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Abstract: The most potent catechin in green tea is (-)-epigallocatechin-3-gallate [(-)-
EGCG], which, however, is unstable under physiological conditions. To discover more 
stable and more potent polyphenol proteasome inhibitors, we synthesized several novel 
fluoro-substituted (-)-EGCG analogs, named F-EGCG analogs, as well as their prodrug 
forms with all of -OH groups protected by acetate. We report that the prodrug form of one 
F-EGCG analog exhibited greater potency than the previously reported peracetate of (-)-
EGCG to inhibit proteasomal activity, suppress cell proliferation, and induce apoptosis in 
human leukemia Jurkat T cells, demonstrating the potential of these compounds to be 
developed into novel anti-cancer and cancer-preventive agents.  

Keywords: tea polyphenols, prodrugs, proteasome inhibitors, cancer prevention, cancer 
therapy 
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1. Introduction  

Proteasome inhibitors have been considered as potential anticancer drugs [1]. Inhibition of 
proteasome prevents ubiquitin-targeted proteolysis which can affect multiple signaling cascades within 
the cell. Since disruption of normal homeostatic mechanisms can lead to cell death, the discovery of 
novel proteasome inhibitors with little or no toxicity is highly desirable in anticancer therapy [2-3]. 
The 20S proteasome, the proteolytic core of 26S proteasome complex, contains multiple peptidase 
activities (including the chymotrypsin-like, trypsin-like and peptidylglutamyl peptide hydrolyzing-
like/PGPH) [1-3]. It has been shown that inhibition of chymotrypsin-like but not trypsin-like 
proteasomal activity is a strong stimulus that induces apoptosis [1-3]. We have illustrated that 
inhibition of proteasome may be a key mechanism for the cancer-preventive activity of green tea [4-5].  

Tea leaves contain many constituents [6]. Among these constituents are the polyphenolic catechins, 
which are thought to contribute to the biological effect of tea [7]. The main polyphenols found in green 
tea extracts are (-)-epicatechin [(-)-EC], (-)-epigallocatechin [(-)-EGC], (-)-epicatechin-3-gallate [(-)-
ECG], and (-)-epigallocatechin-3-gallate [(-)-EGCG]. In particular, (-)-EGCG, the most abundant 
catechin, was found to be the strongest chemopreventive and anticancer agent among the green tea 
catechins [8]. However, (-)-EGCG has at least one limitation: it has poor bioavailability, attributing to 
its low absorption and poor stability in neutral or alkaline solutions [9].  

We have synthesized and evaluated a serial of tea polyphenol analogs, and reported that 
synthetically derived (-)-EGCG analogs potently inhibit the proteasomal chymotrypsin-like activity, 
leading to growth arrest and apoptosis [10]. We have also examined the structure–activity relationship 
of a number of synthetic green tea polyphenol analogs involving modifications of A ring and B ring of 
(-)-EGCG as proteasome inhibitors. It was found that in B ring, a decrease in the number of OH groups 
led to decreased potency [11].  

Most recently, in order to discover more stable and more potent tea polyphenols as proteasome 
inhibitors, we synthesized several novel fluoro-substituted benzoates of EGC, or (-)-EGCG analogs 
with eliminated –OH groups from the D-ring and replaced with one or two fluorine(s), named F-
EGCG analogs (Sun Dong Kui et al, to be submitted). In addition, we synthesized peracetates of these 
F-EGCG analogs since we reported that the peracetate-protected or prodrug form of (-)-EGCG, Pro-
EGCG (1), was more stable and more potent than natural (-)-EGCG in vitro and in vivo [12]. We found 
that, compared to Pro-EGCG (1), the peracetate of 3,4-difluorobenzoates of EGC (Pro-F-EGCG4) 
exhibited greater potency to inhibit proteasomal chymotrypsin-like activity, suppress cell proliferation 
and induce apoptosis in human leukemia Jurkat T cells.  

