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Abstract: Despite the fact that non-viral nucleic acid delivery systems are generally 
considered to be less efficient than viral vectors, they have gained much interest in recent 
years due to their superior safety profile compared to their viral counterpart. Among these 
synthetic vectors are cationic polymers, branched dendrimers, cationic liposomes and cell-
penetrating peptides (CPPs). The latter represent an assortment of fairly unrelated 
sequences essentially characterised by a high content of basic amino acids and a length of 
10-30 residues. CPPs are capable of mediating the cellular uptake of hydrophilic 
macromolecules like peptides and nucleic acids (e.g. siRNAs, aptamers and antisense-
oligonucleotides), which are internalised by cells at a very low rate when applied alone. Up 
to now, numerous sequences have been reported to show cell-penetrating properties and 
many of them have been used to successfully transport a variety of different cargos into 
mammalian cells. In recent years, it has become apparent that endocytosis is a major route 
of internalisation even though the mechanisms underlying the cellular translocation of 
CPPs are poorly understood and still subject to controversial discussions. In this review, 
we will summarise the latest developments in peptide-based cellular delivery of nucleic 
acid cargos. We will discuss different mechanisms of entry, the intracellular fate of the 
cargo, correlation studies of uptake versus biological activity of the cargo as well as 
technical problems and pitfalls.  
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1. Introduction 

Today there is a fast growing number of nucleic acid-based strategies to modulate a vast variety of 
cellular functions (for a review see: [1,2]). Several classes of oligonucleotides like aptamers, 
transcription factor-binding decoy oligonucleotides, ribozymes, triplex-forming oligonucleotides 
(TFO), immunostimulatory CpG motifs, antisense oligonucleotides including peptide nucleic acids 
(PNAs), small interfering RNAs (siRNAs) and antagomirs have attained much interest as a research 
tool owing to their highly specific mode of action. Even more important, these oligomeric nucleic 
acids do have a considerable potential to be used as therapeutics. Figure 1 provides an overview of 
such oligonucleotides and their target sites within the cell. 
 

Figure 1. Cellular target sites of oligonucleotides with therapeutic potential. Aptamers, 
small oligonucleotides derived from an in vitro evolution process called SELEX, can 
virtually be targeted to any given extra- or intracellular structure. Oligonucleotides 
containing a CpG motif interact with toll-like receptor 9 (TLR9) and trigger an 
immunostimulatory response. Antisense and decoy oligonucleotides as well as siRNAs can 
modulate gene expression by interacting with RNA or proteins either in the cytoplasm or in 
the nucleus. TFOs are directed against genomic DNA and, like plasmids, have to reach the 
nucleus to exert their biological effect. 

 
Although quite different in their mode of action, oligomeric nucleic acids have several features in 

common. Essentially, they can either be rationally designed (e.g. antisense oligonucleotides or 
siRNAs) or selected in vitro (e.g. aptamers or ribozymes). These are major advantages compared to 
traditional small molecule drug screening approaches. In general, these macromolecules show 
remarkably high specificity for their targets accompanied by low probability of generating side-effects. 
Additionally, nucleic acids are virtually non-immunogenic compared to protein- or peptide-based 
approaches. On the downside, considerations like stability, bio-availability and pharmacokinetics come 
into play. Though, these drawbacks can be resolved by appropriate chemical modifications. Nuclease 
resistance for instance can be achieved by alkyl modifications at the 2'-position of the ribose. In recent 
years, valuable progress has been accomplished through the development of novel chemically 
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modified nucleotides with improved properties such as enhanced serum stability, higher target affinity 
and low toxicity. Pharmacokinetic parameters can be rationally improved by increasing the molecular 
size, e.g. by site-specific conjugation of polyethylene glycol (PEG). In spite of this, the major obstacle 
for turning oligomeric nucleic acids into drugs is efficient cellular delivery. Due to this limitation, for a 
long time nucleic acids were not considered to have a significant therapeutic prospective, though their 
efficiency has been proven by countless in vitro studies. This obvious dilemma urgently calls for safe 
and efficient nucleic acid delivery systems.  

Essentially, the nucleic acid delivery techniques available today comprise various physical and 
chemical methods, viral and non-viral vector systems, and uptake of naked nucleic acids (Figure 2). 
They all have certain advantages and disadvantages and might only be appropriate if particular 
requirements are fulfilled. In general, physical and chemical methods like microinjection, 
electroporation or particle bombardment as well as calcium phosphate coprecipitation are highly 
efficient but rather harmful for the target cells and lack the potential to be applicable in vivo. There is 
general consent that viral vector systems are the most efficient vehicles to deliver nucleic acids into 
cells. However, despite substantial efforts over the last 15 years, up to now research has failed to 
develop suitable and especially safe viral systems (for a review see: [3,4]). On the contrary, the field 
has experienced several setbacks causing important clinical trials to be put on hold [5-8]. As a result of 
the difficulties encountered with these viral vectors (e.g. mutagenesis and immune responses) much 
attention was paid to the development of allegedly safer non-viral delivery systems. This conception 
includes an assortment of fairly unrelated approaches yielding various degrees of enhanced cellular 
uptake of nucleic acids. Currently, liposomes and cationic polymers are used as a standard tool to 
transfect cells in vitro. These approaches are yet characterised by a significant lack of efficiency 
accompanied by a high level of toxicity rendering them mostly inadequate for in vivo applications. 

 
Figure 2. Comparison of delivery efficiency versus toxicity for various DNA transfection 
methods. Figure adapted from [9]. 
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Peptides acting as shuttles for a controlled cellular delivery of nucleic acids represent a new and 
innovative concept to bypass the problem of poor bio-availability and clinical efficacy of such 
macromolecules. The idea of using peptides as carriers goes back some 20 years when two groups 
discovered by chance that the HIV-1 transactivating protein Tat is taken up by mammalian cells 
[10,11]. Just a few years later, the Antennapedia homeodomain of Drosophila melanogaster was 
shown to act similarly [12]. Later on, it could be shown that peptides derived from Tat and 
Antennapedia as well as other proteins are capable of transporting macromolecular cargo molecules 
into cells [13-15]. Based on such promising results, a rapidly expanding field focusing on the so-called 
cell-penetrating peptides (CPPs), also referred to as protein transduction domains (PTD) began to 
develop.  

In this review we will report about recent progress in the field of peptide-mediated delivery of 
nucleic acids, highlighting the development of several new CPPs, and discuss mechanisms for cellular 
internalisation. Additionally, we will present own data on peptide-mediated siRNA delivery and 
briefly discuss them in the given context. 

2. General Properties of CPPs 

Up to now numerous CPPs have been described. According to their origin, they can be grouped into 
three classes. The first group comprises CPPs originating from naturally occurring proteins (‘protein 
derived CPPs’), the second consists of ‘chimeric CPPs’ composed of different protein domains and the 
third class encompasses so-called ‘model CPPs’ which were developed according to structure-function 
relationships without any homology to natural sequences. Common to all known CPPs are basic amino 
acids causing a net positive charge at physiological pH. In a first attempt to define a peptide as a CPP 
the following definition was established [16]: (I) CPPs consist of less than 30 amino acids; (II) CPPs 
are internalised by cells in a seemingly receptor- and protein-independent process, even at 4 °C; (III) 
CPPs are able to mediate the delivery of a cargo. As will be discussed later on, this definition is no 
longer appropriate. At present, a peptide is considered a CPP, if it shows the ability to ‘cross’ a 
biological membrane. A cargo can be bound to the CPP covalently or non-covalently. Covalent 
attachment can be achieved either by expression as a fusion construct or by chemical coupling (for a 
review see: [17]). In some cases, cargo and carrier bind each other non-covalently through ionic 
interactions. Depending on the nature of both binding partners assembly of nanoparticles may occur.  

3. Mechanism of cellular translocation 

Despite the widespread interest in peptide carriers the mechanisms underlying the cellular 
translocation of CPPs are poorly understood and subject to controversial discussions (Figure 3). Early 
work relied upon fluorescence imaging or flow cytometry analysis of chemically fixed cells to 
examine intracellular localisation of fluorescently labelled peptides in the absence or presence of 
cargo. According to these experiments peptides seemed to be internalised very rapidly within minutes 
even at 4 °C. From such observations it was concluded that CPPs penetrate cell membranes by an 
energy-independent mechanism [18-22]. Although it had been reported quite early on that certain 
fixation procedures may cause artefacts leading to an overestimation of the cellular uptake rates [23-
25] the dimension of this problem was not commonly recognised until a side by side comparison of 
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fixed and living cells was published [26]. The authors convincingly demonstrated that the distribution 
pattern of Tat48-60 and R9 as well as their conjugates was completely different in living versus fixed 
cells. They stress that an important source of misinterpretation arises from experimental difficulties to 
distinguish cell surface-associated CPP from CPP internalised into cytoplasmic compartments. Most 
notably it could be shown that endocytotic transport is a key component of the internalisation process 
of a Tat derived peptide [26] and penetratin [27]. Prior to endocytosis CPPs interact electrostatically 
with the extracellular matrix of the cell surface mostly through binding to negatively charged 
glycosaminoglycans, i.e. heparan sulfate proteoglycans [28-31]. 

