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A principle of virtual dissipation generalizing d’Alembert’s principle 
to nonlinear irreversible thermodynamics is applied to viscous fluid 
mixtures with coupled thermomolecular diffusion. Origina,l dynamical 
field equations are obtained directly from the variational principle. The use 
of new fundamental concepts and methods in the thermodynamics of open 
systems avoids the difficulties inherent in the classical Gibbs approach. 
The dissipative forces incorporated explicitly in the field equations are 
expressed by means of a dissipation invariant evaluated in detail in terms 
of coupled viscous and diffusive properties. Partial pressures and dissi- 
pative stresses are given new, unambiguous thermodynamic definitions. 
Lagrangian type equations with generalized coordinates are also obtained 
directly from the variational principle. They provide a powerful tool 
of simplified analysis of complex open systems as well as the foundation 
of a variety of finite element methods. 

The principle of virtual dissipation of irreversible thermodynamics (Biot I 975, 

1. INTRODUCTION 

I 976 a) constitutes the fundamental mathematical tool for the analysis of evolution 

of open non-equilibrium collective systems. It is essentially a generalization of 

d’dlembert’s principle to thermodynamics. It is obtained by adding to the virtual 

work of frozen inertia forces the virtual work of frozen dissipative forces which is 

called virtual dissipation. Traditionally the virtual work of the inertia forces is 

expressed in terms of material displacements of the particles in a closed system. The 

procedure has been extended to open systems by expressing this virtual work in 

terms of mass flow across an open cell (Biot r977a). 

The object of this paper is to apply the principle of virtual dissipation to fluid 

mixtures with thermomolecular diffusion, and to derive directly by a variational 

procedure the fluid dynamical equations of the continuum as well as the Lagrangian 

equations in terms of generalized coordinates. The procedures, concepts and results 

are fundamentally different from those of other schools (Green & Naghdi 1969, 

1971). Equations obtained are of simple and general symmetric form which includes 

explicitly the quantitative terms due to entropy production. They are based on two 

[ 4f37 1 





Variational-Lagrangian thermodynamics 469 

temperature To called a thermal well TW. Each supply cell C,, contains a pure 

substance k. The substances are all at the same pressure and temperature p,, TO. 
It was shown (Biot 1976 b, 1977 b) that this condition is required in order to avoid 

Gibbs’ paradox. The system of primary cells &CD, is non-isothermal, each cell being 

at its own temperature T,. The hypersystem Z;, C,, -i- XkCsk + TW undergoes revers- 

ible transformations by which matter and heat are transferred internally between 

cells. This transformation is accomplished solely by mechanical work by the use of 

forces acting on the system, as well as fluid pumps and heat pumps. According to the 

first principle this work is represented by the internal energy V of the hypersystem. 

It defines the collective potential V. The transformation being reversible, the 

total change of entropy is zero. Hence 

x+x,, = 0, (2.1) 

where S is the increase of entropy of the collective system X:, C,, + Zk C,,, while Srw 

is the increase of entropy of the thermal well. We may write 

S TW- - HOITO~ (2.2) 

where Ho is the thermal energy acquired by the thermal well. 

The internal energy V of the hypersystem is 

V = U+H,,, (2.3) 

where U is the internal energy of the system C, C,, + Xc,C,,. Elimination of Ho and 

S,, between equations (2.1) (2.2) and (2.3) yields 

V = U-T,S. (2.4) 

Consider now a completely general irreversible transformation of the primary 

system of cells C, C,, where external work is performed on this system but no matter 

or heat is provided to the system as a whole. According to the first principle 

neglecting kinetic energy, we write 

U = W-G, (2.5) 

where G is the increase of potential of the system in a potential force field such as 

gravity while W is the work performed by other forces. From (2.4) and (2.5) we 

derive 
V+G- W = -T&J. (2.6) 

We have called P= V+G (2.7) 

the mixed collective potential (Biot 1975, I 976 a, b, 1977 6) because it unifies mechanical 

and thermodynamic properties. Since the primary system receives no matter or heat 

from the environment, we replace S by S * to indicate that it represents the entropy 

produced by the primary system. Hence (2.6) is written (Biot 1975, 1976a) 

8-W = -T,S”. (24 

While the system X, C,, itself is closed, subsystems of primary cells and the cells 

themselves are open, and may exchange heat and matter among themselves or with 

another subsystem which represents the environment. 
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The collective potential possesses the important property of additivity. This 

means that v= cc, (2.9) 
a 

where Vz is the collective potential of each cell C,,. Hence we may analyse its 

fundamental properties for a single rigid primary cell C, and we shall refer to its 

collective potential Y as the cell potential. The justification for this is derived from 

the fact that the state of the collective system C, + E,C,, is completely determined 

by the state variables of the cell C, alone. This can be seen considering C, to contain 

a homogeneous mixture of fluid substances at the temperature T. The state variables 

of the cell are T and the mass increase Mk of each substance in the cell measured 

from a certain initial state. These masses are obtained from the supply cells so that 

the state of &C,, is also determined by Mk. Hence the state variables T, Mk of 

CP completely determine the state of the collective system C, + XkCsk. 

Similarly the collective entropy Y and energy 4P of the system C, + Z;,C,, are 

completely determined by the variables T, Mk. For this reason we may call 9’ the 

entropy of the primary cell and % the energy. We may write for the cell 

Y = @-T&Y. (2.10) 

Furthermore the variables Mk and Y may be chosen as state variables of the cell. 

The cell potential has been expressed in terms of new concepts (Biot 1976 b, 1977 b) 

as follows. By definition we may write 

dY = 2 @,dMk+ eds,, 
k 

(2.11) 

where $k is the thermobaric potential. It represents the reversible work required to 

transfer a unit mass of substance k from the supply cell C,k to the primary cell CP. 