2. Results and Discussion 

2.1. Inhibition of the chymotrypsin-like activity of a purified 20S proteasome by synthetic F-EGCG 
analogs.  

 In order to discover more stable and more potent tea polyphenol-based proteasome inhibitors, we 
synthesized several novel fluoro-substituted benzoates of EGC (F-EGCGs), which mimics the 
structure of EGCG (Fig. 1).  
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We first tested the effect of these compounds on inhibiting the chymotrypsin-like activity of a 
purified 20S proteasome using purified EGCG as a positive control. Each of these compounds was 
incubated with a purified rabbit 20S proteasome and a fluorogenic substrate for chymotrypsin-like 
activity for 2 h. The half-maximal inhibitory concentration or IC50 was then determined. (-)-EGCG 
showed potent proteasome-inhibitory activity with an IC50 of 0.68 μM. The fluoro-substituted 
benzoates of EGC at either meta- (F-EGCG2) or ortho-position (F-EGCG1) on the phenyl ring were 
potent inhibitors of purified 20S proteasomes, with IC50 values of 0.84 and 1.25 μM, respectively (Kui 
et al., to be submitted), similar to, or a little weaker than that of EGCG. Although the analog with the 
fluorophenyl group at para-position (F-EGCG3) showed a slightly decreased potency (IC50 1.90 μM), 
the difluoro-substituted benzoate of EGC at both meta- and para-positions (F-EGCG4) on the phenyl 
ring was a very potent inhibitor of purified 20S proteasomes (IC50 0.65 μM). These data demonstrate 
that fluoro-substituted benzoates of EGC are similar to EGCG as potent proteasome inhibitors. 

 
Figure 1. Chemical structures of EGCG and F-EGCGs as well as their pro-drugs. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.2. Induction of cell death in human leukemia cells by peracetates of fluoro-substituted benzoates of 
EGC  

Under physiological conditions, EGCG is unstable and poorly absorbed, and therefore has low 
bioactivity in cells [9]. Similar, the fluoro-substituted benzoates of EGC or F-EGCGs, including F-
EGCG1 to F-EGCG4, showed low cell-killing activities (data not shown). We have previously shown 
that peracetate-protected EGCG, Pro-EGCG (1), (Fig. 1) has improved bioactivity compared with 
EGCG [12]. We therefore synthesized the acetate-protected form of F-EGCGs, namely Pro-F-EGCGs 
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(Fig. 1) to elucidate whether protection of the reactive –OH groups would also improve their stability 
and potency. 

We first tested whether these Pro-F-EGCGs could induce cell death in tumor cells. Human 
leukemia Jurkat T cells were treated with 50 μM of each analog for 24 h, followed by Trypan-blue 
exclusion assay. Blue cells and cells with apoptosis-associated morphological changes (shrunken, 
blebbing, etc) were scored as dead cells. Pro-EGCG (1) and DMSO were used as controls. The results 
revealed that the order of potency was: Pro-F-EGCG4 (inducing 90% cell death), Pro-F-EGCG2 (90%) 
> Pro-F-EGCG1 (44%) > Pro-F-EGCG3 (30%) (Fig. 2). This was consistent with the order of 
proteasome-inhibitory potency of their unprotected compounds: F-EGCG4 (IC50 0.65 μM), F-EGCG2 
(IC50 0.84 μM) > F-EGCG1 (IC50 1.25 μM) > F-EGCG3 (IC50 1.90 μM), suggesting that these 
prodrugs have converted into free forms of fluoro-substituted benzoates of EGCG that inhibit the 
cellular proteasome activity and induce cell death (see below).  

 
Figure 2. Peracetate-protected F-EGCG analogs induce cell death in human leukemia 
cells. Jurkat T cells were treated with 50 μM of Pro-F-EGCG1 to Pro-F-EGCG4 (indicated 
by Pro-F1 to Pro-F4, respectively) for 24 h, Pro-EGCG (1) and DMSO used as controls, 
followed by Trypan blue dye exclusion assay. The data represented are the mean number 
of dead cells over total cell population. ** P < 0.01, Bars, SD, mean of three experiments. 

 
 
 
 
 
 
 
 
 
 
 
 
In this experiment, the prodrug of EGCG, Pro-EGCG (1), induced ~70% of cell death (Fig. 2). 

Therefore, both Pro-F-EGCG4 and Pro-F-EGCG2 are more potent than Pro-EGCG (1). We then 
further studied the proteasome-inhibitory and apoptosis-inducing potencies of Pro-F-EGCG4, using 
Pro-EGCG (1) as a comparison. 

