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Abstract: A new polyacetylene derivative with electroactive thiophene substituent, namely 
poly(2-methylbut-2-enyl thiophene-3-carboxylate) was synthesized and characterized. For 
this purpose, novel acetylene monomer was synthesized by the reaction of 3-
thiophenecarboxylic acid with propargyl bromide and polymerized with a Rh catalyst to 
give the corresponding polymer. The chemical structure of the polymer was characterized 
to comprise the conjugated backbone and electroactive thiophene side group. UV spectral 
changes of the polymer with temperature were also studied. The polymer exhibited better 
thermal stability than the unsubstituted polyacetylenes. 
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Introduction 

It is known that substituted acetylenes polymerize with transition metal catalysts [1-4]. Among  
various catalysts used, Rh based catalysts received particular interest as they efficiently polymerize 
mono-substituted acetylenes, especially phenylacetylene [4-12]. Rh catalysts are also capable of  
polymerizing monomers with polar substituents such as propiolic esters [13-18] and propargyl amide 
[19-22]. Moreover, polymerization is tolerant to protic solvents such as alcohols [5, 7], amines [8], and 
even water [10] and ionic liquids [9] and selectively give stereo-regular polymers with cis-transoid 
isomer having helical main chain [4-6]. Providing that the helical sense of the π-conjugated polymers 
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is controlled, the polymer backbone becomes optically active [23-26]. The backbone chirality of the  
π-conjugated polymers can be detected directly by measuring their CD behavior, since the main-chain 
itself is a chromophore. Meanwhile, substituted polyacetylenes exhibit unique properties such as  
semi-conductivity, nonlinear optical properties, and high gas permeability due to the conjugated main 
chain and rigid molecular structure [1, 27-29]. However, notoriously intractable and thermally unstable 
nature of polyacetylenes is deterrent for their potential use in technological applications. Attachment of 
aromatic pendants to the polyacetylene backbone is one way to overcome problems associated with 
intractability and thermal degradation [4, 30-38]. For example, poly-(1-phenyl-1-alkyne)s are soluble 
in common solvents and do not decompose at elevated temperatures for a prolonged period of time 
[35]. It is expected that incorporation of various substituents to acetylenes and their subsequent  
polymerization may lead to the conjugated polymers with new properties. Polymers containing  
thiophene units have been the subject of extensive research for more than 25 years. Polythiophenes are 
interesting for their not only electrical properties, but also electrophysical, magnetic, liquid crystalline 
and optical properties [39, 40]. However, polythiophenes suffer from the poor mechanical and physical 
properties. These properties can be improved by incorporating thiophene moieties into other insulating 
polymers and subsequent polymerization through these electroactive thiophene groups [41-43].  
Various controlled [44-47] and conventional [48] polymerization methods to incorporate thiophene 
groups into polymers have recently been reported. It seemed therefore appropriate to synthesize acety-
lene with electroactive thiophene group. The corresponding polymers may form helical thiophene 
strands as well as a helical polyacetylene main chain possessing unique electronic and photonic  
functions. In this study, we report synthesis of acetylene with side-chain thiophene moiety and its  
polymerization with Rh catalyst in conjunction with co-catalyst. Structural, thermal and  
electrochemical characterizations of the monomer and corresponding polymer were performed by  
FT-IR, 1H-NMR, UV, TGA and CV measurements. 

Results and Discussions 

The synthetic strategy used to prepare propargyl thiophene, as monomer, based on heterogeneous 
esterification reaction between 3-thiophenecarboxylic acid and propargyl bromide in basic medium 
(Scheme 1). 

 
Scheme 1. Synthesis and Polymerization of Propargyl-thiophene by Using Rh(nbd)Cl2]. 

 

The chemical structure of propargyl thiophene was confirmed by both FT-IR and 1H-NMR  
spectroscopy. As can be seen from Figure 1, 1H-NMR spectrum exhibits structural characteristics of 
both acetylene and thiophene units. The signal of terminal acetylene proton emerges as triplet at  
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2.50 ppm with 2.4 Hz J, and the two C3 protons of the propargyl part were noted as a doublet at  
4.86 ppm with 2.5 Hz J. Additionally, C2, C4 and C5 protons of thiophene heterocycle appear at  
8.16 ppm as doublet of doublet (dd) with 4J13: 3 Hz and 5J14: 1.3 Hz, at 7.30 ppm as dd, 3J34: 5.9 Hz 
and 4J13: 3 Hz, at 7.53 ppm as dd, 3J34: 5.2 Hz and 5J14: 1.3 Hz, respectively. 

 

 
 

Figure 1. 1H NMR spectrum of propargyl-thiophene. 

The FT-IR spectrum shown in Figure 2 (b) also establishes the structure of the monomer. Accor-
dingly, diagnostic stretching vibrations of ester carbonyl, aromatic C-H and terminal acetylenic C-H 
and C ≡ C bands appear at 1716 cm-1, 3112 cm-1, 3292 cm-1 and 2128 cm-1, respectively. Moreover,  
sp2 C-O and sp C-O stretching vibrations observed at 1246 and 1095 cm-1 are additional support for the 
ester structure. 