The term ek d&P represents the work required to transfer a mass dMk. The process 

is called a thermobaric transfer. The term Ods,, where 

B= T-T,, (2.12) 

represents the work required by a heat pump extracting heat from TW at the 

temperature TO and injecting an amount of heat Tds, into C, at the temperature T. 

This heat injection increases the entropy of CP by the amount ds,. 

The value of $k has been shown to be 

(2.13) 

The variable pressure and density of the substance along the path of integration are 

p; and p;, the variable temperature is T’ with 8’ = T’ - TO, and ds, is the entropy 

differential of the unit mass along the path. The pressure l)k is the pressure of the 

substance brought to equilibrium with the cell C, through a semi-permeable mem- 

brane. By de$nition this pressure pk is called the partial pressure of the substance k in 

the mixture contained in CP at the temperature T. The first term in (2.13) represents 
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the work of a mechanical pump and includes the work of extraction from C,, and 

the work of injection into Cr. The second term represents the work of a heat pump 

required to change the temperature of the substance arbitrarily along the path of 

integration in infinitesimal steps. The value of the integral (2.13) is independent of 

the path. 

A relative sped@ entropy is defined as 

(2.14) 

The increase of collective entropy of CP -t I;,C,, owing to a thermobaric transfer is 

akdMk. Hence the entropy differential of C, is written 

dY = x @Mk+ds,. 
k 

(2.15) 

Note that this expression is valid only for the reversible process of transfer described 

above. However it provides a way of evaluating the cell entropy Y defined above as 

a collective concept. 

In equations (2.11) and (2.15), dMk and dSP are state variables of the cell while 

ds, is not. 

Elimination of ds, between these two equations yields 

dV = C $,dMk + 6dY, (2.16) 
k 

where tik = @k -osk (2.17) 

is the convective potential (Biot 1977 b, c). Using the ‘value (2.13) of lCrk we derive the 

ProPe*Y d#k = dp,/p, - a,d8. (2.18) 

The cell potential (2.10), that is 

V = Y(Mk,9’), 
is a function of Mk and Y, with 

(2.19) 

(2.20) 

An alternative expression for the convective potential is obtained by substituting 

the value (2.13) of lc/k into (2.17). We obtain 

$i$ = gk - Tgk, (2.21) 

where Zk = =~-~+~~T~[-~;d(~)+T’d~k], (2.22) 

while pOk and pk are densities at p,, TO and pk, T respectively. The quantity zk defines 

the relative speci$c enthalpy of the substance in Cr. 
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Attention is called to an important feature of this new approach. Within a given 

hypersystem the quantities &, Zlc and Zk contain no undetermined constants, in 

contrast with traditional concepts. 

Also the quantities V, U, S, Y and Y are completely defined as increases from a 

given initial state of the collective system for which they are put equal to zero. 

The entropy Y of a cell of unit volume may be evaluated as a function of the 

masses ih?k added and the temperature T by integrating (2.15) along an arbitrary 

path. We denote by sk(Hk, T) the relative specific entropy of any particular 

substance k. Since the partial pressure p, is a function of Mk and T, sk is a function 

of the same variables. We first integrate equation (2.15) at constant temperature 

TO, the masses added varying from zero to Mk. We then maintain the masses constant 

and heat the cell to the temperature T. Integration of (2.15) along this path yields 

zk(Mk,TO)+hF(Mk, TO) 
I s 

dMk+ 
T c(Mk, T’) 

T, dT’. (2.23) 
0 TO 

In this expression h;E”“(Mk, TO) is the heat absorbed by the cell when a unit mass of 

substance k is added reversibly at constant volume and constant temperature TO, 

while c(Mk, T’) is the cell heat capacity at constant Mk(k = 1,2, . i .), constant volume 

and variable temperature T’. From expression (2.23) we derive the temperature 

as a function of Mk and Y. 

T = T(M”,Y) (2.24) 

When the primary system is a continuum D the potential of an infinitesimal cell 

of volume dQ is -trdQ, where V is the local potential per unit volume. According to 

the additive property (2.9) the collective potential of the continuum is the volume 

integral 
V= YdQ. 

s 
(2.25) 

R 

3. FUNDAMENTAL ENTROPY BALANCE EQUATION AND 

ENTROPY PRODUCTION 

Consider a domain L? of the fluid mixture. The rate of entropy increase of this 

domain is 
s=~~(~~T+S)dR-Sa~~kPrnid4. (3.1) 

The dot designates a time derivative. The rate of heat acquired per unit volume is h 

and &r is the rate of entropy produced per unit volume by irreversible processes 

other that thermal conduction. The second integral is over the boundary A of D with 

a unit normal n,. The rate of mass flow of substance k per unit area is the vector .l@ 

and sk is the relative specific entropy (2.14) of substance k in thermodynamic 

equilibrium with the mixture at the point considered through a semipermeable 

membrane. The summation sign will be omitted for vector and tensor indices. 

We may write 
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where I& is the rate of heat flow per unit area, and xi are the coordinates. By sub- 

stituting the value (3.2) into (3.1) and transforming the surface integral into a 

volume integral, we obtain 

where 

(3.3) 

(3.4) 

and (3.5) 

The first terms gki@ represent the rate of convected entropy, &‘j is the entropy flux 

due to thermal conduction, and di is the total entropy flux. The rate of entropy 

production due to thermal flux alone is (per unit volume) 

(3.6) 

where k is the local coefficient of thermal conduction. Hence 

s* = s& i-&&/k (3.7) 

is the rate of entropy produced per unit volume. Since equation (3.3) is valid for an 

arbitrary domain Q we may write 

9 = g* - a8Jaxi, (3.3) 

where Y is the entropy per unit volume. Equation (3.8) constitutes the funda- 

mental entropy balance equation already obtained earlier (Biot 1977a, c). It 

generalizes Meixner’s result (1941) which is restricted to purely thermal flow. 