 
Figure 3. Principles of peptide-based nucleic acid delivery systems. Interaction of CPP 
and cargo is either achieved by covalent attachment or by non-covalent complexation 
through mainly ionic interactions. In case of non-covalent complex formation, a further 
assembly of cargo/carrier complexes occurs, leading to the formation of nanoparticles. In 
case of covalently joined molecules a similar scenario is less likely, yet cannot be 
excluded. Prior to the translocation process the particles attach to the cell surface by ionic 
interactions of positively charged CPP residues with negatively charged membrane 
components. Subsequently, complexes are taken up by directly penetrating the cell 
membrane or by an endocytotic pathway. Recent data suggest that the main uptake route is 
endocytosis. Though, direct penetration cannot be excluded and may occur simultaneously 
(depicted by dashed, grey arrows). Once inside the cell, the cargo has to reach its target. 
Depending on the mechanism of uptake several scenarios like ‘endosomal escape’ are 
feasible. Red: negative charges, blue: positive charges, green: hydrophobic domains. 
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Eukaryotic cells take up macromolecules and particles from the surrounding medium by a process 
called endocytosis. Besides phagocytosis, which is only relevant for specialised cells like 
macrophages, this process occurs in all cells by at least four basic mechanisms: macropinocytosis, 
clathrin-mediated endocytosis, caveolin-mediated endocytosis, and clathrin- and caveolin-independent 
endocytosis (Figure 4; for a review see: [32,33]). These mechanistically diverse and highly regulated 
endocytic pathways contribute to control complex physiological processes, such as hormone-mediated 
signal transduction, immune surveillance, antigen-presentation, and homeostasis. The best-studied 
endocytosis pathway is the clathrin-coated pit pathway (for a review see: [34]). Many receptors and 
their associated ligands cluster into clathrin-coated pits by association with clathrin adaptor proteins 
such as the four-subunit complex AP2. Clathrin adaptors in turn bind to the clathrin lattice which is 
thought to provide the force required to deform the membrane into a curved bud. The large GTPase 
dynamin is then involved in pinching off the coated pit to form a clathrin-coated vesicle. Such vesicles 
are then uncoated by the chaperone hsc70 and the DNA-J domain co-chaperone auxillin. Uncoated 
endocytic vesicles then fuse with one another and with early endosomes in a reaction requiring the 
small GTPase Rab5. Eventually, early to late endosome transport may be mediated by small vesicular 
intermediates. Late endosomes are then thought to fuse with pre-lysosomes to form ’hybrid’ organelles 
which mature back into lysosomes through sorting and fission.  

 
Figure 4. Multiple portals of entry into the mammalian cell. The endocytic pathways 
differ with regard to the size of the endocytic vesicle, the nature of the cargo (ligands, 
receptors and lipids) and the mechanism of vesicle formation. Figure adapted from [35]. 
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The second best studied pathway depends on caveolin (for a review see: [36]). Oligomerised 
caveolin associates at the plasma membrane with proteins, e.g. PTRF-cavin [37], and lipids to form 
stable functional units referred to as caveolae. This caveolar unit is also maintained as a stable 
structure upon endocytosis. Budded caveolae can fuse either with the caveosome in a Rab5-
independent manner or with the early endosome in a Rab5-dependent manner. Caveolae remain at the 
plasma membrane for long periods, but various agents can stimulate their internalisation. These 
include the SV40 virus as well as sterols and glycosphingolipids which use caveolae for entry into 
cells and stimulate caveolar budding. Despite the different agents used to stimulate caveolar 
internalisation there are common mechanisms involved in these pathways with a crucial role for 
dynamin, Src kinases, protein kinase C and actin recruitment. Besides these two pathways, there are 
other less well-defined pathways (i.e. clathrin- and caveolin-independent, lipid-raft endocytosis) that 
differ from the routes described above [32].  

As most of these pathways have several characteristics in common, it remains complicated to 
precisely determine which endosomal route is followed [38-40]. This in part can be attributed to the 
fact that endocytosis itself is far from being understood in detail. Differentiation between alternative 
endocytosis pathways involved in cellular uptake of cargo molecules can be accomplished by the use 
of small molecule inhibitors or by colocalisation studies with specific markers following fluorescence 
microscopy or cell fractionation. As the fate of the cargo (e.g. degradation in lysosomes, storage in 
caveosomes or transport to the Golgi complex or the ER etc.) largely depends on which endocytosis 
pathway is involved in uptake, it would be highly desirable to induce internalisation via a particular 
pathway in order to better control trafficking through the cell. Currently, this is not easily achieved. 
However, there are certain parameters which influence the mode of uptake like particle size, the 
interaction of the complexes with cell surface components as well as the physiological state of the 
target cells. In that respect there are several options to manipulate cell trafficking.  

Based on the findings described above, many groups began to re-examine their data. However, 
despite considerable technical improvements, there are still puzzling controversial results concerning 
the exact mechanism of CPP uptake. Though in most cases endocytosis has been suggested to be the 
main route of internalisation, substantial difficulties are encountered identifying the exact pathway. 
Recent studies indicate that the uptake mechanism of CPPs can be influenced by the attachment of 
cargos. For example, Richard et al. [26,41] reported a co-localisation of Tat48-59 with markers of 
clathrin-mediated endocytosis, whereas Fittipaldi et al. [42] found a caveolae/lipid raft-dependent 
process for a Tat-GFP fusion protein and Wadia et al. [43] described a macropinocytotic uptake 
pathway for a fusion construct of Tat peptide with Cre recombinase.  

To avoid the complexity inherent to cell culture-based experiments, biophysical investigations of 
CPP/membrane interactions with different model membranes were performed. According to these kind 
of studies, a direct penetration of several CPPs through the lipid layer was proposed [44-48]. However, 
it is highly problematic to transfer these data to the cellular level, as natural membranes are composed 
of a heterogeneous mixture of proteins and lipids including distinctive microdomains such as lipid rafts 
(microdomain enriched in cholesterol and sphingolipids [49]). What is even more important, cells are 
surrounded by an extracellular matrix consisting of miscellaneous proteins and receptors. Thus, it is 
obvious that simple model membranes do not reflect this situation. Nevertheless, such studies could in 
part mimic processes taking place at endosomal membranes and might help to understand how CPPs 
escape from these vesicles.  
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Taken together, it has to be concluded that the precise mechanism of internalisation remains elusive 
and strongly depends on the properties of both CPP and cargo as well as on the transfection conditions 
and the cell lines used [50-54]. Furthermore, it is reasonable to speculate about multiple pathways 
involved in cellular entry and that when blocking one of them an alternative pathway may become 
active [54].  

4. Properties of selected CPPs 

In the following section we will briefly describe main features of selected CPPs. In the first part 
examples of ‘classical’ CPPs are given. The second part highlights more recent developments in the 
field. There, a selection of several new peptide sequences and concepts will be presented. Additional 
information on the most important CPPs can be found in a number of reviews [55-59]. Lochmann et 
al. [60] give a list of studies concerning peptide-mediated delivery of oligonucleotides and a more 
comprehensive description of the cellular delivery of bioactive cargos is provided by Dietz et al. [61]. 
Järver et al. recently reported on the most recent applications of CPPs for the regulation of gene 
expression [62]. Table 1 and 2 give an overview of selected peptides. 

Table 1. Sequences of selected classical CPPs. 

Peptide Sequence Reference
Tat48-60 GRKKRRQRRRPPQ [20] 
penetratin (Antp43-58) RQIKIWFQNRRMKWKK  [63] 
transportan  GWTLNSAGYLLGKINLKALAALAKKIL  [64] 
TP10  AGYLLGKINLKALAALAKKIL  [65] 
Oligoarginine (R8) RRRRRRRR  [22,66] 
MAP KLALKLALKALKAALKLA  [67] 
MPG GALFLGFLGAAGSTMGAWSQPKKKRKV  [19] 
MPGα GALFLAFLAAALSLMGLWSQPKKKRKV [68] 

Table 2. Sequences of selected new CPPs. 

Peptide Sequence Reference 
hCT9-32-br LGTYTQDFNK*FHTFPQTAIGVGAP 

           (-AFGVGPDEVKRKKKP; attached to K*) 
[69] 

SAP (VRLPPP)3 [70] 
S413-PV ALWKTLLKKVLKAPKKKRKV [71] 
mPrPp MANLGYWLLALFVTMWTDVGLCKKRPKP [72,73] 
bPrPp MVKSKIGSWILVLFVAMWSDVGLCKKRPKP [73,74] 
M918 MVTVLFRRLRIRRACGPPRVRV [54] 
CPP5s VPMLK, PMLKE (human), VPTLK (mouse), 

VPALR (rat) 
[75] 

EB1 LIRLWSHLIHIWFQNRRLKWKKK [76] 
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4.1. Classical CPPs 

HIV-1 Tat and derivatives  

The ability of the HIV-1 transactivator protein (Tat) to penetrate cellular membranes was first 
discovered in 1988 [10,11]. Since then, numerous reports have described a successful intracellular 
transport of several macromolecular cargos, including entire proteins like β-galactosidase or 
horseradish peroxidase [13,15], covalently attached to this protein or its fragments (for a recent review 
see: [77-80]). In vivo, these cargo proteins were found in an enzymatically active form in cells of 
several organs including the brain. By testing different truncated versions of Tat, Vives et al. [20] 
revealed that Tat48-60 had the highest transfection efficiency. An even shorter peptide almost 
exclusively composed of basic amino acids (Tat49-57) proved to be essential and sufficient for nuclear 
import in mammalian cells. Here, the guanidinium group was shown to be superior to other cationic 
groups in the sequence [81]. Conjugates of Tat with proteins [13,15], peptides [82-84], PNA [85], 
various classes of oligonucleotides [86-89], and siRNA [90] have been shown to translocate into cells. 
Moreover, the transport of non-covalently bound plasmid DNA [91-93], liposomes [94-96], and even 
adenoviral particles [97] has been demonstrated.  

Penetratin  

Penetratin, formerly termed pAntp43-58, is a peptide derived from the third helix of the Drosophila 
melanogaster Antennapedia homeodomain protein [63,98]. It is one of the most widely investigated 
CPPs exerting low toxicity and a high translocation rate. As for Tat, its translocation efficiency 
strongly depends on certain basic residues. In spite of this, retro- and enantio-modified versions 
showed comparable properties in earlier studies [18,99], which has been interpreted as evidence for a 
receptor-independent uptake mechanism. In contrast to this, Báránye-Wallje et al. recently presented 
convincing data that penetratin is not able to directly traverse a number of lipid bilayer model 
membranes [100]. According to this study, cellular uptake of penetratin is supposed to occur via 
endocytic pathways probably initiated by electrostatic interactions with cell surface molecules. This is 
also in accordance with in vitro studies showing that the cellular internalisation process is temperature- 
as well as energy-dependent and can be influenced by various endocytosis inhibitors [27,31]. 
Meanwhile, there are numerous reports on the cellular delivery of covalently attached cargos like 
proteins or peptides [101-103] and oligonucleotides including PNAs and siRNAs [85,87,104-108]. 
Promising results were recently achieved with a modified version of penetratin concerning the 
endosomal release of internalised siRNA [76] and with the attachment of a hexaarginine (R6) to the N-
terminus of penetratin concerning the delivery of a splice correcting PNA in the absence of 
endosomolytic agents [109].  