Propargyl thiophene is expected to undergo polymerization with Rh catalyst through the acetylenic 
group as depicted in Scheme 1. The Rh-catalyzed polymerization reaction in toluene proceeded 
smoothly at ambient temperature and gave the expected polyacetylene in moderate yields after  
precipitation. In this polymerization, (bicyclo[2,2,1]hepta-2,5-diene)chlororhodium(I) dimer,  
abbreviated as [(nbd)RhCl]2, was selected as the catalyst due to its widespread use in related  
polymerizations. The results of polymerizations under different experimental conditions are given in 
Table 1.  

Table 1: Polymerizationa of acetylene-thiophene by Rh catalysts in conjunctiona with  
different co-catalysts. 

Polymer Co-catalyst Yield (%) Mn
b Mw/Mn

b 
PAT-1 Triethylamine 12 2790 1.46 
PAT-2 Diisopropylamine 20 4460 1.67 
PAT-3 Butylamine 6 4690 1.33 

a [M]o = 0.2 M, [Rh]= 2 mM, [Co-catalyst] =20mM, 30 oC, 24 h; b Determined by GPC according to  

polystyrene standards. 
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As can be seen, polymerization with all co-catalysts used resulted in polymers with relatively low 
yields and molecular weights. Limited chain growth is probably due to the inefficient ligation of  
co-catalysts and monomer together to the growing species [49, 50]. The chemical structure of the  
polyacetylene obtained was confirmed by both FT-IR and 1H-NMR spectroscopy. In the FT-IR  
spectrum (Figure 2), the disappearance of the acetylenic C-H and C ≡ C stretching vibrations at  
3292 cm-1 at 2128 cm-1, respectively, was clearly noted. Also, carbonyl C=O stretching at 1716 cm-1 

and sp2 C-O and sp C-O stretching vibrations at 1246, 1095 cm-1 are evidencing the retention of ester 
group after the polymerization. 

 

Figure 2. FT-IR spectra of (a) PAT-2 and (b) propargyl-thiophene. 
 
Further analysis of the polymer by 1H-NMR as presented in Figure 3 indicated the characteristic 

peak for cisoid =C-H proton at 6.4 ppm. Additionally, the two protons, neighboring ester group and 
double bond emerge at 4.75 ppm with a slight shift compared to C3 protons of the precursor propargyl 
unit (see Figure 1). This shift clearly suggests the transformation of triple bond to double bond. The 
retention of aromatic peaks was also noted. 

 
Figure 3. 1H NMR spectrum of polymer PAT-2. 
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Electrochemical property of the polymer was investigated by cyclic voltammetry (CV). Reversible  
redox potentials and LUMO energy values based on the value of 4.8 eV for ferrocene (FC) with respect 
to zero vacuum level [51, 52] were determined and summarized in Table 2. As can be seen 
poly(acetylene-thiophene) displays two cathodic peaks and two anodic peaks. The reduction potentials 
are 0.71 V and 1.16 V and LUMO is 4.09 eV. These results clearly indicate the electroactivity of the 
polymer. It is worth to mention that no detectable redox peaks were observed with the polymers  
possessing non-conjugated backbone i.e., methacrylate and maleimide polymers with side chain  
thiophene unit [42-43]. However, they become electroactive only in the presence of bare monomers 
such as thiophene and pyrrole. The enhanced activity in our case may be due to the conjugated  
backbone. In this connection, it should be pointed out that polyacetylenes with directly attached  
thiophene units were previously reported. However, no information on their electrochemical properties 
was given [53].  

Table 2. Cylic voltammetrya data and LUMO energy values of poly(acetylene thiophene) 
in dichloromethane. E1/2/V vs. Fc is the reduction potential versus ferrocene electrode 
(E1/2/V vs. Fc= (E1/2/V vs. Ag/AgCl)-(EFc/V vs. Ag/AgCl)). 

Electrode Epc/V Epa/V 
E1/2/V vs. 
(Ag/AgCl) 

EFc/V vs. 
(Ag/AgCl) 

E1/2/V vs. Fc 
LUMO 

(eV) 

Pt disc 
0.80 -0.33 0.24 0.47 0.71 4.09 
-0.61 -0.77 0.69 0.47 1.16 3.64 

 a Supporting electrolyte is 0.1 M tetrabutylammonium perchlorate (TBAP). [PAT-2] = 6.6 g/l. 