Integration with respect to time, with zero initial values, yields 

Y = s*+s, (3.9) 

where s = - as,/ax, (3.10) 

represents the entropy supplied by convection and conduction while S, was called 

the entropy displacement (Biot I 976 a, I 977 a, c) . 

Another equation of the same ‘ holonomic ’ type is the mass conservation condition 

Mk = -aM:/ax+ (3.11) 

where Mk is the mass supplied. by convection per unit volume, assuming zero initial 

values. The total mass of substance k per unit volume is 

mk = mOk+Mk, (3.12) 

where mOk is the initial mass for Mk = 0. 
We shall now evaluate the rate of dissipation due to thermomolecular diffusion 

and viscosity. This is expressed as 

TP = 2gtm + 2~9~ (3.13) 
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where T is the local temperature and 8” is the rate of entropy production per unit 

volume. The terms 2gtrn, 2LSV represent the dissipation due respectively to thermo- 

molecular diffusion and the viscosity. They are uncoupled owing to Curie’s principle. 

As already shown repeatedly (Biot 1977 a, c, d) the dissipation due to thermo- 

molecular diffusion is a quadratic form in the rate variables &f, &. As such it 

embodies the validity of Onsager’s principle (1930, 1931, 1953; Machlup 1953) as 

a local property for coupled diffusion phenomena. However the coefficients of this 

quadratic form vary from point to point and depend on the local state variables. It 

must also satisfy two fundamental invariant properties. It must be isotropic and 

must vanish for a solid translation of the mixture. To this effect we introduce the 

velocities 
vf = .i@/mk (3.14) 

of the various substances, and hence the dissipation functiondue to thermomolecular 

diffusion is a quadratic form in I_$ and fit. 

We write 
(3.15) 

It is convenient in this expression to introduce explicitly the summation sign for i 

instead of the summation convention. For vf = 0 the dissipation is reduced to 

(T/2k) C,(J$‘~)~, where (l/k) Ci(fi$)2 is the rate of entropy production (3.6) due to 

thermal conduction. The dissipation function must be invariant under solid trans- 

lation. It is shown in appendix I that to satisfy this condition it must be of the 

form 

where the coefficient Kk must satisfy the relation 

xKk= 0. 
k 

(3.17) 

The coefficients Clk, Kkand T/2k are functions of the local state variables Mk and 9. 
The dissipation function &, must be non-negative, hence we must have 0“ 2 0 

while the other coefficients also satisfy suitable conditions. We may substitute into 

(3.16) the value of 81 derived from (3.5) as 

(3.18) 

We obtain 

This value is equal to S&,, except that it is now expressed in terms of i@ and the 

total entropy flux 8, instead of the entropy flux &‘$ due to thermal conduction only. 

In (3.19) the coefficient $P includes the coupling between l@f and the entropy flux 

Bi due to both convection and thermal conduction. 

In order to evaluate the dissipation due to the viscosity properties of the mixture 

we must consider the velocity gradients 

V$j = &$/tlXj* (3.20) 
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We assume a Newtonian type viscosity. Again owing to the Onsager principle (1930, 

1931) the dissipation function must be a quadratic form in the rate variables v$j. 
Because of isotropy it must be a function of the quadratic invariants which are 
(retaining the summation rule for tensors) 

r’rk, v$$*, &vj”i, (3.21) 

where rk = Q.ut (3.22) 

are dilatational strain-rates. The dissipation function due to viscosity is therefore 

S@v = 4 2 hrkr’rk + 4 x hpU$j t$j + 4 2 hkk‘t$j @ii, (3.23) 
lk lk lk 

where Alk, hik and n’,k are viscosity coefficients, functions of the local state of the 
mixture hence of Mk and 9. If we put 

k 
= gf$j -4- v$, rij W$ = *(Vtj-Vfi), (3.24) 

or &. = q-k. + ok. k k k 
13 23 23, Vji = Tij- Wij, (3.25) 

the dissipation function becomes 

L?Sv = + 2 Zkrlrk+ C ?lik?$j?$j + x$k6J:jW$, (3.26) 
Zk Zk lk 

where r”l” = &(@+&k), r/+k = #-- h”,k), (3.27) 

or n;k = $k + ?;k, h;k = r/i” - #. (3.28) 

The form (3.26) of the dissipation function brings out explicitly the strain rates r$ 
and the rates of rotation CL&. The dissipation function ZPV must be non-negative. 
It is shown in appendix II that this implies the necessary and sufficient condition 
that the matrices h”k+ J&7:“, vi”, rik be non-negative, i.e. that for all values of real 
variables zk we have 

c (hlk -,- 57:“) zrsk 2 0, z ?j;“s’Z” > 0, 2 ?j”aks%” > 0. (3.29) 
Zk Zk 

Additional conditions for the coefficients are also obtained if we consider a solid 
rotation wij of the mixture, where rfj = 0, atj = oij. In this case the dissipation must 
disappear. Hence 

SV = ~&kw~jwij9 (3.30) 

and the coefficients must satisfy the condition 

ZII? = 0. (3.31) 

Another condition is obtained if we put wz = 0 and r$ = Qr. To state that the 
dissipation vanishes in this case,is equivalent to the assumption that bulk viscosity 
of the mixture is zero. Hence 

SS (3.32) 
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which implies the condition 

c (h’k + &/:k) = 0. 
lk 

(3.33) 

However the vanishing of bulk viscosity is not a necessary physical requirement. 