Transportan and derivatives  

Transportan, a chimeric 27 amino acid peptide, was originally developed by the group of Langel 
[64]. It is composed of the N-terminal amino acids of the neuropeptide galanin, coupled to mastoparan, 
a peptide from wasp venom which strongly interacts with membranes [64]. Trimming down 
transportan led to TP10, a peptide with 21 residues displaying similar properties as the initial peptide 
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[65]. Transportan and some of its analogues were shown to deliver proteins up to 150 kDa [110], 
plasmids [111] and oligonucleotides, including siRNAs [104] and PNAs [112-114]. For the latter 
application it was shown in two independent comparative studies that transportan is even more potent 
in delivering a conjugated PNA for splice correction than penetratin or Tat [105,115]. To elucidate the 
mechanism of translocation, Padari et al. studied the cellular uptake of biotinylated transportan or 
TP10 complexed with labelled avidin conjugates by transmission electron microscopy and confocal 
laser scanning microscopy [116]. The internalisation process was temperature-dependent (i.e. strongly 
inhibited at 10 °C and blocked at 4 °C) and complexes were predominantly observed in endocytotic 
vesicles of different morphology and size. 

Oligoarginines 

Microscopic studies performed by Futaki et al. [22] revealed that oligoarginines and other arginine-
rich peptides are efficiently taken up by cells. The molecule with the highest efficiency turned out to 
be octaarginine (R8), whereas peptides of < 5 and > 12 arginine residues showed only negligible 
translocation [117]. Studies with several branched versions of oligoarginine indicated that the number 
of arginine residues is much more important than the structure per se [118]. A direct comparison of 
nonamers composed of arginine, histidine, lysine or ornithine revealed that arginine residues were 
most effective in penetrating the plasma membrane because of their guanidinium group [66,81]. It was 
shown that an apoptosis-inducing peptide conjugated to R8 was active in HeLa cells after translocation 
[119]. Furthermore, modified oligoarginines were used for non-covalent delivery of plasmids [120] 
and siRNAs [121]. Nakase et al. [122,123] demonstrated a macropinocytosis-dependent internalisation 
pathway for R8. These data are based on the observation that ethylisopropylamiloride (EIPA), a 
macropinocytosis specific inhibitor, and the F-actin polymerisation inhibitor cytochalasin D 
significantly suppressed uptake. Additionally, activation of Rac protein and rearrangement of the actin 
cytoskeleton was observed within a few minutes after incubation with the peptide. Interestingly, flow 
cytometry analysis revealed that R9 was internalised to a similar degree as penetratin, but to a 
significantly larger extent than Tat peptide [124].  

Model amphipathic peptides 

Model amphipathic peptides (MAP, also termed KLA peptides) are derived from the α-helical 
amphipathic model peptide KLALKLALKALKAALKLA, designed by Steiner et al. [125]. This 
peptide has been shown to internalise by multiple, non-specific, energy-dependent and -independent 
processes into several types of cells [67]. Additionally, transport of covalently attached short peptides 
and PNAs as well as transport of oligonucleotides attached either covalently or non-covalently into 
mammalian cells was reported. [67,126,127]. Using a splice correcting PNA and different KLA 
analogues, Wolf et al. further analysed the influence of charge and structure-forming properties of the 
conjugate on the antisense effect [128]. Various constructs of unstructured, non-amphipathic or 
negatively charged peptides with the same PNA showed less or no activity at all. Moreover, replacing 
arginine residues by lysines did not improve antisense activity and a cleavable disulfide was not 
required for efficient splice correction, whereas a localisation of the peptide at the N-terminus of the 
PNA was crucial for attaining antisense activity. The predominant portion of PNA-KLA conjugates 
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seems to be taken up by endocytosis, as coadministration of lysosomotropic agents [128] as well as 
photochemical treatment [129] promoted a significant enhancement of the observed antisense effects.  

MPG and Pep families 

MPG is a 27 amino acid peptide composed of a hydrophobic domain derived from the N-terminal 
fusion sequence of the HIV-1 glycoprotein 41 and a hydrophilic domain derived from the nuclear 
localisation sequence (NLS) of the SV40 large T-antigen which are linked by a 3 amino acid spacer 
[19]. Unlike most CPPs described today, this peptide does not need covalent attachment of the cargo 
molecule. Complex formation with the cargo occurs through ionic interactions of the positively 
charged NLS sequence and negative charges of the cargo. In addition, depending on the nature of the 
cargo, hydrophobic interactions may be important as well. Furthermore, hydrophobic peptide/peptide 
interactions lead to the formation of nanoparticles. Fluorescence measurements revealed apparent 
dissociation constants in the low nanomolar range for nucleic acid/peptide interactions with an 
approximately 20-fold excess of positive charges. MPG was shown to deliver DNA oligonucleotides, 
plasmid DNA, and siRNA into mammalian cells [19,130,131]. More recently, different derivatives of 
MPG have been described [68,132-135]. One peptide, termed MPGα differs by 6 amino acids in the 
hydrophobic part. As opposed to the original peptide, these modifications lead to a predominantly α-
helical structure, whereas MPG is non-ordered in water and adopts a β-sheet-like structure in contact 
with oligonucleotides or phospholipids [19,68]. Both peptides show the ability to insert spontaneously 
into model membranes. This phenomenon has been proposed to be a prerequisite for their cell-
penetrating activity. Further variations in the hydrophobic part of the original MPG sequence led to the 
Pep-family. These peptides were designed for the delivery of proteins, peptides [132] and PNA 
analogues [133,134]. For all peptides except MPGα a non-endosomal entry mechanism has been 
proposed [136,137]. 

4.2. New peptides and concepts 

Human calcitonin and derivatives  

Human calcitonin (hCT) is a 32 amino acid peptide hormone involved in the regulation of calcium 
homeostasis. It is therapeutically used in osteoporosis and other bone-related diseases (for a review 
see: [138]). Remarkably, direct application of hCT to the nasal epithelium has been proposed to be as 
effective as intravenous injections [139]. The investigation of several shorter versions of hCT revealed 
that the shortest fragment taken up by cells is hCT9-32, probably via endocytosis [140]. Attachment of 
the SV40 large T-antigen NLS to the side chain of Lys18 in hCT9-32 resulted in a branched peptide 
(hCT9-32-br) which showed the ability to promote internalisation of plasmids into human 
neuroblastoma cells by formation of complexes through non-covalent interactions [69]. The rate of 
transfection was significantly higher than the efficiency observed for the commercial transfection 
reagent LipofectamineTM (LF) or a linear fusion of hCT9-32 to the SV40-NLS. The mechanism of 
uptake has not yet been resolved in detail, however, studies with labelled hCT9-32-br indicate lipid raft-
mediated endocytosis [141]. As the performance of hCT9-32-br for many other cell lines was rather 
low, this concept was further optimised leading to several branched hCT-derived peptides [142]. The 
efficiency of transfection after non-covalent complexation with plasmids was highest for a peptide 
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with a branch consisting of two SV40-derived NLS called hCT9-32-2br and for hCT18-32-k7 in which 
both parts were truncated to form a peptide with only 28 amino acids. Furthermore, cell line specific 
differences became obvious in this study as hCT9-32-2br showed the highest transfection rate for HEK 
293 cells and rat hippocampal neurons whereas hCT18-32-k7 was more efficient for neuroblastoma cells 
and primary chicken cardiomyocytes. Currently, these branched peptides are tested for non-covalent 
delivery of aptamers and siRNA [142]. Additionally, a couple of analogues with modifications or D-
amino acids were synthesised, some of which showed improved metabolic stability in cell culture, 
human blood [143] and also in rats [144]. 

ARF-protein derived peptide M918 

M918 consists of 22 amino acids including seven arginine residues and was derived from the C-
terminus of the tumor suppressor protein p14ARF by inverting a short part [54]. Its cell-penetrating 
properties were found only by chance when it was applied as a control peptide for activity studies of 
the ARF protein. FITC-labelled streptavidin was taken up by cells after formation of non-covalent 
complexes with 5 µM M918. The authors were able to reduce this relatively high concentration to 
1 µM and achieve much higher degrees of protein uptake, when they biotinylated the peptide to 
improve streptavidin binding. Additionally, the peptide also delivered conjugated PNA into cells. At a 
concentration of 5 µM peptide/PNA-conjugate the delivery rate was significantly higher for M918 than 
for penetratin or TP10 [54], as well as for Tat or transportan previously analysed with the same assay 
[115]. Chloroquine led to a slight enhancement of the biological effect mediated by the M918/PNA-
conjugate and application of the endocytosis inhibitors cytochalasin D and wortmannin suggested that 
micropinocytosis was involved in the cellular uptake into HeLa cells [54]. Colocalisation studies of 
fluorescently labelled M918 indicated that the peptide takes different entry routes in different cell 
lines. As no significant toxicity was detected up to concentrations of 25 µM M918, and neither any 
perturbation of the plasma membrane, nor an influence on the cell proliferation was measured, this 
peptide may have a potential for in vivo studies. 

Sweet arrow peptide  

The sweet arrow peptide (SAP) is derived from the proline-rich N-terminal repetitive domain of 
gamma-zein, a storage protein of maize which has been shown to interact with membranes [145,146]. 
Polyprolines adopt a well defined helical structure (polyproline II) in water, conserved even if the 
peptide contains only 50 % proline residues. Therefore, it is possible to generate an amphipathic helix 
by introducing polar amino acids at certain positions. First comparative studies showed that the 
sequence (VRLPPP)3 named SAP was most efficient for cellular uptake [70], albeit at rather high 
concentrations (50 µM) of the peptide. For its cellular entry a non-classical, clathrin-independent 
pathway through lipid raft-mediated endocytosis was proposed [141]. With the aim to increase the 
hydrophobicity, SAP was either modified with myristic acid [147], or one proline residue was replaced 
by gamma-(dimethylsila)proline [148]. As desired, these modifications led to an increase of the 
cellular uptake by a factor of 3 and 20, respectively. Moreover, a fully protease resistant version (i.e. 
all-D SAP) was synthesised in order to increase the stability of the peptide [149]. This analogue 
retained the cell-penetrating activity and hence was investigated in a preliminary uptake study in mice 
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[150]. In fact, 1 h after intraperitoneal injection of 400 nmol of the peptide, uptake in leukocytes and in 
several organs such as kidney, liver and spleen was demonstrated. Although no bioactive cargo has 
been introduced so far, this study emphasised the use of D-amino acids for in vivo approaches which is 
additionally corroborated by the fact that no cytotoxicity was detected up to at least 1 mM of all SAP-
analogues.  