2.3 Pro-F-EGCG4 inhibits tumor cellular proteasomal activity and induces apoptosis in a time-
dependent manner  

To study whether the induction of cell death by Pro-F-EGCG4 was due to its proteasome-inhibitory 
and apoptosis-inducing activities, Jurkat T cells were treated with 50 μM of Pro-F-EGCG4 and Pro-
EGCG (1) as a control for 4, 8 and 24 h, followed by measurement of proteasome inhibition and 
apoptotic cell death. Proteasome inhibition by Pro-F-EGCG4 was confirmed by the decreased level of 
the proteasomal chymotrypsin (CT)-like activity (Fig. 3A). In addition, treatment of Pro-F-EGCG4 
induced the appearance of the p56 IκB-α after 4 or 8 h (Fig. 3B). Previously, we reported that the p56 
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is an ubiquitinated form of IκB-α protein as a marker of proteasome inhibition, as verified by the 
immunoprecipitation-Western blot assay [13]. However, in the cells treated with Pro-F-EGCG4 for 24 
h, the p56 IκB-α was not detected (Fig. 3B), suggesting the transient nature of this ubiquitinated 
protein accumulation. Increased level of apoptosis-specific caspase-3/7 activities was observed from 
2.5 to 5.3 folds in cells treated with Pro-F-EGCG4 for 4 to 24 hours (Fig. 3C). Consistently, PARP 
cleavage fragment p85 was detected in Jurkat T cells treated with Pro-F-EGCG4 in a time-dependent 
manner (Fig. 3B). A p65 PARP fragment was also detected in cells treated with Pro-F-EGCG4 (Fig. 
3B), indicating calpain activation occurred as well [14]. Apoptotic morphological changes were 
observed after 4 hours of treatment with Pro-F-EGCG4 (data not shown). 

 
Figure 3. The proteasome-inhibitory and apoptosis-inducing effects of Pro-F-EGCG4 in 
Jurkat T cells. Jurkat T cells were treated with 50 μM of Pro-F-EGCG4 or Pro-EGCG (1) 
as control for indicated hours, followed by preparation of cell extracts. A, The proteasomal 
CT-like activity was inhibited by treatment of Pro-F-EGCG4 and Pro-EGCG (1). B, 
Western blot analysis showed that ubiquitinated IκB-α (p56) and cleavage of PARP (p85 
and p65) in cells treated with Pro-F-EGCG4 and Pro-EGCG (1). C, Increased caspase-3/7 
activation showed in Jurkat cells treated with Pro-F-EGCG4 and Pro-EGCG (1). * P < 
0.05, ** P < 0.01, Bars, SD, mean of three experiments. 
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Treatment of Pro-EGCG (1) also caused a decrease in the level of the proteasomal CT-like activity 
in a time-dependent manner (Fig. 3A) and induced the increased level of the ubiquitinated form of 
IκB-α at all the time points (Fig. 3B). Treatment of Pro-EGCG (1) also resulted in caspase activation 
(increase of 2-3.5 folds) (Fig. 3C) and calpain activation, as shown by the appearance of p65 PARP 
fragment (Fig. 3B). We noticed that the slightly increased caspase activity was not associated 
production of p85 PARP (Fig. 3B), suggesting that activation of calpain is predominant (which cleaves 
PARP into p65 fragment, Fig. 3B) under the experimental conditions. However, under each condition, 
Pro-F-EGCG4 showed greater potency than Pro-EGCG (1) (Fig. 3).  

2.4 Pro-F-EGCG4 inhibits tumor cellular proteasomal activity and induces apoptosis in a dose-
dependent manner  

We then performed a dose-dependent experiment. Jurkat T cells were treated with Pro-F-EGCG4 or 
Pro-EGCG (1) at 10, 25, or 50 μM for 24 h, followed by measurement of proteasome inhibition and 
apoptotic cell death. Pro-F-EGCG4 inhibited the proteasomal CT-like activity in a dose-dependent 
manner (Fig. 4A). Consistently, Pro-F-EGCG4 caused accumulation of ubiquitinated proteins in a 
dose-dependent manner (Fig. 4B). Furthermore, caspase activation and PARP cleavage were observed 
in Jurkat T cells treated with Pro-F-EGCG4 in a dose-dependent manner (Fig. 4B-C). 

Pro-EGCG (1) also showed inhibition of the proteasomal CT-like activity, accumulation of 
ubiquitinated proteins, and activation of caspase activity (Fig. 4). In this dose-dependent experiment, 
Pro-EGCG (1) at 50 μM was able to induce caspase 3/7 activity by 6-fold, which was not seen in the 
kinetic experiment under similar conditions (Fig. 3). This discrepancy is due to the fact that when very 
apoptotic cells were used for protein extract preparation, loss of proteins (including caspases) would 
give a lower activity measurement under in vitro conditions. The conditions of cell culture, the drug 
stability, and other factors in each experiment will affect the profile of in vitro caspase activity. 
Regardless of that, Pro-EGCG (1) was less potent than Pro-F-EGCG4 in the dose-dependent 
experiment (Fig. 4). Therefore, these results demonstrated that synthetic protected fluoro-substituted 
benzoates of EGC achieved improvement of their biological activities over natural EGCG and Pro-
EGCG (1) [12].  