4. PRINCIPLE OF VIRTUAL DISSIPATION 

A fundamental variational principle of virtual dissipation generalizing d’Alem- 

bert’s principle to non-equilibrium thermodynamics has been developed (Biot 1954, 

1955) and applied to general thermorheology (Biot 1976a, 1977a, c, d). It is a natural 

generalization of the linear Lagrangian thermodynamics initiated earlier (Biot 

‘9.54, ‘955). 
For the reader’s convenience we shall present a simplified derivation of the 

variational principle in the special context of fluid mixtures. Equation (2.8) being 

valid for arbitrary transformations, we write it in variational form as 

68-6W+To6S* = 0. (4.1) 

The variations are applied inside a domain Q and the variables to be varied obey the 

basic conservation constraints (3.10), (3.11). From (2.7) and (2.25) we write 

(4.2) 

If the body fc&es are derived from a potential field of scalar potential ‘S(xJ per unit 

mass we may write 
G= 

s 
,oYdQ, /J = zmk. (4.3) 

R k 

Hence 68 = (6V++6p)dQ. 
s 

(4.4) 
R 

According to d’dlembert’s principle the virtual work of the reversed inertia forces 

may be included in the work 6 W of the external forces. In the present case this work 

is reduced to 
6W = -clisf&, (4.5) 

z 

where Ii are generalized inertia forces and pi the conjugate displacements. 

The total virtual entropy variation is 

6X” = i%*dQ, 
s 

(4.6) 
R 

where 6s” is the variation of entropy produced per unit volume. With the values (4.4) 

(4.5) and (4.6), equation (4.1) becomes 

~IiSqii- (W-+96p+To6s*)dS2 = 0. (4.7) 
i 
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An important alternative form of this variational principle is obtained by writing, 

according to (2.16), (2.20); 

(4.8) 

where (4.9) 

represents a ‘restricted variation’ ofV obtained by not varying s*. Substitution of 

the value (4.8) into (4.7) yields 

~Ii~qi+ (6,“y-+g~p+TTs*)dSZ= 0. 
i s B 

(4.10) 

This form of the principle of virtual dissipation is directly applicable for our purpose. 

The term T&s* was called the local virtual dissipation and it was shown (Biot 1975, 

1976 a, 1977a) that it is obtained immediately from the rate of dissipation invariant 

where FMt and SSi are arbitrary variations of Mt and Si, while &$j is 

(4.11) 

where i?u$ is the variational displacement of substance k. According to (3.14) it may 

be expressed as &ZL~ = ZiM:/m,. (4.13) 

Hence (4.14) 

where 6Mt is the variation of mass displacement. 

We put C$j = aJ?&/az;$. (4.15) 

By definition we shall call this the partial dissipative stress tensor. This provides a 

thermodynamic de&&ion of these partial stresses based on the dissipation invariant 

gV. By using the value (3.23) of gV equation (4.15) yields the constitutive equations 

k U$,f = 6i.j C hrk# + z hikO:j + x hkkW:i* (4.16) 
1 1 2 

In case of a single substance 

Ark = h 7 @ = A,, h’,k = h 29 
lk Zk 

(4.17) 
91 = 7, 72 = 72, yk=r k , Tij = Pij. I 

Equation (3.31) yields q2 = 0. Hence from (3.28) h, = h, = 1, and the constitutive 

equations (4.16) become 
V,Q = 2qrij + hr 6ij, (4.18) 

which is the classical relation for a gas with viscosity coefficients h, r. 
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Note that a$ are not the only partial stresses. The other part of the stress is the 

isotropic partial pressurepk defined thermodynamically as described a,bove, namely 

by considering equilibrium of the pure substance k through a semi-permeable 

membrane with a cell of same concentrations and temperature as the mixture at the 

point considered. The dissipative stresses are thus defined quite differently from the 

pressures. 

With the definition (4.15) of & the virtual dissipation (4.11) is written 

(4.19) 

5. VARIATIONAL DERIVATION OF THE FIELD DIFFERENTIAL 

EQUATIONS OFDYNAMICS OFTHE MIXTURE 

The state of the mixture is completely defined by the vector fields Mt and Xi and 

the scalar field s* representing the entropy produced per unit volume. We consider 

arbitrary variations 6Mt and SSi inside a domain Q and apply the. principle of 

virtual dissipation. The virtual work of the inertia forces is 

where the virtual displacement 6~: is given by (4.13). The acceleration of substance 

k is 

(5.2) 

By using relations (2.20) the value (4.9) of 6,V is written 

6,v = 2 #,6Mk+ 86.S. 
k 

(5.3) 

With these values of C, Ii6qi and 6,V, and thevalue (4.19) for T6s*, the variational 

principle (4.10) becomes 

+11 
as, 
-SSi 

k a& 
dQ = 0. (5.4) 

The variations may be expressed as follows. From (3.10) and (3.11) we obtain 

6Mk = -a(sikff/a~~:i), 6s = -a(ss,/a~~. (5.5) 

Also from (3.11), (3.12), (4.3) and (4.14) 

sp = - a(6M$/axi, &$j = a(a!@/?+)/aX,. 
(5.6) 

We integrate by parts the terms containing 6Mk, 6s, Sp and so&. Since 6M: and SSi 

may be chosen arbitrarily inside 52, while vanishing continuously at the boundary, 



Variational-Lagrangian thermodynamics 479 

we equate to zero.the coefficients of these variations. This yields the field differential 
equations 

(5.‘) 

where we have put %= #I,+@* (54 

We need one more equation for the unknown s *. This is provided by expression 
(3.13) for the rate of dissipation, namely 

TP = 2.%,,+2% = 29. (5.3) 

The field equations (5.7) and (5.9) thus obtained by a variational method while 
extremely general show a remarkable symmetry and simplicity as well as physical 
significance. This in spite of the great physical complexity of the system. The 
quantity pk has been called ‘ mixed convective potential ’ in earlier work (Biot I 977 c). 
It includes the work 9 accomplished to bring the unit mass to the location xi in the 
potential field. We may assume for example that supply cells are located on 3 = 0. 

