the PI index. This newly proposed 
polynomial, PI(G,X), does not coincide with the Wiener polynomial (W (G,X)) for acyclic molecules.  

In a series of papers [7, 8] Diudea et al. investigated the structure and computed the Hosoya 
polynomial of some nanotubes and nanotori. Gutman et al. [9] also computed the Hosoya polynomials 
of  some benzenoid graphs. In [10] Shoujun et al. investigated the Hosoya polynomials of armchair 
open-ended nanotubes. Also, in [5] and [6] the authors computed the PI and Wiener Polynomial of 
some nanotubes and nanotori. In this paper we continue this program to compute the PI polynomial of 
V-phenylenic nanotubes and nanotori, using the molecular graphs in Figures 1 and 2. Throughout this 
paper, the notation is the same as in [11] and [12]. 
      

Figure 1. A V-Phenylenic Nanotube. 
 

 
 

Figure 2. A V-Phenylenic Nanotorus. 
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2. Results and Discussion 
 
The novel phenylenic and naphthylenic lattices proposed can be contructed from a square net 

embedded on the toroidal surface. In this section, the PI polynomial of a V-Phenylenic nanotube and 
nanotorus are computed. Following Diudea [13] we denote a V-Phenylenic nanotube by 
T=VPHX[4n,2m]. We also denote a V-Phenylenic nanotorus by H=VPHY[4n,2m]. Let G be an 
arbitrary graph.  For every edge e, we define 

 
N (e) = |E(G)| - (neu(e|G) + nev(e|G)). 

 
By Theorem 1 in [6] we have: 
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     So it is enough to compute N(e), for every edge e∈E(G). From above the argument and Figures 1 
and 2, it is easy to see that |E(T)|=36mn–2n, |E(H)|=36mn and |V(T)| =24mn,  |V(H)| =24mn. In the 
following theorem we compute the PI polynomial of the molecular graphT in  Figure 1. 
 

Theorem 1.  PI(T,X)=(X (36mn-6n)) (8mn) +(X (36mn-4n)) (4mn-2n)+ (X (36mn-2n-8m)) (8mn) 
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+(24mn+1)(12mn+1)-36mn+2n. 
 
Proof: To compute the PI polynomial of T, it is enough to calculate N(e). To do this, we consider three 
cases: that e is vertical, horizontal or oblique. If e is horizontal. a similar proof as Lemma 1 in [14] 
shows that N(e)=8m. Also, if e is a vertical edge in one hexagon or octagon then N(e) = 4n, 2n, 
respectively. 
We consider the set A(T) of  oblique edges in T. For every e in A(T), we have two cases: 

Case 1: 
2
nm ≤  

A similar argument as Lemma 2 in [14] gives that N(e)=4n.  

Case 2: 
2
nm >  

We denote the ith row of oblique edges in A(T) by Ai (see Figure 1). It is easy to see that by graph 
symmetry each element of Ai has the same number of parallels. If e∈Ai and 1≤ i≤2(m-|n-m|), by 
computations, we have N(e)=4n+2i-2, also if 2(m-|n-m|)+1≤ i≤2m, then N(e)=8n-2. If m>n, then 
N(e)=8m. For n>m because of symmetry computations are similar to upper part of graph. So we have: 
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Thus: 
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Which completes the proof. 
 
      In our next theorem we consider a V-Phenylenic nanotorus H and calculate its Padmakar-Ivan 
polynomial , PI(H,X), Figure 2. 
 

Theorem 2. |E(H)|
2
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where z=min{m,n}. 
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Proof: To prove the theorem, we apply a similar method as in Theorem 1. It is easily seen that 
N(e)=8n for each vertical edge in hexagons, that is two times more twice the tube case by horizontal 
symmetry. A vertical edge in an octagon has 2n parallels, as in Theorem 1. Also N(e)=8m for each 
horizontal edge. Let },min{ nmz =  , for each oblique edge e  we have 26)(N −= ze . So: 
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and this completes the proof . 
 
We conclude our paper with the following open questions: 
 

Question 1: Let F(x)= k
n

k

k x∑
=

−
0

)1(   be a polynomial of degree n . Is there a V-phenylenic nanotube or 

nanotorus T such that PI (T,x) = F(x)? 
 
Question 2: Is it true that for every polynomial F(x) with positive coefficients and of degree n, there 
exists a V-phenylenic nanotube or nanotorus T, such that PI (T ,x) = F(x)? 
 
Question 3:  What is the relation between the Hosoya polynomial and PI polynomial of a V-
phenylenic nanotube or nanotorus? 
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