Dermaseptin derived peptide S413-PV 

S413-PV is composed of 13 amino acids derived from the dermaseptin S4 peptide and the SV40 
large T-antigen NLS. Dermaseptins constitute a large family of polycationic antimicrobial peptides 
(28–34 amino acids) which are expressed in the skin of certain tree frogs [151-153]. The peptides 
adopt an amphipathic α-helical structure in apolar solvents [154]. This structural feature was shown to 
mediate cell permeabilisation upon specific interactions with phospholipids in cellular membranes 
[153,155-157]. At first it had been proposed that S413-PV penetrates intact HeLa cells by a non-
endocytotic process and accumulates in the nuclei [71]. However, later, the peptide was reported to be 
internalised by endocytosis at low concentrations (0.2 to 0.4 µM) and independently of endocytosis at 
high concentrations (1 µM) [52]. Further biophysical studies to compare S413-PV and two analogue 
peptides revealed that the formation of helical structures upon peptide/lipid interaction depends on the 
order of amino acids in the peptide [158]. The authors suggested that the higher content of helical 
conformation allows direct penetration of the cellular membrane. Comparative confocal microscopy of 
the uptake of these peptide analogues into HeLa cells confirmed the correlation of helical 
conformation and non-endocytotic uptake as demonstrated by the equal distribution of the peptide 
throughout the cytoplasm and nucleus versus a vesicular pattern observed by Mano et al. [159]. 

Prion protein derived peptides  

Cell-penetration properties were reported for a peptide derived from the unprocessed N-terminus of 
mouse prion protein (mPrPp, [72]). In this study, mPrPp alone or coupled to fluorescently labelled 
avidin was internalised into mouse neuroblastoma cells N2a, showing both diffuse and punctuate 
fluorescence in the cytosol after 1 – 3 h of incubation. Recently, cellular uptake was also shown for a 
peptide derived from bovine prion protein (bPrPp) [73,74,160]. For both prion derived peptides, 
membrane perturbation effects were analysed in a number of vesicle model systems. The results 
indicated a peptide-induced structural defect in the membrane similar to a pore, though the overall 
integrity of the vesicles was not affected [73]. Furthermore, macropinocytosis was suggested as the 
main mechanism of uptake for bPrPp triggered by binding to cell-surface proteoglycans [161]. The 
prion derived peptides are known to perturb the cellular membrane, but no detailed toxicity study has 
been published so far. In a non-covalent complexation approach, bPrPp proved competent for the 
delivery of plasmid-DNA [161] as well as siRNA [76] into cells in a bioactive form. 

Cell-penetrating pentapeptides (CPP5) 

Ku70, a protein that plays an important role in DNA repair, was found to bind Bcl-2-associated X 
protein (Bax), a member of the Bcl-2 family of proteins, thereby inhibiting its apoptosis activating 
function [75]. Several pentapeptides (Bax-inhibiting peptides) derived from Ku70 of different species 
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retained this inhibiting property and additionally featured cell-penetrating activities [162]. Human 
peptides with the sequences VPMLK and PMLKE as well as a sequence from the mouse (VPTLK) and 
the rat (VPALR) were tested for cell-penetration. To date, such pentapeptides (termed CPP5s) can be 
categorised as the shortest CPPs [102,163]. In order to avoid the Bax-inhibiting property, some amino 
acids were exchanged or inverted producing CPPs with the sequences IPMIK, KLPVM and KLPVT 
which were non-toxic up to concentrations of 1 mM [75]. Uptake of the CPP5s into a range of cell 
lines and also into primary cells was demonstrated by FACS and confocal microscopy. The mode of 
entry into the cell, however, as well as a potential involvement of cellular receptors is still unknown. 
So far, tests with endocytosis inhibitors have only been performed at an extremely high concentration 
of 100 µM FAM-labelled peptide showing no significant blockage of uptake. Cell culture studies at 
low temperatures led to a prominent reduction of cellular import but not to complete inhibition thus 
pointing to the involvement of both energy-dependent and -independent mechanisms. VPTLK and 
KLPVM were fused to the C-terminus of GFP-protein and successfully carried the cargo into HeLa 
cells [75].  

Polymers and complex systems 

In addition to ‘simple’ CPP-based delivery systems composed of single peptides there is a trend to 
develop systems of higher complexity. A main goal of such approaches is to generate nanoparticles 
with defined properties (e.g. size and charge distribution) as well as to provide cell-specific 
functionalities which are especially important for in vivo use. Since a comprehensive description of 
recent developments would be far beyond the scope of this article, we can only give a few examples. 
In general, there are attempts to combine peptides with cationic liposomes [94,96,164-168] or 
polyethyleneimine (PEI) [111]. Other applications are aimed towards the synthesis of high or low 
molecular weight branched polymers and/or peptides [165,169-173] or dendrimers [174-176]. Recent 
developments of even more complex systems are particularly promising with respect to in vivo 
delivery [177-181]. 

Three advanced approaches will be described in more detail below. The first is an example of a 
branched polymer consisting only of alternating histidines and lysines. Starting from a linear HK-
peptide [182], HK-polymers with a varying number of branches were developed that showed high 
serum stability and efficiently delivered plasmids not only into cultured cells [170,183] but even into 
tumours using mouse models [184]. Interestingly, a different type of branching proved specifically 
advantageous for siRNA delivery [172]. A second example are Tat-grafted PEGylated nanocarriers. 
These carriers have been successfully applied for nucleic acid or drug delivery in several cell types and 
also in mouse models [178]. In order to selectively direct the delivery to cells with certain surface 
antigens (e. g. to tumour cells) antibodies can be conjugated to the PEG moieties (for a review on Tat-
modified nanocarriers see [80]). One of the latest development of Torchilin and his group is the 
combination of Tat and pH-sensitive hydrazone bond-based PEG-phosphatidylethanolamine-
conjugates that undergo self-assembly to form micelles in aqueous solutions. When the pH is lowered, 
these nanocarriers lose their PEG coating resulting in exposure of Tat. Therefore, acidic 
microenvironments like those found in tumours or ischemic tissues are specifically targeted and the 
nanocarriers and their cargo can enter the target cells [178]. Moreover, the hydrolytic stability can be 
adjusted by selection of particular hydrazone substituents [177]. A third example describes an equally 
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complex and versatile delivery system, the ‘multifunctional envelope-type nano device’ (MEND). This 
DNA packaging approach was developed according to a rational strategy that takes into account the 
stability of particles, their entry into the cell as well as the release of the cargo into the cytoplasm or 
the nucleus. Those particles resemble very much an enveloped virus with a polycation-condensed 
DNA core and a lipid envelope [185]. In addition, this modular system can be changed or 
supplemented to meet different needs such as PEGylation for in vivo studies. Helper lipids like 
dioleoylphosphatidylethanolamine (DOPE) and cholesteryl hemisuccinate (CHEMS) can be integrated 
to promote endosomal release and nuclear import of the cargo, whereas the introduction of R8 or 
stearyl-R8 (STR-R8) into the envelope serves as a trigger for macropinocytosis of the particles 
[179,186]. Different sizes of the particles did not change the mechanism of uptake. Most importantly, 
the efficiency of plasmid DNA delivery of this system was comparable with that of adenovirus without 
inducing any cytotoxicity [179]. Additionally, successful delivery was reported for siRNA [187] and 
antisense oligonucleotides [188] assembled into different types of R8-MEND. The versatility of such a 
modular system was further proved in a study with the aim to specifically target skeletal muscles. For 
this, the heptapeptide IRQ was integrated into the MEND surface. This peptide with the sequence 
IRQRRRR had been discovered by in vivo phage display as a novel ligand for skeletal muscles and 
surprisingly triggered endocytosis of IRQ-MEND via caveolae as opposed to R8-MEND. The authors 
showed that encapsulated siRNA was imported into the cells and readily set free from endosomes only 
if they used a fusogenic lipid envelope for the MEND [189]. In combination with other ligands or with 
the tumour-homing peptides described by Enbäck et al. [190] recognising specific surface antigens, 
MEND and other delivery systems offer the possibility to develop cell-type specific therapeutic 
strategies. 

5. CPP-mediate delivery of nucleic acids 

In the following section we will focus on CPP-mediated cellular transport of oligomeric nucleic 
acids including siRNA, antisense, decoy and triplex forming oligonucleotides. Selected examples of 
the most recent literature will be briefly described. Additionally, examples of plasmid delivery are 
listed owing to their importance as vehicles for intracellular expression of small RNAs. Table 3 to 5 
give an overview of all the approaches illustrated. Another important group of oligomeric nucleic acids 
are aptamers. These small oligonucleotides derived from an in vitro evolution process called SELEX 
are promising therapeutic and diagnostic agents. Yet, to our knowledge there are no convincing reports 
about peptide-mediated delivery of functional aptamers yielding observable biological effects in 
cellular systems.  

5.1. Plasmids 

To date there are many examples of CPP-mediated delivery of plasmid DNA into cultured cells and 
also in vivo. Due to the size of plasmids and the resulting high number of negative charges, only a non-
covalent approach has proved feasible. 

It has been shown that Tat peptides bind to DNA as well as other polyanions to form complexes 
which then interact with the membrane of different cells followed by internalisation through 
endocytosis [91]. According to microscopic studies, Tat peptide/DNA complexes accumulated in 
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acidic vesicles from which they were eventually set free. Applying a similar approach, Ignatovich et 
al. [92] observed moderate reporter gene expression after incubation of cultured cells with Tat 
peptide/plasmid complexes. On the other hand, intravenous injection of such complexes into mice 
yielded only very low expression levels, predominantly in the liver. The distribution of plasmid DNA 
and the expression levels did not differ significantly from those obtained with naked DNA [92]. This 
was attributed mainly to non-specific hepatic uptake of macromolecular compounds as well as rapid 
clearance due to interactions with serum albumin [191,192]. Furthermore, Rudolph et al. [93] 
presented data supporting a non-covalent plasmid DNA complex formation with oligomeric Tat47-57. 
Here, dimers and trimers of Tat47-57 were found to be more efficient than tetramers. Another intriguing 
study compares the potential of high molecular weight forms of Tat and Tat peptides to form stable 
non-covalent cell transfecting complexes with plasmid DNA [193]. This so-called POLYTAT consists 
of a mixture of linear polymers of Tat peptide molecules cross linked by disulfide bridges. The 
diameter of such complexes was determined to be in the range of 200 nm. In contrast, complexes 
consisting of monomeric Tat peptides and plasmid DNA tended to aggregate into much bigger 
particles. POLYTAT yielded about 100-fold increased transfection rates as compared to monomeric 
Tat. This could be further increased by the addition of the lysosomotropic reagent chloroquine to even 
exceed the level of PEI-mediated transfection. The authors hypothesised that POLYTAT promotes the 
formation of more stable complexes that expose free basic amino acids on the surface, thereby 
increasing transfection efficiency [193]. This system has been further developed to form reducible 
layer-by-layer films with plasmid DNA in a self assembly process, which has yet to be tested for 
delivery [194]. Though, the idea to construct a carrier system out of several Tat peptide monomers was 
not new. Some years before, in 2002, it was found that branched peptides containing 8 Tat moieties 
had considerable transfection potential [195]. Further investigations with this branched 8Tat in the 
presence of chloroquine revealed that in different cell lines alternative pathways of intracellular 
trafficking might be relevant [196].  