A useful alternative classical expression of the acceleration is 

(5.10) 

This may be written ad i a 
4 = &+2axi - - (v”)+&, (5.11) 

where 
A 

(vk)2 = v:& A &i = 2&& 3 23’ (5.12) ‘> 

The vector Je is proportional to the vector product of the velocity by the vorticity v 
Wfj. It satisfies the property. 

&&” z i = 2mkt$VTWtj = 0, (5.13) 

i.e. the vectors JZ@ and i%tf are perpendicular. 
A physically significant form of the field equations (5.7) is obtained by noting 

the relations 
agt, a9tm 
?j&-=c?Bg’ 

(5.14) 

Using the value 

(5.15) 

(5.16) 

obtained from equations (5.7), we write 

ast, a9km ae 
-is@ = v+a,G. aMq 

(5.17) 
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Also from (5.8) and (2.18) we obtain 

i i3pk _ ae as 
(5.18) 

Substitution of thevalues (5.14), (5.17) and (5.18) into thefieldequations (5.7)yields 

(5.19) 

(5.20) 

Note that in these equations the dissipative stresses CT& and the partial pressures pk 

are defined thermodynamically as explained above. 

It is interesting to show that t,hese equations satisfy the total momentum relation 

for the mixture. We add equations (5.19) after multiplying each by mk and obtain 

By using expression (3.16) for @m it is immediately verified that 

X:m aq,=(). 
k k aM2 

Also as shown in appendix III we may write 

where p is the total pressure of the mixture. Hence equation (5.21) becomes 

(5.22) 

(5.23) 

(5.24) 

which is the total momentum equation. 

We note that equation (5.23) is self evident for perfect gases since in this case 

mk = Pk and fp = xj& (see appendix III). 

For the particulkr case of a single fluid, equations (5.7) coincide with those derived 

earlier by the same variation&l procedure (Biot 1977a). 

Remarks on the physical signi$cance of equations (5.7) 

The stresses CT$ are the dissipative forces across a unit area exerted on the molecules 

of substance k by all other molecules. Hence it is physically understandable that 

acr$/axj is equivalent to a body force producing an effect on diffusion. It should be 

emphasized that equations (5.7) contain only first order dissipative rate effects. In 

particular the velocity may be written vt = Vi +vtk with xkmkvtk = 0. Hence 

vi = &mk$/p iS the barycentric dOCity (VdOCity Of the Cenh? Of g?%Vity), while 



Variational - Lagrangian therrnod ynamics 481 

@ represents small rate effects and expression (5.10), for the acceleration af, may 

be linearized with respect to vi” or even simplified by putting v:” = 0. To the same 

approximation the kinetic energy is ~Zkrnk(vk)2 = QPVivi and there are no coupling 

terms between the variables of 9tm and those of gtv in the dissipation function (5.9). 

The latter is a consequence of the requirement of invariance (Curie’s law). 

~.ENERCY FLUX THEOREM 

We add the field equations (5.7) after multiplying each of the first group by i@ 

and each of the second group by aj. Substituting M/ax, = i3T/axi and vt = &t/m,, 

and using Euler’s theorem 

we obtain 

We may write 

(6.1) 

(6.2) 

(6.3) 

Again using Euler’s theorem and equation (4.15) for uiii, we write 

Hence 

We have interchanged the dummy indices i, j on the right side. Substitution of this 

value into (6.2) taking into account expression (5.9) for Ti* yields 

k i k k z z 

Consider the terms 

clq~+~i~+Td* = $(Xil@pk+Tfii)-~qk~+T (g*-$), (6.7) 
k z z i k k i z 

Taking into account relations (3.8), (3.11) and (5.8), we write 

From equations (2.20) we also derive 

$+,Vk+6@= T gk&k+$$?= -t’: 

On the other hand according to (2.10) 

F- = 4Z--To9’, 

(6.9) 

(6.10) 
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where % is the energy per unit volume. From these results we obtain for the terms 

(6.7) the value 

~itt@+&,~+Td* = $(~itl:qk+Tfli)+@i+sCliL,. (6.11) 
k z z i k k 

Note that according to (3.12), i@ = k&. Substitution of this expression into equation 

(6.6) yields 

zi@a:+$( -~~~~~Q~~+C~~~~+TS,)+~+ ‘S’~riz, = 0. (6.12) 
k i k k k 

Consider now the terms containing the accelerations. According to relations (5.11) 

and (5.13) we obtain 

Since 

relation (6.13) may be written 

i@; = Tnk& 

nir$f = f ; [mk(vk)2] + ‘2 & [.&fz(vk)2] - f (tik + z) (vk)2 (6.15) 

From mass conservation we have 

~, + a~f/aXi = 0. 

Hence I@af = f ; [rnk(Vk)2] +; ; [II!Xf(vk)2]. 
i 

With this value equation (6.12) becomes 

(6.13) 

(6.14) 

(6.16) 

(6.17) 

(6.18) 

(6.19) 

The remaining terms in equation (6.18) represent the rate of increase of energy of the 

mixture per unit volume. Hence Fi is the energy flux per unit area and equation 

(6.18) constitutes an energy$ux theorem. 

The energy flux vector Fi may be written in a physically more significant form by 

using relations (2.21), (3.4), (3.5) and (5.8). We write 

vk = $&-kg = E,-!&f 9, 

,!$ = z:3iki@+& = ~:k_iI$t +&IT. 
k k 

With these values we obtain 

(6.20) 

(6.21) 
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where Ek is the relative specific enthalpy of each substance as defined above and fii 

is the total heat flux. The first term represents the kinetic energy flux and the second 

term is the power transmitted by the dissipative forces @i. 

7. MIXTURE OF INCOMPRESSIBLE FLUIDS 

The foregoing results are of course applicable to incompressible fluids as a limiting 

case. However for the purpose of practical applications a special treatment is in 

order. 