The ubiquitin/proteasome-dependent degradation pathway plays an essential role in up-regulation 
of cell proliferation, down-regulation of cell death, and development of drug resistance in human 
tumor cells. Therefore, proteasome inhibitors show great potential as novel anticancer drugs [2-3]. 

Previously, we have reported that EGCG is a natural inhibitor of proteasomal chymotrypsin-like 
activity [4-5]. However, EGCG, especially on its hydroxyl groups, is subject to extensive 
biotransformation including methylation by catechol-O-methyltransferase (COMT) [15] and 
glucuronidation by UDP-glucuronosyltransferase (UGT) [16]. It has been reported that the 
biotransformation reduces the bioavailability and stability of EGCG. We found that methylation of 
EGCG could decrease its proteasome-inhibitory activity, contributing to decreased cancer-preventive 
effects of tea consumption under physiological conditions [17].  
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Figure 4. The proteasome-inhibitory and apoptosis-inducing effects of Pro-F-EGCG4 and 
Pro-EGCG (1) in dose-dependent manner. Jurkat T cells were treated with indicated 
concentrations of Pro-F-EGCG4 and Pro-EGCG (1) for 24 hours, DMSO (D) as solvent 
control, followed by preparation of cell extracts for measuring the chymotrypsin-like 
activity (A), Western blots analysis (B) and caspase-3/7 activities. * P < 0.05, ** P < 0.01, 
Bars, SD, mean of three experiments.  
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inhibit the proteasomal chymotrypsin-like activity, leading to accumulation of proteasome target 
proteins (such as IκB-α) and apoptosis in human leukemia Jurkat T cells, as measured by activation of 
caspases and PARP cleavage. This result indicates that Pro-F-EGCG4 may be more stable or should 
have better bioavailability than EGCG and Pro-EGCG (1). These data suggest that the peracetate-
protected fluoro-substituted benzoates of epigallocatechin have the great potential to be developed into 
novel anti-cancer and cancer-preventive agents. We will further confirm bioeffects of Pro-F-EGCG4 in 
animal models.  

3. Experimental Section 

3.1. Materials.  

Highly purified (-)-EGCG and dimethyl sulfoxide (DMSO) were purchased from Sigma-Aldrich. 
Purified 20S proteasome (rabbit) was purchased from Boston Biochem. Fluorogenic peptide substrate 
Suc-Leu-Leu-Val-Tyr-AMC (for the proteasomal chymotrypsin-like activity) was obtained from 
Calbiochem. Polyclonal antibody to ubiquitin, IκB-α monoclonal anti-actin, anti-goat, anti-rabbit, and 
anti-mouse IgG-horseradish peroxidase were obtained from Santa Cruz Biotechnology Inc. Mouse 
monoclonal anitbody against human poly(ADP-ribose) polymerase (PARP) was purchased from 
Biomol International LP (Plymouth Meeting, PA). RPMI 1640, Penicillin and streptomycin were 
purchased from Invitrogen. 

3.2. Synthesis of F-EGCG analogs and their prodrugs.  

We have designed and semi-synthesized four fluoro-substituted benzoates of EGC as EGCG 
analogs, named F-EGCG1, F-EGCG2, F-EGCG3 and F-EGCG4, respectively (Fig. 1). The synthesis 
and biological evaluation of these four F-EGCG analogs will be published elsewhere (Sun Dong Kui et 
al., to be submitted). The peracetates or prodrugs of F-EGCG1, F-EGCG2, F-EGCG3 and F-EGCG4 
(named as Pro-F-EGCGs) were subsequently synthesized according to the following procedure.  