For R8-mediated plasmid delivery, low transfection efficiencies could be increased by two orders of 
magnitude by the attachment of a stearyl group to the N-terminus [197]. Probably due to the 
amphipathic character, these modified peptides reached the same level of plasmid transfection as LF 
and similar results were obtained for Tat48-60. Here, endocytosis was proposed to be the mechanism of 
uptake. Another example is the peptide MPG that interacts through its positively charged NLS 
sequence with the negatively charged plasmid DNA. Such peptide/nucleic acid complexes have been 
reported to be taken up efficiently by mammalian cells [130]. The non-covalent complexation of the 
prion protein derived peptide bPrPp with plasmid DNA led to endocytotic uptake of the particles and 
protein expression from the plasmid. The expression levels, however, were much lower than measured 
after LF-mediated transfection even with peptide concentrations up to 29 µM [161]. Similarly, none of 
the branched human calcitonin derivatives hCT9-32-2br and hCT18-32-k7 could reach the transfection 
rate of Lipofectamine™ 2000 (LF2000) in the cell lines HEK 293, HeLa, MCT-7, COS-7 and SK-N-
MC or in primary cells. Although the branched peptides were more efficient than Tat48-60, the 
transfection rate was only about 40 % of that seen with LF2000, even when tested in the presence of 
125 µM chloroquine and at the optimal peptide/plasmid charge ratio (30:1). Fluorescence microscopic 
localisation studies led to the conclusion that both branched CPPs delivered the plasmids into all cells 
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via endocytosis with an unsatisfying extent of endosomal escape. Interestingly, the protein expression 
level in neuroblastoma cells was 1.5-fold higher than after LF2000-mediated transfection [142]. 

A novel arginine-grafted polymer for gene delivery with low cytotoxicity was developed by Kim et 
al. [198]. This copolymer consists of two PAMAM moieties separated by PEG and flanked by arginine 
residues. It forms nanosized polyplexes with plasmids that were delivered into various cell lines. The 
precursor polymer lacking the arginines showed only a minor capability to promote gene expression 
from the delivered plasmid, presumably because it cannot escape from endosomes. In contrast to this, 
transfection with the arginine modified polymer led to significantly enhanced gene expression. Based 
upon extensive studies with inhibitors of endocytosis, the authors suggested that this delivery system 
enters the cell via a combination of pathways [198].  

Table 3. Examples for delivery of plasmids. 

Cargo  CPP/delivery system proposed uptake 
mechanism 

Reference 

plasmid DNA MPG  non-endocytotic [130] 
plasmid DNA R8, stearyl-R8, Tat48-60 endocytotic [197] 
plasmid DNA branched 8Tat peptide endocytotic [195] 
plasmid DNA Tat48–60-peptide  endocytotic [91] 
plasmid DNA Tat47–57-oligomers  endocytotic [93] 
plasmid DNA Tat47–57  endocytotic [92] 
plasmid DNA branched 8Tat peptide endocytotic 

(dependent on cell 
line) 

[196] 

plasmid DNA POLYTAT  endocytotic [193] 
plasmid 
DNA/looped DNA 

bPrPp  endocytotic [161] 

plasmid DNA hCT9-32-2br, hCT18-32-k7  endocytotic [142] 
plasmid DNA R-PAMAM-PEG-PAMAM-R 

dendrimer  
endocytotic [198] 

plasmid DNA HK-polymer  endocytotic [183,184] 
plasmid DNA R8-MEND3  endocytotic [179] 

 
From the literature currently available, it seems that for in vivo studies CPP-based polymers or 

complex systems are preferable as opposed to simple CPP approaches. To give an example, the 
histidine/lysine-polymer H2K4b proved to be useful for plasmid delivery into several cell lines as well 
as in mouse models. In comparison to other versions, this 4 branched system had the highest efficiency 
[183]. In vivo, after systemic administration of a luciferase plasmid in mice with a xenograft tumour, 
gene expression was mostly detected in lung and spleen, in addition to tumour tissue. In two models 
with different growth rates the tumour size was significantly reduced when the transfected plasmid 
encoded antitumour genes [184]. 
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As it has been already mentioned in the chapter ‘polymers and complex systems’, the 
‘multifunctional envelope-type nano devices’ (MEND) mimic virus particles [185]. In order to 
compare the transfection efficiency of different MEND types for gene delivery, DNA coding for 
luciferase was used as a cargo. Out of several different combinations of peptides and lipids tested in 
cell culture the highest luciferase activity was achieved with MEND3, which are poly-L-lysine/DNA 
particles coated with endosomolytic lipids and stearyl-R8 (DOPE/CHEMS/STR-R8). Most 
impressively, the efficiency of this transfection method was comparable with that of adenovirus 
without inducing any cytotoxicity. Additionally, the authors present a successful gene delivery into 
hair follicles of mice after topical application at a rate of transfection much higher than achieved with 
LF [179].  

5.2. Antisense oligonucleotides  

By far the most common use of oligonucleotides as inhibitors of gene expression is the so-called 
antisense approach (for a review see: [199,200]). Antisense oligonucleotides are complementary to the 
RNA of interest, therefore specificity is mediated through Watson-Crick base pairing of the 
oligonucleotide with the target RNA. The three principle ways that antisense oligonucleotides have 
been used to disrupt protein production are: (I) the oligonucleotide/RNA duplex may form a substrate 
for endogenous RNase H, leading to mRNA cleavage; (II) the oligonucleotide/RNA duplex may 
prevent the productive assembly of the ribosomal complex or arrest a ribosomal complex already 
engaged in translation, in both cases affecting protein biosynthesis; (III) the oligonucleotide/RNA 
duplex may alter pre-mRNA splicing in the nucleus. Early studies demonstrating antisense 
oligonucleotide-mediated effects (i.e. inhibition of neurite growth via downregulation of the amyloid 
precursor protein [14] or cell death after downregulation of a Cu/Zn superoxide dismutase [201]) were 
performed with penetratin-DNA conjugates. In addition, conjugates of Tat peptide or penetratin  with 
phosphorothioate modified oligonucleotides were effective in antisense inhibition of P-glycoprotein 
expression, a membrane ATPase associated with multidrug resistance in tumour cells [86]. However, 
most peptide-based delivery studies of antisense oligonucleotides were conducted with peptide nucleic 
acids (PNAs) [17,85,105,112,202-205]. PNAs are nucleic acid mimics in which the ribose-phosphate 
skeleton has been exchanged with a simpler polyamide backbone [206]. PNAs bind to both single-
stranded DNAs and RNAs with high affinity and sequence specificity. Furthermore, PNAs bind to 
double-stranded DNAs through the unique mechanism of so-called strand invasion. In addition to their 
remarkable hybridisation properties, PNAs are resistant to nucleases and proteases because they lack 
anomeric carbon atoms and standard amino acids. Owing to their inability to activate RNase H, in 
contrast to unmodified antisense oligonucleotides, PNAs merely act as a steric block. 

The first study showing CPP-mediated antisense activity for a PNA was conducted by Pooga et al. 
[112]. Here, a suppression of the galanin receptor expression in cell culture as well as in a rat model 
was achieved by coupling a corresponding 21mer PNA to penetratin or transportan. Additionally, it 
was reported that a 16mer PNA coupled to transportan and targeted to the HIV-1 transactivator 
responsive region (TAR) RNA was efficiently internalised into cultured cells [203]. Examination of 
the functional efficacy of the PNA-transportan conjugate in cell culture using a luciferase reporter gene 
assay revealed a significant inhibition of Tat-mediated transactivation of HIV-1 long terminal repeat. 
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Furthermore, the conjugate substantially inhibited HIV-1 production in chronically HIV-1 infected H9 
cells [203]. 

More recently, a PNA with an almost identical sequence, disulfide-linked to either transportan or 
the chimeric peptide R6-penetratin was shown to exhibit dose-dependent inhibition of Tat-mediated 
transactivation in a HeLa cell assay when incubated for 24 h [207]. When chloroquine was co-
administered, transactivation activity was already reached within 6 h. Interestingly, fluorescein-
labelled stably linked conjugates of Tat, transportan or TP10 with the same PNA were inactive when 
delivered alone, but attained transactivation inhibition in the presence of chloroquine. The data 
presented indicate that a cleavable bond is not essential for activity in this assay. Moreover, confocal 
microscopy showed that fluorescently labelled CPP-PNA conjugates were sequestered in endosomal or 
membrane-bound compartments of HeLa cells, which varied in appearance depending on the CPP. 
Coadministration of chloroquine was seen in some cases to release fluorescence from such 
compartments into the nucleus, but with different patterns depending on the CPP. These findings of 
Turner et al. [207] are inconsistent with observations of Tripathi et al. [205]. The latter suggested a 
non-endocytotic pathway for the uptake of disulfide-linked conjugates of anti-TAR PNA with several 
CPPs as illustrated by flow cytometry analysis. Additionally, an inhibitory effect on HIV-1 replication 
with IC50 values in the submicromolar range as well as viricidal activity in the low nanomolar range 
for the conjugates tested was reported. Very recently, they evaluated pharmacokinetic properties of the 
anti-TAR PNA-penetratin conjugate in Balb/C mice and concluded that the construct should be 
nontoxic in the concentration range predicted for a future therapeutic use [107]. 