Instead of a rigid cell of unit volume with variable composition and temperature 

we consider a cell which is also of variable volume v. As shown earlier (Biot rg76b, 

1g77b) the differential of the cell potential in this case is 

dV = -pdv+ C$,dMk+BdY, (7.1) 
k 

where p is the total pressure of the mixture. Because of incompressibility we may 

write 
dv = C dMk/p,. 

k 
(7.2) 

Substitution of this value in (7.1) yields 

dV- = 2 &dMk + BdY, 
k 

(7.3) 

where (7.4) 

We note that for incompressible fluids 3, is a function only of the temperature. The 

potential V of the cell of variable volume is a function, of Mk and 9. The pressure 

differencep -pk is also a function of the same variables. Because of incompressibility 

we may increase p and pk by the same amount without changing the potential Y. 

Hence the variables Mk and 9 determine only the difference p -pk. 
We now consider the incompressible continuum. The collective potential of the 

domain 52 is 

P= V-d@ 
s 

(7.5) 
R 

where V is the potential per unit volume. Hence V is now the potential of a rigid 

cell of unit volume and variable composition, however because of incompressibility 

the variables Mk are not independent and must satisfy the constraint, 

T Mk/P, = 6. (7.6) 

When applying the principle of virtual dissipation we must take into account the 

fact that the variations Mt of mass displacement are not independent. Due to 

relation (7.6) they must obey the constraint 

c 6Mk -=-$.;6M:= 0. 
k Pk 

(7.7) 
i 
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Following a classical procedure for this case we write the variational principle 

where A is a Lagrangian multiplier. In this relation the variations are now arbitrary 

and we may proceed as we have done for the compressible case. This yields the field 

equations 

(7.9) 

(7.10) 

To these equations we must add equation (5.9) for entropy production, They contain 

the same field unknowns Mt, Xi, s* as the similar equations (5.7) and (5.9) for the 

compressible case and an additional one A. The additional equation required is the 

incompressibility condition (7.6) for Mk. 
The field equations (7.9), ( 1.10) may be transformed into a form similar to (5.19)) 

(5.20) by the same procedure as for the compressible case. We obtain 

a$- (7.11) 

(7.12) 

In these equationp, -p is a function of the variables Mk andSP, with Mk satisfying 

(7.6). 

In order to bring out the significance of A we add equations (7.11) after multiplying 

each by mk. We obtain 

(7.13) 

In deriving this result we have taken into account the following relations: 

Tmkhk = ‘3 (7.14) 

which is derived from incompressibility and unit volume of the primary cell, 

(7.15) 

which is derived in appendix III, and 

xrnk aq,lanil: = 0, 
k 

which is equation (5.22). 

(7.16) 

Equation (7.13) is the total momentum equation, hence A represents the total 

pressurep of the mixture. Note however that in the field equation (7.11) we may not 

put A -p = 0 since it is pk -I, which is known as a function of Mk and Y and not pk. 
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Expression (2.23) for the entropy is simplified for incompressible fluids since in 

this case a,(Mk, To) = 0. Hence 

sp=C J nMn @“W”, T’,) &,,fk + 

k 0 T, s ’ 4M;; T’) dy, 

TO 
(7.17) 

8. GENERALIZED COORDINATES AND LAGRANGIAN EQUATIONS 

We represent the unknown vector fields by 

which are now determined by a finite number of unknown generalized coordinates 

qi. We shall assume that the entropy produced does not contribute significantly to 

the state variables describing the system. This assumption may be introduced as an 

approximation in a large number of problems. We shall indicate below how the 

method may be generalized to include s* in the state variables if needed. The field 

unknowns are thus replaced by a finite number of variables qi which are assumed to 

define with sufficient accuracy the state of the fluid mixture. 

In this formulation the variations are 

The summation sign with respect to i is omitted. We shall apply the principle of 

virtual dissipation (4.10) in the domain Q and write it in the form 

(8.3) 

where vk is expressed by (5.8) and according to (4.11) and (4.19) we have 

We remember that in the variational principle (4.19) the variations 6Mt and SS, 

are assumed to vanish at the boundary A of the domain 9. However the variations 

expressed by (8.2) do not. This does not lead to any difficulty with the terms con- 

taining SMF and SS, since they may be assumed to vanish discontinuously at the 

boundary A. On the other hand according to equations (5.5) and (5.6) the variations 

6p, 6Mk, 6s and Saik, contain the gradients of 6Mk and SS,. Hence they become infinite 

when SMk and SSj are discontinuous at the boundary, and therefore contribute an 
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additional finite boundary value to the integral. This contribution is easily derived 

by integration by parts and the variational principle now becomes (see Appendix IV) 

s 
(~a~6M%+~~,6Mk$86sfT6s*)dSZ 

L’ k k 

= 

S[ ( 

x c$” -vknj 6M~-8nj6Sj dA, (8.5) 
A k mk 1 1 

where ni is the unit normal to A. This variational equation may be expressed in 

terms of the variations 6qi as follows. 

Since s* is neglected in the value of the entropy Y we put 69’ = 6s, and we obtain 

Hence 
s 

n(~~k8Mk+i%s)d~ = 
s 

(69’“+96p)dQ = 69 = ztiq$, (8.7) 
n i 

where (84 

is the mixed collective potential of the system. 

The virtual dissipation 

s T6s”d.Q = R (8.9) 
may be written 

s 
T6s”dQ = $6qi, (8.10) 

R i 

where D(q,, a, t) = 
J 

(% + %n) dQ (8.11) 
s) 

is the total dissipation function. This result is easily verified by considering for 

example 

Hence 

We derive (for SSj = 0) 

(8.12) 

(8.13) 

c k s ZiMjk = c a+ !!!%6qi = c a9_tr “?fgqi _ ag!rngqi_ 
j k aMj aqi k aMj aqi aqi (8.14) 

We substitute the values (8.7) and (8.10) as well as the variations (8.2) in the 

variational principle (8.5). Since the variations are arbitrary this yields 

,+aD a9 
i g+~ = Qi, (8.15) 
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where 

are generalized inertia forces, and 

Ii = (8.16) 

(8.17) 

are generalized boundary driving forces. 