 
(-)-(2R, 3R)-5,7-Diacetoxy-2-(3,4,5-triacetoxyphenyl)chroman-3-yl 2-fluorobenzoate (Pro-F-

EGCG1). Under an N2 atmosphere, to a solution of (-)-(2R, 3R)-5,7-dihydroxy-2-(3,4,5-
trihydroxyphenyl)chroman-3-yl 2-fluorobenzoate (20 mg, 0.047 mmol) in pyridine (1 ml), acetic 
anhydride (0.2 ml) was added dropwise at 0°C. The reaction mixture was stirred at room temperature 
overnight. The excess pyridine was distilled under vacuum. The residue was purified by flash 
chromatograph on silica gel (EtOAc/n-hexane, 1/1 in v/v) to afford (-)-(2R, 3R)-5,7-Diacetoxy-2- 
(3,4,5-triacetoxyphenyl)chroman-3-yl 2-fluorobenzoate (28 mg, 94.0% yield). mp: 89-90ºC; [α]D=-
52.1 (c=1.0, CHCl3); 1H NMR (CDCl3, 600 MHz) δ 7.67 (m, 1 H), 7.45 (m, 1 H), 7.31 (bs, 2 H), 7.12 
(m, 1 H), 7.05 (m, 1 H), 6.73 (d, J=2.34 Hz, 1 H), 6.58 (d, J=2.34 Hz, 1 H), 5.63 (m, 1 H), 5.21 (bs, 1 
H), 3.11 (dd, J=17.88, 2.28 Hz, 1 H), 3.06 (dd, J=17.88, 4.56 Hz, 1 H), 2.29-2.25 (m, 15 H). 13C NMR 
(CDCl3, 600 MHz) δ 168.9, 168.5, 167.6, 166.8, 163.4, 162.8, 161.1, 154.7, 149.7, 143.4, 135.5, 134.8, 
134.7, 134.3, 132.2, 123.7, 117.9, 116.9, 109.5, 108.9, 107.9, 76.4, 67.8, 25.9, 21.1, 20.9, 20.6, 20.1. 
HRMS (ESI): calculated for C32H28FO13 (M+H) 639.1514, found 639.1508. 
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(-)-(2R, 3R)-5,7-Diacetoxy-2-(3,4,5-triacetoxyphenyl)chroman-3-yl 3-fluorobenzoate (Pro-F-
EGCG2). Following the procedure for the preparation of Pro-F-EGCG1, the prodrug F-EGCG2 was 
obtained (90.6% yield). mp: 85-86ºC; [α]D=-48.6 (c=1.0, CHCl3); 1H NMR (CDCl3, 600 MHz) δ 
7.68 (m, J=7.8 Hz, 2 H), 7.46 (m, 1 H), 7.31 (m, 1 H), 7.11 (bs, 2 H), 7.03(m, 1 H), 6.73 (d, J=2.28 Hz, 
1 H), 6.58 (d, J=2.28 Hz, 1 H), 5.63 (m, 1 H), 5.19 (bs, 1 H), 3.09 (d, J=4.02 Hz , 1 H), 2.29-2.23 (m, 
15 H) 13C NMR (CDCl3, 600 MHz) δ 168.9, 168.5, 167.6, 166.8, 163.4, 162.8, 161.1, 154.7, 149.7, 
149.6, 143.3, 135.5, 134.3, 132.2, 124.0, 118.8, 117.9, 116.7, 109.5, 108.8, 107.9, 76.3, 67.8, 25.9, 
21.0, 20.7, 20.5, 20.1. HRMS (ESI): calculated for C32H28FO13 (M+H) 639.1514, found 639.1525. 

 
(-)-(2R, 3R)-5,7-Diacetoxy-2-(3,4,5-triacetoxyphenyl)chroman-3-yl 4-fluorobenzoate (Pro-F-

EGCG3). Following the procedure for the preparation of Pro-F-EGCG1, the prodrug F-EGCG3 was 
obtained. (94.0% yield): mp: 97-99ºC; [α]D=-56.4 (c=1.0, CHCl3); 1H NMR (CDCl3, 600 MHz) δ 
7.87 (m, 4 H), 7.27 (m, 1 H),7.13 (bs, 2 H),7.03 (m, 2 H), 6.74 (d, J=2.28 Hz, 1 H), 6.72 (d, J=2.28 Hz, 
1 H), 5.87 (m, 1 H), 5.12 (bs, 1 H), 3.05 (m, 2 H), 2.28-2.24 (m, 15 H) 13C NMR (CDCl3, 600 MHz) δ 
169.3, 169.1, 168.7, 168.2, 168.0, 166.7, 165.0, 155.0, 149.7, 143.4, 143.0, 135.7, 132.5, 132.4, 130.7, 
125.6, 118.1, 115.6, 115.4, 112.8, 108.8, 108.0, 76.5, 67.6, 26.0, 21.1, 20.8, 20.7, 20.5, 20.3. HRMS 
(ESI): calculated for C32H28FO13 (M+H) 639.1514, found 639.1501. 