Using an improved purification protocol, Turner et al. [208] synthesised several CPP-conjugated 2’-
O-methyl RNA oligonucleotides (OMe) and OMe/locked nucleic acid (LNA) mixmers as well as 
OMe-phosphorothioate RNA oligomers targeted to HIV-1 TAR. Although all oligonucleotides had 
previously shown activity in the HIV-1 transactivation assay after cationic lipofection [209], no 
activity was detectable for the highly pure conjugates. In agreement with this, only vesicular uptake, 
but no nuclear import was observed by confocal microscopy. In order to generate a net positive charge 
of the conjugates, additional basic amino acids were introduced into the peptide sequence, which did 
not enhance bio-availability of the oligonucleotides either. Interestingly, the rate of uptake was 
dramatically enhanced by addition of free CPP to the conjugates, though still no biological activity was 
observed, indicating a possible lack of endosomal escape [208]. The authors suggested that these free 
CPPs form complexes with CPP-cargo conjugates, which play a significant role in the uptake process 
and concluded that care has to be taken during conjugate purification. Furthermore, this study shows 
that the uptake pattern strongly depends on the cell line analysed. 

Astriab-Fisher et al. [87] described delivery of OMe RNA phosphorothioate oligonucleotides linked 
via disulfide bridge to Tat peptide and penetratin. As a biological readout a splice correction assay 
[210] was applied. This assay uses antisense-mediated rescue of an introduced aberrant splice site 
which otherwise leads to an inactive reporter enzyme, in this case luciferase. Such an approach is 
particularly interesting since the reporter gene activity is turned up rather than turned down upon 
application of the appropriate antisense oligonucleotide. Thus, negative effects caused by experimental 
constraints leading to reduced protein expression, which are not due to the applied nucleic acid, will 
not cause false interpretation of the experimental data. The CPP-oligonucleotide conjugates 
progressively entered cells in a matter of hours and were detected both in cytoplasmic vesicles and in 
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the nucleus [87]. The conjugates targeted to the aberrant splice site, but not the mismatched controls, 
caused an increase in luciferase activity in a dose-responsive manner. These findings are in contrast to 
the results of Turner et al. [208] described above, who could not find a biological effect. This 
discrepancy may simply be due to differences between the two biological assays. 

Phosphorodiamidate morpholino oligomers (PMOs) are similar to DNA with two major structural 
differences: the negatively charged phosphorodiester internucleoside linkage in DNA is replaced by 
the neutral phosphorodiamidate linkage and the five-membered ring of deoxyribose in DNA is 
replaced by the six-membered ring of morpholine. The uncharged and hydrophilic PMOs are highly 
resistant to enzymatic degradation. Using the same splice correction assay as described above, 
Moulton et al. [211] could show that missplicing of pre-mRNA was corrected upon addition of a R9F2-
PMO conjugate into cell culture medium at low micromolar concentrations. Delivery of PMOs to the 
cell nucleus and cytosol required conjugation rather than complexation of peptides to PMOs. 
Furthermore, the arginine-rich peptide R9F2 showed higher transfection rates than conjugates with Tat 
peptide, penetratin or a Tat peptide analogue. The comparison of conjugates with various linkers 
revealed increased antisense activity of R9F2-PMO conjugates with longer spacers whereas variation in 
conjugation chemistry did not result in any differences [211]. Additional studies of the same group 
show inhibition of coronavirus, flavivirus, Dengue virus and West Nile virus replication by CPP-
mediated antisense PMO delivery [212-216].  

Besides the addition of chloroquine, different endosome disrupting strategies have been evaluated 
using the splice correction assay, for example cotreatment with endosome-disruptive peptides [115] or 
photochemical internalisation [129]. However, the most promising results, especially concerning 
future in vivo applications of steric block oligonucleotides, have been achieved with two newly 
developed derivatives of classical CPPs (reviewed in [217]). The modification of oligoarginines with 
non-natural, uncharged amino acids [218] led, amongst others, to the peptide (R-Ahx-R)4, in which 
Ahx represents a six-atom aminohexanoic acid spacer. Abes et al. demonstrated that in contrast to Tat 
or oligoargine, PMO-conjugates of this peptide led to dose-dependent splice correction at low 
micromolar concentrations in the absence of endosomolytic agents. The underlying mechanism for this 
superior activity is not clear yet, as the uptake of (R-Ahx-R)4 constructs was less efficient than the 
uptake of Tat or oligoarginine constructs and also involved endocytotic routes [219]. The second 
peptide is a derivative of penetratin, to which six arginine residues were added at the N-terminus 
(R6Pen). R6Pen-PNA conjugates were shown to inhibit HIV-1 Tat-dependent transactivation [207] as 
well as promote efficient splice correction, in both cases at low concentrations and in the absence of 
endosomolytic agents [109]. Again, uptake of R6Pen-conjugates seemed to involve endocytosis and 
there was nearly a difference in splice correcting activity regardless of the nature of the linker used for 
conjugation, like a stable thioether versus a reducible disulfide linker [217]. CPP-PMO or -PNA-
conjugates are beginning to advance from research tools to therapeutic application. In vivo efficacy has 
already been demonstrated in mouse models for muscular dystrophy and coronavirus infection using 
another variant of the (R-Ahx-R)4-peptide described above ([220] and references therein). 

In this regard, another very interesting approach is followed by Morris et al. [134] using negatively 
charged PNA-like DNA mimics called HypNA-pPNA, which consist of phosphonate analogues of 
PNA and PNA-like monomers on the basis of trans-4-hydroxyl-L-proline [221]. Based on a previous 
peptide from the Pep family [133], the group designed a new CPP, Pep-3, which forms stable non–
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covalent complexes with charged as well as uncharged PNAs [134]. Efficient cellular uptake of an 
antisense HypNA-pPNA was demonstrated via downregulation of cyclin B1 in HeLa cells as well as in 
suspension and primary cells. Furthermore, a mouse xenograft tumour model of human prostate 
carcinoma was used to analyse in vivo delivery of Pep-3/HypNA-pPNA complexes. Intravenous 
administration reduced tumour growth by approximately 20 %, but after intratumoural injection, a 
specific and concentration-dependent inhibition of tumour growth up to 90 % was detected, which 
could be further improved by stabilising the complex through PEGylation at the N-terminus. 

MicroRNAs (miRNAs), a conserved class of small non-coding RNAs, participate in the post-
transcriptional regulation of many cellular processes and are also involved in the emergence of 
tumours or metabolic diseases [222]. Specific miRNA-silencing can be achieved through the 
administration of antisense oligonucleotides, so called antagomirs [223]. Along these lines, Fabani et 
al. investigated the blocking activity of an anti-miR-122 PNA conjugated to the R6-modified penetratin 
described above [108]. Knockdown of miR-122 to a very low level after incubation with the inhibitory 
construct was verified by Northern blot analyses as well as by up-regulation of mRNAs normally 
negatively regulated by miR-122. Strikingly, incubation with an unconjugated PNA which was only 
modified with 4 lysine residues, led to a complete knockdown of miR-122. Cellular uptake of similar 
PNA-Lys oligonucleotides had been observed earlier [207,219], but in these cases was apparently not 
sufficient to obtain the desired biological activity in the nucleus.  

5.3. Transcription factor decoy oligonucleotides and triplex forming oligonucleotides  

Double-stranded transcription factor decoy oligonucleotides are a powerful tool to modulate gene 
expression. Decoys compete with response elements within the promoter regions of genes that bind 
transcription factors. 

Coupling a NFκB specific decoy to either transportan or TP10, Fisher et al. [113] could show 
efficient cellular translocation of this construct going along with an inhibition of interleukin(IL)-1β-
induced NFκB activation and NFκB downstream effects. The coupling was achieved by hybridising a 
PNA to the decoy, which contained a corresponding single strand overhang, while the PNA itself was 
linked to the CPP via a disulfide bridge. Recently, the authors applied this principle to a model of 
Alzheimer’s disease in primary rat glial cells which are much harder to transfect. This resulted in 80 % 
inhibition of the NFκB binding activity leading to a decrease of the IL-6 mRNA expression by 50 % 
[224]. 

Using a similar approach, El-Andaloussi et al. [225] presented uptake experiments comparing the 
effect of a Myc decoy either covalently or non-covalently attached to TP10. The Myc protein had been 
shown to be overexpressed in 50 – 60 % of human tumours known today and, being well 
characterised, represents a favourable target for anticancer therapies. Besides the biological effect, the 
intracellular amount of decoy was determined by fluorescence measurement. Compared to non-
covalent complexation of TP10 and decoy, the oligonucleotide was taken up about 50-fold less when 
hybridised to the TP10-PNA conjugate. However, this did not correlate with biological activity, as the 
conjugate was just 2-fold less effective. Intriguingly, various endocytosis inhibitors had no effect on 
the rate of internalisation suggesting that peptide/cargo complexes bypass the endosomal pathway to a 
large extent. Therefore, the low bio-availability must be caused by other unknown intracellular 
processes. 
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Table 4. Examples for delivery of oligonucleotides and derivatives thereof. 

Cargo  CPP/delivery system proposed uptake 
mechanism 

Reference 

DNA 
oligonucleotide 

MPG non-endocytotic [19] 

antisense PNA  penetratin, transportan  n. d.  [112] 
antisense PNA transportan n. d. [203] 
antisense PNA Tat48-60, penetratin, transportan 

analogues 
non-endocytotic [205] 

antisense PNA Tat48-58, penetratin, transportan 
analogues, R9F2, R6-penetratin 
and further peptides 

endocytotic 
(transportan: possibly 
non-endocytotic) 

[207] 

antisense PMO  R9F2 (non-covalent + covalent), 
Tat peptide, penetratin (covalent) 

n. d. [211] 

antisense PMO (R-Ahx-R)4 endocytotic [219] 
antisense PNA R6-penetratin endocytotic [109] 
antisense PMO (R-Ahx-R)4AhxB n. d. [220] 
HypNA-pPNA Pep-3 n. d. (proposed non-

endocytotic) 
[134] 

Antagomir R6-penetratin n. d. [108] 
antisense 2’-
OMe 
phosphorothioate 
RNA 
oligonucleotides 

Tat49-60, penetratin  endocytotic [87] 

antisense RNA 
oligonucleotide 
analogues 

Tat48-58, penetratin, R6-penetratin, 
transportan, R9, R9F2 and further 
peptides 

endocytotic [208] 

decoy  PNA-coupled transportan or TP10 n. d. [113,224] 
decoy  PNA-coupled transportan or TP10 

+ NLS 
non-endocytotic, to 
small extent 
endocytotic 

[225] 

TFO penetratin  non-endocytotic 
endocytotic pathway 
not excluded  

[227] 

 
Triple helix-forming oligonucleotides (TFOs) bind as a third strand in the major groove of duplex 

DNA to form triplex DNA in a sequence-specific manner (for a review see: [226]). Attractive 
applications of this TFO approach include not only inhibition of the target gene, but also induction of 
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point mutations at predetermined sites. A TFO coupled to penetratin by disulfide linkage was shown to 
internalise into cells [227]. In this approach the supFG1 reporter gene, encoding an amber suppressor 
tRNA, was used as target and the number of mutations induced by the TFO was determined with the 
help of an E. coli strain expressing β-galactosidase with an amber mutation. After treatment of cultured 
mouse cells, the rate of mutation was documented to be enhanced by a factor of 20 compared to basal 
levels. Confocal microscopy studies confirmed uptake into the nucleus and also revealed that the 
sequence of the oligonucleotide cargo affected the efficiency of delivery and the pattern of intracellular 
distribution (e. g. a higher GC-content seemed to reduce nuclear accumulation). 