These driving forces are of mixed mechanical and thermodynamic nature and 

represent the effect of the environment on the system. They are of the same type as 

encountered earlier in many different problems (Biot 1970,1975,1976a, 1977c,d). 
The generalized inertia forces may be expressed in an interesting alternative form 

in terms of the kinetic energy. 

Consider the variation of the time integral 

This may be written 

(8.18) 

(8.19) 

(8.20) 

Integration by parts, assuming zero variations for initial and final t, yields 

By introducing the value (5.11) of the acceleration ai and expressions (8.2) for 6MF 
this becomes 

+Fdt = -s, J&,dt+/~,Q~~;$$ 6qidtdD 

1 

+3 s 
~(vk)2nj!$&dtdA. (8.22) 

tA k i 

On the other hand .7(qi, &, t) is a function of qi, &, and t. With 6qi as arbitrary 

functions of time vanishing at the limits of time integration, we obtain the classical- 

relation: 

(8.23) 

Equating expressions (8.22) and (8.23) taking into account that 6q, are arbitrary 

functions of time implies 
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This expression of the generalized inertia forces contains terms involving the kinetic 

energy F in the domain Sz. These terms are the same as the classical Lagrangian 

expressions in terms of generalized coordinates. However in the present case there is 

an additional boundary integral and a volume integral which involves the vorticity 

oil. This is due to the fact that the generalized coordinates describe the mass 

displacement at a fixed point instead of the variable coordinates of the moving 

particles. In other words the generalized coordinates describe an open system. 

t (8.25) 

and introduce the value (8.24) of Ii the Lagrangian equations (8.15) become 

= Q;. (8.26) 

It is of interest to note that A+ is analogous to a generalized Coriolis force and 

embodies a ‘Magnus effect ‘. In the actual field as well as in the space of generalized 

coordinates it is perpendicular to the velocity. This can be seen by taking into 

account relation (5.13) and writing 

(8.27) 

This property of perpendicularity is thus invariant. Its existence is a direct conse- 

quence of the Eulerian formulation of dynamics which considers the system as a 

collection of open cells. 

The force &Zi vanishes whenever the vorticity is zero. Such is the case in potential 

flow and flow which is either one dimensional, axially symmetric, or spherically 

symmetric. 

In the foregoing Lagrangian formulation we have assumed that the entropy pro- 

duced s* does not contribute significantly to the value of the total entropy Y as a 

state variable. When this is not the case one way to introduce the correction is by 

first solving the problem by putting s * = 0 as a first approximation and evaluate s* 

from the entropy production equation (5.9), i.e. 

TS” = 29, (8.28) 

where 9 is now expressed as a known function of time by the first approximation. 
Another procedure is to use the actual value of the entropy 

Y = s+s*, (8.29) 
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and to consider s* as an additional unknown. Again we may use additional 

generalized coordinates q; by writing 

s* = s”(qi, x,, t), (8.30) 

and derive the required number of equations for the additional unknowns. For 

example if there are n’ generalized coordinates q; we write equation (8.30) at n’ 
suitably chosen points. Another procedure is to derive the additional equations by 

applying to (8.30) the method of the variational scalar product (Biot 1970). 

The Lagrangian technique of generalized coordinates has been given extensive 

treatment in the domain of heat transfer (Biot 1970) where its power and accuracy 

has been abundantly illustrated. It actually leads to new systems analysis methods 

and a new science of heat transfer which does not involve the use of traditional 

concepts. 

9. FINITE ELEMENT METHODS BY GENERALIZED COORDINATES 

The Lagrangian equations provide immediately a large variety of finite element 

methods by using the values of the field components at discrete points as generalized 

coordinates. For example in two dimensions we may divide the domain in triangular 

cells and choose the values of the unknown field variables MF, Sj and s* at the 

vertices as generalized coordinates pi, q,:. Values of the field inside the triangles 

are obtained by linear interpolation. The linear interpolation for any variable 5 

whose values & 5s Q are given at three points @i, yi), (x2, ys), (xa, ya) is obtained from 

the equation 

The Lagrangian equations (8.15) are equal in number to the unknowns Mjk and S, 

at the vertices. The additional equations for s* are obtained by writing equation 

(8.28) at each vertex using for mk and s the average of their constant values in the 

triangles with this common vertex. 

In three dimensions the same method applies with tetrahedral cells. 

Many variants and refinements may be imagined based on this approach using 

other types of interpolation. For example one may use a local polynomial inter- 
polation involving values of the field at vertices of a group of neighbouring cells. 

The superior accuracy of such methods is exemplified by Simpson’s rule in the case 

of quadratures. 

APPENDIX I 

The dissipation function (3.15), i.e. 

5@, = + C Krkv@ + z Kkvq@ + (T/24 2 (S$)2, (11) 
lki ki 2 

Vol. 365. A. 17 
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must be invariant under translation hence it must remain unchanged if we replace 

vt by vf + Vi, where vi is a constant velocity of translation. With this substitution the 

value of ~9:~ becomes 

This expression must be independent of vi for arbitrary values of vf. The necessary 

and sufficient conditions to be satisfied by the coefficients are 

x Kzk = 0 for all values of I, 

and ;Kk = 0. 
(I 3) 

k 

We put 

K” = 2C:‘, 

.@k = - 20k for 1 + k (czz = 0). 1 
(14) 

The first of conditions (I 3) becomes 

c: = zc’“. (I 5) 

From those relations we derive 

lki li Eki 

= 2 2 (2 Clk ~1. ~1.) - 2 z C’kV? vk 2 z z z 
li k lki 

= x C’k(V’i v!, + v: v: - 224 v:, 
lki 

= 2 Ok@ - up. 