 
(-)-(2R,3R)-5,7-Diacetoxy-2-(3,4,5-triacetoxyphenyl)chroman-3-yl 3,4-difluorobenzoate (Pro-

F-EGCG4). Following the procedure for the preparation of Pro-F-EGCG1, the prodrug F-EGCG4 was 
obtained (91.8% yield): mp: 94-95ºC; [α]D=-58.1 (c=1.0, CHCl3); 1H NMR (CDCl3, 600 MHz) δ 
7.67 (m, 1 H), 7.45 (m, 1 H), 7.28 (bs, 2 H), 7.14 (m, 1 H), 6.73 (d, J=2.28 Hz, 1 H), 6.58 (d, J=2.28 
Hz, 1 H), 5.59 (m, 1 H), 5.30 (bs, 1 H), 3.07 (m, 2 H), 2.31-2.23 (m, 15 H) 13C NMR (CDCl3, 600 
MHz) δ 168.9, 168.5, 167.6, 166.8, 163.4, 162.8, 161.1, 154.7, 149.9, 149.7, 149.6, 143.3, 135.5, 
134.3, 119.2, 118.6, 116.7, 109.5, 108.8, 76.3, 67.8, 25.9, 21.0, 20.7, 20.5, 20.1. HRMS (ESI): 
calculated for C32H27F2O13 (M+H) 657.1419, found 657.1407. 

3.3. Cell viability assay.  

The Trypan blue dye exclusion assay was performed by mixing 20 μL of cell suspension with 20 
μL of 0.4% Trypan blue dye before injecting into a hemocytometer and counting [17, 18]. The number 
of cells that absorbed the dye and those that exclude the dye were counted, from which percentage of 
nonviable cell number over the total cell number was calculated. 

3.4. Cell culture, drug treatment and protein extraction.  

Human leukemia Jurkat T cells were cultured in RPMI 1640 medium supplemented with 10% fetal 
calf serum, 100 units/mL of penicillin, and 100 μg/mL of streptomycin. Cells were maintained at 37oC 
in a humidified incubator with an atmosphere of 5% CO2. Jurkat T cells were treated by selected 
compounds at various concentrations for indicated hours (see figure legends for details), and a whole-
cell extract was then prepared as described previously [18]. Briefly, cells were harvested, washed with 
PBS, and homogenized in a lysis buffer (50 mM, Tris-HCl, pH 8.0, 150 mM NaCl, 0.5% NP-40, 0.5 
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mM penylmethylsulfonyl fluoride, and 0.5 mM dithiothreitol) at 4oC. Afterwards, the lysates were 
centrifuged at 12,000 x g for 15 min at 4oC and the supernatants collected as whole-cell extracts. 

3.5. Inhibition of cellular proteasome activity by Pro-F-EGCG analogs. 

Human leukemia Jurkat T cells were treated with each compound at indicated concentration for 
indicated hours (see the figure legends for details), harvested, and lysed as described previously [5, 12, 
18]. Whole cell extracts were prepared as detailed in section 3.4, aliquoted and kept at -80oC. One of 
the aliquots was used for determination of protein concentration. After that, whole cell extracts (10 μg) 
from each preparation were incubated with Suc-Leu-Leu-Val-Tyr-AMC (20 μM) fluorogenic substrate 
at 37°C in 100 μl of assay buffer (50 mM Tris-HCL, pH 7.5) for 2 h. After incubation, production of 
hydrolyzed 7-amino-4-methylcoumarin (AMC) groups was measured using a Victor3 Multilabel 
Counter with an excitation filter of 380 nm and an emission filter of 460 nm (PerkinElmer, Boston, 
MA, USA). 

3.6. Induction of caspase-3 activity by Pro-F-EGCG analogs. 

 Cells were treated with each compound at indicated concentration for indicated hours, harvested, 
and lysed as described previously [5]. Ac-DEVD-AMC (40 μM) was then incubated with the prepared 
cell lysates for 2 h and the caspase-3 activity was measured as described previously [18]. 

3.7. Western blotting.  

Analysis of IκB-α, PARP, and ubiquitinated proteins was performed using monoclonal or 
polyclonal antibodies, according to previously reported protocols [5].  
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