 
 

Figure 4. UV-vis spectral changes of PAT-2 from 5 to 55 0C measured in CHCl3  
[PAT-2]= 1.8 x 10-5. 
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Figure 4 shows the UV spectral changes of the polymer solution in CHCl3 with temperature. As can be 
seen, the absorbance at lower wavelengths increases by increasing the temperature probably due to the 
transformation to a non-ordered structure. Thermal stability of the poly(acetylene-thiophene) (PAT-2) 
was investigated by thermal gravimetric analysis (TGA) under nitrogen exposure. The TGA profile of 
the polymer is shown in Figure 5 and the results are summarized in Table 3. It is well known that 
mono-substituted polyacetylenes are generally thermally unstable. Typically, poly(1-hexyne) starts to 
lose its weight at ~ 150 0C. Interestingly, the temperature for 5% weight loss is 230 oC for PAT-2. In 
fact, this value is slightly lower than that of the another aromatic substitutued poly(phenyl acetylene) 
(T= ~ 264 oC) [35-38]. 
 

Table 3. Thermal properties of polyacetylenes. 
 

Polymer T5%
a (ºC) T10%

b (°C) Tc
d max (°C) Yc

d at 500°C (%) Ref. 
PAT-2 230 248 363 29 This work 
Poly(phenylacetylene) ~264 ~280 -- ~12 [35] 

aT5%: The temperature for which the weight loss is 5%; bT10%: The temperature for which the weight loss is 10%; cTd max: 

Maximum weight loss temperature; dYc: Char yields 

 
 Figure 5. TGA thermogram of PAT-2 (a) recorded under nitrogen at a heating rate of 10 
0C/min., (b) derivative of curve (a).  

 

In conclusion, a new conjugated polymer, polyacetylene, with electroactive active thiophene groups 
was synthesized by using a Rh catalyst and characterized. The polymer structure, electrochemical and 
thermal properties were characterized by various instrumental methods. The new polymer is expected 
to undergo electropolymerization leading to crosslinked polymers having conjugated segments in both 
main- and side-chain with enhanced conductivities and helical tunnels in the structure. Further studies 
in this line are now in progress. 
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Experimental Section 

Materials 

3-Thiophenecarboxylic acid % 99 (Acros), propargyl bromide solution in toluene ~ %80 (Fluka), te-
trabutylammonium bromide (+ %99) (Acros), (bicyclo[2,2,1]hepta-2,5-diene)chlororhodium(I) dimer 
([(nbd)RhCl]2 )≥ %98 (Fluka), diisopropylamine ≥ % 99 (Merck), triethylamine ≥ % 99.5 (Aldrich), 
were purchased and used as received. Solvents used for polymerization were purified before usage by 
the standard drying and distillation procedures. 

Characterization 

The molecular weights of polymers were measured by GPC at 30 0C with an Agilent instrument 
(Model 1100) consisting of a pump, refractive index and UV detectors and four Waters Styragel col-
umns (HR 5E, HR 4E, HR 3, and HR 2) eluent THF, flow rate of 0.3 mL/min and calibrated with po-
lystyrene standards. Toluene was used as an internal standard. Data analyses were performed with PL 
caliber Software. 1H NMR spectra were recorded on a Bruker 250 Mhz spectrometer using CDCl3 as 
solvent and tetramethylsilane as the internal standard. FT-IR spectra were measured on Perkin-Elmer 
FT-IR Spectrum One spectrometer. Thermal gravimetric analysis (TGA) was performed on Perkin-
Elmer Diamond TA/TGA with a heating rate of 10 0C min under nitrogen flow. Cylic voltammetry 
measurements were carried out using a Princeton Applied Research Model 2263. Cylic voltammetry in 
dichloromethane was performed using a 3-electrode cell (BASI model solid cell stand) with a polished 
2mm sized Pt disc electrode as working electrode, a Pt wire counter electrode and an Ag/AgCl refer-
ence electrode, with a solution of polymer (6.6 g/l) and tetrabutylammonium perchlorate (TBAP,0.1 
M) in CH2Cl2. All solutions were purged with nitrogen for at least 10 min before starting the mea-
surements. UV-vis spectra were recorded on JASCO V-530 UV-vis spectro photometer. 

Monomer synthesis 

In a 250 mL flask, of 3-thiophenecarboxylic acid (2.0 g, 15 mmol) was dissolved in 100 mL of 0.1 
N NaOH. The mixture was heated at 50 0C until a clear solution was formed. To this solution, tetrabu-
tylammonium bromide (0.50 g, 1.55 mmol) was added as a phase transfer catalyst. Then, a solution of 
propargylbromide (2.0 g, 17 mmol) in 20 mL of toluene was added portion wise. The mixture was kept 
stirring at 60 0C for 24 h. At the end of this period, it was cooled to afford solid. Additonally, the re-
maining toluene layer was separated and washed repeatedly with %2 NaOH (200 mL, 0.1 N) and with 
water. Evaporating toluene afforded extra solid. 

Polymerization 

Polymerization was carried out under N2 atmosphere in a Schlenk tube equipped with a three-way 
stopcock. A typical polymerization procedure is as follows: A toluene solution (2.0 mL) of 1 (1 mmol) 
was added to a toluene solution (3.0 mL) of [(nbd)RhCl]2 (10-3 mmol ) with co-catalyst diisopropyla-
mine (10-2 mmol). Polymerization was carried out at 30 0C for 24 h. 
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