Hence the dissipation function (I 1) becomes 

&, = 3 lz Crk(v!, - v!)~ + 5 Kkt$& + (T/2k) C (L$)~. 
i 

(16) 

(I 7) 

APPENDIX II 

We shall establish necessary and sufficient conditions for the coefficients hlk, 7:” 

and it in order that the dissipation function (3.26), namely 

9v = 4 C hzk?+” + C?j\“r’ij?+j + ~?&kW\jW~j, w  1) 

lk lk lk 

be non-negative. The indices i, j are summation indices. We shall express these 

summations explicitly by writing 

rk = &+r&+&, (II 2) 



Consider first the case where rij = wz3 = wsl = 0. The dissipation function becomes 

Since w& and I& are arbitrary anecessary condition for gV to be non-negative is that 

(II 6) 

for arbitrary variables zIzk. 

Next consider the case rrk, = r& = & = r2”, = r& = ws = 0. The dissipation 

function in this case is 
gV = 2~;~kr\2r& (II 7) 

lk 

Again a necessary condition to be satisfied is 

(II 3) 

Finally we consider the case rf.. = r& = r& = w % = 0. The dissipation function is now 

.$a” = sl. PI 9) 

We write F1 in the algebraically equivalent form 

s1 = 2 ()hrk + Qqik) r”rk 

+ Q 5 r!k[(& - r”,~) (& -6~) + (6s - 43) (6s -6s) + (@k3 - &) (6 - 41. 
(II 10) 

If rF1 = r& = r&the expression reduces to 

g1 = g (&Vk + +rik) r’rk. (II 11) 

Hence we must satisfy the condition 

;r: (h’k+ j#) ZlZ, > 0. (II 12) 
lk 

Therefore a necessary condition is that the matrices hzk+ $r:“, 7:” and rkk be non- 

negative. It is immediately verified from the values (II 4) and (II 10) of 9i, %s, .Es, 

that the condition is also sufficient. 
17-2 
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APPENDIX III 

The derivation of relation (5.23) is obtained by considering a cell of variable 

volume 2, instead of a unit volume. The differential of the cell potential in this case is 

obtained(Biot 1976b,1977b) byaddingtheterm -pdvtoexpression(2.16)wherep 

is the total pressure acting on the fluid mixture in the cell. Thus 

dY = -pdv+z&dMk+f3dY. 
k 

(III 1) 

The variation of the collective potential of the domain Q is now 

6v = s a[-p6V+~~kSMk+e6Y1dR. (III 2) 

Variations are applied only in the domain Sz and 6v is the variation of volume per 

unit volume. We shall consider two types of variations which are equivalent, hence 

yield the same value 6 V. 

In the first type only the volume 6v of the fluid cells is varied, assuming no mass 

flow or heat flow across the boundary of the cells. This corresponds to a displacement 

6ui of the mixture with no relative flow of the constituents. Hence 

6v = $u,, 6M”=W=O, (III 3) 
i 

and 6V= - 
s 

np&iuidJ2 = 
z s 

; 6ui d0. 
n xi 

(III 4) 

In the second equivalent type of variation the cells are assumed of constant volume 

(6v = 0) while masses 
6Mk = - a(mk6ut)/axi (III 5) 

are injected adiabatically. From (3.5), for the adiabatic case (6X: = 0), we derive 

SSi = CS~SM~ = ~~kmk6ui. (III 6) 
k k 

Hence 6Y = - ~ SSi = -C J- (skmk3ui). (III 7) 
i k axi 

Substitution of (III 5) and (III 7) into (III 2) yields 

or 

From (2.18) we derive 
atik I apk _ ae -= 
axi Pkaxi 

- --"kjj$ 

Hence 6V = 

(III 8) 

(III 9) 

(III 10) 

(III 11) 
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The two expressions (III 4) and (III 11) for 6 V must be equal for arbitrary variations 

6ui, hence 
(III 12) 

which is relation (5.23). 

In this derivation we have assumed compressibility. The result obviously 

remains valid for incompressible fluids as a limiting case. However a particular 

derivation for this case is also easily obtained. 

We must recall the significance of pk. It is the density of the pure substance at the 

partial pressure pk of the substance in the mixture. This pressure was defined as the 

equilibrium pressure of the pure substance with the mixture through a scmi- 

permeable membrane at a given composition and temperature. Hence in general 

pk + mk. However for a perfect gas mk = pk and 1, = zig. 
k 

APPENDIX IV 

The right side of equation (8.5) is obtained as follows. Consider for example the 
term 

in equation (8.3), where 

Equation (8.3) assumes that the normal component nj8Sj of SSi vanishes at tho 

boundary A of 9. Therefore we write SSi in the form 

&S. = &yj!‘!) + &!p) 3 3 3 ’ (IV 3) 

where Sjn is defined in terms of the generalized coordinates by the expression 

s 06sdQ 
R 

(IV 1) 

6s = - & ssj. (IV 2) 
5 

(8.1), i.e. sy = Si(Qi,X,J). (IV 4) 
We then choose ~AS’$~) so that it is different from zero in a thin layer 52’ near the 

boundary A of 9, and such that nj6Si vanishes at the boundary. Hence at this 

boundary 
njnjS$?l = &!W 

-n&Sjl) = -nixJ1-qi. 
i %i 

VW 

The integral (IV 1) becomes 

s 86sdQ = s OW’)dQ - 
R 52 s *A$ j 

a &!W dLY, (IV 6) 

where Ml) = - a(8Sji’)/aXi. Since LY may be an infinitely thin layer, if we integrate 

by parts and take into account relation (IV 5) we obtain 

(IV 7) 

The second term corresponds to the one appearing on the right side of equation (8.5). 
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