5.4. siRNA 

In addition to the antisense applications described above, siRNAs represent a further valuable 
antisense tool to inhibit the expression of a target gene in a sequence-specific manner. These small 
RNA molecules induce a process termed RNA interference (RNAi) resulting in mRNA degradation 
(for a review see: [228,229]). 

The first study about CPP-mediated delivery of siRNA was published in 2003 by Simeoni et al. 
[131]. Here, siRNAs were non-covalently complexed with the peptide MPG leading to a strong down 
regulation of the target protein. Interestingly, a mutation in the NLS sequence of the carrier peptide 
(MPGΔNLS) resulted in a slight increase of the RNAi effect. When siRNA was associated with MPG at 
a 1:10 ratio of negative to positive charges and applied to Cos-7 or HeLa cells, a decrease of about 80 
% in luciferase activity was detected. This effect was further enhanced to about 90 % by MPGΔNLS 
[131]. 

Other studies describe covalent attachment of cargo and carrier. In one approach, anti-GFP or anti-
CDK9 siRNA were cross-linked to Tat47-57, but significant down-regulation of the target protein could 
only be observed for high concentrations of nucleic acids (about 300 nM, [90]). Simple mixing of 
siRNA and Tat peptide did not lead to any measurable RNAi effect. LF- or Tat47-57-mediated 
transfection resulted in a perinuclear localisation of siRNA. In contrast, fluorescently labelled Tat47-57 
without cargo was mainly found in the nucleolus. A significant increase in the rate of uptake of 
siRNAs targeted against luciferase or GFP could be observed after disulfide coupling the 5’-end of the 
sense strand to penetratin or transportan [104]. Compared to LF2000, slightly higher levels of 
transfection were achieved. Interestingly, after LF2000-mediated transfection, basal luciferase activity 
returned to normal levels one day earlier than after CPP-mediated transfection although the same 
concentration of siRNA was applied.  

A remarkably strong RNAi effect in hard to transfect primary neuronal cells was reported by 
Davidson et al. [230]. Here, siRNAs directed against several endogenous proteins were coupled to 
penetratin via a disulfide bond. The observed down regulation of the target proteins after peptide-
mediated siRNA delivery was found to be far more effective compared to LF2000. This in part was 
attributed to the toxicity of the lipids.  

Dowdy and his group [231] presented a rather critical point of view referring to previous studies 
with CPP-siRNA-conjugates. They claim that the successful delivery described therein is solely the 
result of excess free peptide which leads to additional complexation and thereby cellular import of the 
siRNA. This is in accordance with Turner et al. [208], who were the first to observe that careful 
purification of CPP-antisense-conjugates abrogates their biological effect. 
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Lundberg et al. [76] rationally modified penetratin to form a CPP (termed EB1) with improved 
endosomolytic properties. They achieved a pH-dependent conformational change of the peptide to a 
higher degree of helicity by the replacement of two basic amino acids with histidines and the N-
terminal addition of six amino acids. In this study, several CPPs were compared in a non-covalent 
approach by measuring the overall cellular uptake via fluorescence and biological effect of siRNA 
targeted to the luciferase mRNA. Penetratin- as well as TP10-mediated transfection did not lead to any 
silencing of luciferase gene expression, despite high amounts of intracellular siRNA [76] and in 
contrast to previous achievements with siRNA-penetratin-conjugates [230] or TP10/DNA-complexes 
[225]. EB1 showed improved delivery with a reduction of luciferase activity to approximately 50 % at 
100 nM siRNA. The peptide also induced RNAi in HepG2 cells but to achieve this, the transfection 
protocol had to be changed, i.e. the preincubation volume had to be increased, emphasising differences 
in uptake properties of different cell lines. As it had been described earlier, that addition of a pH-
sensitive peptide derived from haemagglutinin (HA2) can promote endosomal escape [43], the authors 
linked HA2 to penetratin [76]. It turned out that although HA2-penetratin improved the silencing effect 
when coincubated with penetratin, EB1 was more potent than this combination of peptides. Together 
with confocal microscopy studies the authors concluded that the lack of biological effect after 
penetratin-mediated siRNA delivery is due to a lack of endosomal escape and that EB1 has a superior 
endosomolytic activity in comparison to HA2-penetratin. In addition to EB1, MPGΔNLS and bPrPp 
were analysed in this study. For all three peptides, a much lower silencing effect was seen compared 
with LF2000 after transfection of 100 nM siRNA [76].  

In a recent study Nakamura et al. reported condensing of siRNA with 3 types of positively charged 
agents: poly-L-lysine, stearyl-R8 (STR-R8) and protamine [187]. These siRNA cores were packaged 
into a R8-grafted lipidic envelope to form R8-MEND. It was shown that R8-MEND particles with STR-
R8-condensed siRNA yielded the smallest complexes and the most efficient silencing effect in HeLa 
cells. At a concentration of 60 nM siRNA 80 % of gene silencing was achieved. Transfection with 
siRNA/STR-R8 cores lacking the lipidic envelope did not lead to any biological effect, probably due to 
inefficient endosomal escape [187]. In spite of this, another study provides evidence that siRNA/STR-
R8 particles alone can elicit RNAi in primary rat neuron cells [232]. 

A promising result with a prospect for cell specific siRNA delivery was presented by Leng et al. 
[172]. In an attempt to optimise a branched histidine/lysine-polymer for siRNA delivery, the authors 
found that different 8 branched versions (H3K8b) yielded up to 80 % knockdown of the target gene in 
several cell types. A 4 branched H2K4b, on the other hand, turned out to be a suitable carrier for 
plasmids [184] but not for siRNA. Structure-function studies revealed an important role of the 
composition of the histidine-rich domain as well as its position within the peptide and the branches for 
siRNA delivery, whereas size and surface charge did not have any effect. Furthermore, the toxicity 
was much lower than for the commercial cationic lipids Oligofectamine and LF2000 [172]. The 
attachment of the tripeptide RGD, an integrin-ligand, only slightly enhanced siRNA delivery, but 
turned this carrier into a cell-specific system [172]. 

As one of the first groups to report on Tat48-60- or penetratin-mediated siRNA delivery in vivo, 
Moschos et al. showed, that intratracheal administration of the conjugates did not lead to any 
intensification of the knockdown of the target gene p38 mitogen-activated protein kinase in mouse 
lungs in comparison to unmodified non-formulated siRNA [106]. They give an overview of in vivo 
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studies with siRNA alone or with several non-peptidic carrier systems showing, that even unmodified 
and non-formulated siRNA can exert a significant silencing effect [233]. Strikingly, it was found that 
the peptides alone triggered a detectable decrease in target gene expression and that the penetratin-
conjugate induced elevated levels of the immune markers IFN-α, TNF-α, and IL-12p40 in lung tissue 
[106]. This emphasises that a conclusion cannot easily be extrapolated from in vitro experiments and 
applied to the in vivo situation and that the experimental conditions have to be carefully controlled. 

Meanwhile, CPP-mediated siRNA delivery has been shown to be successful at least in some in vivo 
studies. In one of them, subcutaneous injections of siRNA non-covalently complexed with cholesteryl 
oligo-D-arginine (Chol-R9) in a mouse model successfully targeted the angiogenic growth factor 
VEGF (vascular endothelial growth factor). Seventeen days post-administration, target protein 
expression in the tumour decreased to approximately 40 %. More importantly, a tumour regression by 
a factor of 7 was measured [121].  

It is long known, that a peptide derived from rabies virus glycoprotein (RVG) interacts specifically 
with the nicotinic acetylcholine receptor (AchR) on neuronal cells to enable viral entry. Only recently, 
Kumar et al. used this specificity for a delivery approach into the brain [234]. Remarkably, the 
biotinylated form of the 29-amino-acid peptide (YTIWMPENPRPGTPCDIFTNSRGKRASNG) was 
taken up by neuronal cells in the brain after injection into mice. In order to transport nucleic acids with 
this vehicle, R9 was conjugated to RVG peptide. Systemic treatment of mice with siRNA in a non-
covalent complex with this modified peptide promoted a highly specific cellular import of siRNA only 
into cells expressing AchR. Even more important, an antiviral siRNA treatment resulted in successful 
protection of mice against encephalitis caused by Japanese encephalitis virus (JEV) [234]. This is the 
first study to report on a non-toxic method to deliver siRNA across the blood brain barrier which could 
help to circumvent dangerous and ineffective injections into the brain. To date it presents one of the 
most promising delivery approaches which might be expandable to other in vivo applications.  

So far, no CPP-mediated transfection of miRNAs has been reported on. It was only shown that a 
primary microRNA (pri-miRNA) comprising 183 nucleotides has been transferred into the nucleus of 
HeLa cells after complexation with the so called reducible copolypeptide (rCPP) [181]. This linear 
delivery system is composed of the lysine-containing histidine-rich peptide (HRP) and the SV40 large 
T-antigen NLS randomly connected via disulfide bonds and was developed by Manickam et al. for 
plasmid delivery [180]. The intranuclear processing of pri-miRNA into mature miRNA was possible 
only if the polymers contained a sufficient portion of NLS moieties. The authors also studied the 
efficiency of rCPPs for cellular delivery of siRNA. It turned out that a low NLS-content in the 
polyplex was favourable for posttranscriptional cytoplasmic RNAi, whereas a higher NLS-content 
promoted nuclear delivery. Thus, siRNA-mediated promoter silencing was enabled which even 
excelled the efficiency of the commercial transfection reagent TransIT-TKO [181].  

From these examples of CPP-mediated delivery of nucleic acids it becomes obvious, that in most 
cases a delivery system must be adjusted to the sort of nucleic acid to be transfected. The enormous 
difference in size and number of charges between oligonucleotides and plasmid DNA leads to different 
mechanisms of non-covalent particle formation. This partly can explain cargo-dependent discrepancies 
that have been found also for lipidic carrier systems [235].  
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Table 5. Examples for delivery of siRNAs. 

Cargo  CPP/delivery system proposed uptake 
mechanism 

Reference 

siRNA MPG, MPGΔNLS (non-covalent) non-endocytotic [131] 
siRNA penetratin, transportan  n. d. [104] 
siRNA Tat47-57, Tat-derived 

oligocarbamate  
n. d. [90] 

siRNA penetratin n. d. [230] 
siRNA H3K8b, H3K8b(+RGD) endocytotic [172] 
siRNA stearyl-R8 endocytotic [232] 
siRNA Chol-R9 endocytotic [121] 
siRNA MPGα endocytotic [236] 
siRNA R8-MEND (siRNA/stearyl-R8 

core) 
endocytotic [187] 

siRNA EB1, MPGΔNLS, bPrPp endocytotic [76] 
siRNA Tat48–60, penetratin endocytotic [106] 
siRNA RVG peptide n. d. [234] 
siRNA rCPP endocytotic [181] 

6. Cellular uptake versus functional effects of the nucleic acid cargo  

To efficiently exert their activity, nucleic acid-based tools and drugs have to reach their cellular 
targets after gaining entry to the cell (for a recent review see [237]). To claim ‘proof of principle’ for a 
particular CPP approach, it might be sufficient to just measure uptake of a given functional nucleic 
acid cargo (e.g. siRNA, aptamers or antisense RNA). However, it does not provide any information 
about the biological activity of the cargo. Thus, a side-by-side analysis of cargo internalised and the 
corresponding biological effect is required to determine the overall efficacy of such a system. We have 
adapted a highly sensitive method described by Overhoff et al. [238] for the quantification of siRNA, 
enabling us to detect intracellular siRNA amounts down to ≥ 10 copies per cell. The method is based 
on the liquid hybridisation of a radioactively labelled probe with the corresponding antisense strand of 
the siRNA in cellular lysates. Additionally, a stringent washing procedure is absolutely required. As 
already outlined above, complexes strongly attached to the cell surface are often an underestimated 
source of misinterpretation of the true amount of cargo taken up by cells. By implementing a heparin 
wash, we could reduce the overall amount of allegedly ‘intracellular’ siRNA by about 90 % [236]. 
This result impressively shows the importance of such a procedure. 

As opposed to the majority of CPP applications reported, which rely on covalent linkage of carrier 
and cargo, we used in our studies a peptide termed MPGα, a derivative of the original MPG peptide 
described by Morris and coworkers [19]. This peptide forms highly stable non-covalent complexes 
with nucleic acids. MPGα differs from MPG by six amino acids in the hydrophobic part. These 
changes result in an alteration of the overall structure of the peptide towards a higher tendency of 
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adopting a helical conformation [68]. Accordingly, the two peptides behave differently with respect to 
their interaction with artificial lipids as well as Xenopus oocytes [239] and should not be confused as, 
most probably, their exact mechanism of uptake is not the same. 

The delivery of anti luciferase siRNA/MPGα complexes into HeLa or ECV304 cells yielded an 
IC50 of about 0.8 nM (Figure 5). Although the number alone is already quite impressive and 
convincingly shows that this approach works very well in cell culture experiments, it does not provide 
information about the percentage of bio-available siRNA taken up. Comparing the amount of 
extracellular RNA with the amount of RNA internalised, it becomes obvious, that less than 1 % 
entered the cells. However, even more remarkable are the data derived from a comparison with 
microinjection experiments [236]. These indicated that less than 1 % of the molecules taken up enter 
the RNAi machinery. Thus the vast majority of molecules probably are in a physical state, which is not 
suitable for triggering RNAi.  

Figure 5. IC50 of luciferase targeted siRNA delivered by complexation with MPGα 
into ECV304 cells. 24 h before transfection ECV304-cells were seeded into a 96 well 
plate (1x104 cells per well). siRNA and MPGα were mixed in Opti-MEM® I (4.2 µM final 
concentration of peptide) and incubated for 5 min at room temperature. Cells were overlaid 
with the complexes for 4 h followed by addition of medium supplemented with 10 % FCS. 
24 h after transfection, luciferase activity was measured in a plate reader and cell numbers 
were normalised with the help of fluorescein diacetate. The IC50-value of 0.8 nM was 
calculated using the program Grafit. 

 

Confocal microscopy studies with fluorescently labelled oligonucleotides reveal a punctual 
cytoplasmatic distribution of the molecules after MPGα mediated uptake (Figure 6). Together with the 
data described above and data concerning the effect of specific inhibitors/effectors of different 
endocytotic pathways [236], this strongly indicates endocytosis to be involved in uptake. Accordingly, 
if it would be feasible to liberate the siRNA molecules trapped in vesicular compartments, one would 
be able to dramatically boost the overall efficacy of this approach. Though others have reported similar 
findings, our study for the first time puts in numbers how much room for improvement there actually 
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is. Altogether, the data presented clearly show the enormous potential of this particular CPP-mediated 
cellular delivery of siRNA, which likely is true to various degrees for other similar approaches as well, 
but at the same time reveal the problems to be resolved in the future. 

Figure 6. CLSM analysis of unfixed HeLa cells after transfection with MPGα/RNA 
aptamer complexes. Cells were incubated in Opti-MEM® I for 3 h with MPGα/RNA 
complexes (5 µM peptide and 180 nM RNA). The RNA was 5’-labelled with Cy3. After a 
wash step with PBS, cells were treated with a solution of heparin (15 units/mL) in Opti-
MEM® I for 30 min, washed with Opti-MEM® I, stained with Hoechst 33342 and overlaid 
with Opti-MEM® I containing 50 mM HEPES, pH 7.4. The extracellular space was stained 
by adding carboxyfluorescein to the medium. Microscopical analysis was performed with a 
confocal laser scanning microscope (LSM 510, Carl Zeiss). White bar: 5 µm. 

 

7. Conclusion 

Owing to recent critical evaluations of the mechanisms underlying the cellular translocation of 
CPPs it had become apparent that technical shortcomings caused false assumptions, which led to an 
overestimation of translocation efficiencies as well as misinterpretations concerning the cellular uptake 
mechanism. As a consequence, efforts to improve CPP transfection efficiency might have been 
hampered or even worse, went in the wrong direction. Meanwhile many problems have been identified 
and the majority of present studies implement latest technical achievements by combining a variety of 
complementary methods. Today, there is considerable evidence that endocytosis is involved in the 
internalisation process of various CPPs. As more information about the exact mechanism of uptake is 
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collected with an increasing rate, significant improvements of such delivery systems can be expected 
in the near future. 

On the other hand, currently available data are based on studies using a variety of different cell lines 
and techniques, which renders a direct comparison of different CPPs impossible. It therefore would be 
highly desirable to establish standardised reporter systems, which would facilitate a quantitative 
analysis of exceedingly diverse approaches. Furthermore, it has been shown that even minor changes 
of the physical state of a CPP (e.g. exchange of certain amino acids) can alter translocation properties 
significantly. This particularly holds true for the attachment of large cargo molecules. Thus, it might 
not be possible to generalise results obtained with a given CPP, and it might be necessary to 
characterise each carrier/cargo complex individually. If CPPs are intended to be used for therapeutic 
purposes in the future, it is essential to focus on the attachment of functional cargos and analyse their 
biological effects inside the cell. Data from our lab clearly show that uptake and biological activity of a 
functional cargo is everything but the same. Therefore, a quantitative comparison of cargo taken up 
and functionally active cargo is an essential requirement in order to improve therapeutic efficacy. Just 
looking for efficient internalisation is not sufficient. As a prerequisite, there is a need for sensitive and 
easy to handle reporter systems in combination with a sensitive method to quantify intracellular 
amounts of cargo like the one for siRNA briefly described above. Data established with this system for 
MPGα-mediated delivery of siRNA as well as a number of other recent studies reviewed here strongly 
suggests endosomal accumulation of the cargo and not uptake per se to be the bottleneck of this 
approach. Thus, resolving the problem of endosomal escape currently is the main challenge for this 
CPP-system.  

In conclusion, current reports provide increasing evidence that peptides represent a promising 
alternative to viral and lipid-based nucleic acid delivery systems. After two decades of intensive 
research, we now can chose from a constantly growing arsenal of different peptide-based transfection 
systems each suitable for a particular application. For nucleic acid delivery in vitro simple peptide 
carriers are probably the first choice. Here the described non-covalent approach offers the degree of 
flexibility required for basic research applications where experimental conditions may change 
frequently. For in vivo applications a trend towards more complex and elaborate systems (see chapter 
‘polymers and complex systems’) can clearly be seen. Such approaches are most promising to 
individually resolve important issues like undesired degradation or clearance from the body and above 
all target cell specificity. 
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Abbreviations 

 bPrPp, bovine prion protein derived peptide; CLSM, confocal laser scanning microscopy; CPP, 
cell-penetrating peptide; FCS, fetal calf serum; EIPA, ethylisopropylamiloride; GFP, green fluorescent 
protein; hCT, human calcitonin; HEPES, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; HIV, 
human immunodeficiency virus; IL, interleukin; IFN, interferon; LF, Lipofectamine™; LF2000, 
Lipofectamine™ 2000; MAP, model amphipathic peptide; MEND, multifunctional envelope-type 
nano device; miRNA, microRNA; mPrPp, murine prion protein derived peptide; NLS, nuclear 
localisation sequence; OMe, O-methyl; PAMAM, polyamidoamine; PEG, polyethylene glycol; PEI, 
polyethyleneimine; PMO, phosphorodiamidate morpholino oligomer; PNA, peptide nucleic acid; PTD, 
protein transduction domains; RNAi, RNA interference; SAP, Sweet Arrow Peptide; siRNA, small 
inhibitory RNA; STR-R8, stearyl-R8; TAR, transactivator responsive region; TFO, triplex forming 
oligonucleotide; TLR9, toll-like receptor 9; TNF, tumour necrosis factor; TP10, transportan 10.  
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